mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
78 lines
2.6 KiB
78 lines
2.6 KiB
#ifndef _OPENCV_HOGFEATURES_H_ |
|
#define _OPENCV_HOGFEATURES_H_ |
|
|
|
#include "traincascade_features.h" |
|
|
|
//#define TEST_INTHIST_BUILD |
|
//#define TEST_FEAT_CALC |
|
|
|
#define N_BINS 9 |
|
#define N_CELLS 4 |
|
|
|
#define HOGF_NAME "HOGFeatureParams" |
|
struct CvHOGFeatureParams : public CvFeatureParams |
|
{ |
|
CvHOGFeatureParams(); |
|
}; |
|
|
|
class CvHOGEvaluator : public CvFeatureEvaluator |
|
{ |
|
public: |
|
virtual ~CvHOGEvaluator() {} |
|
virtual void init(const CvFeatureParams *_featureParams, |
|
int _maxSampleCount, Size _winSize ); |
|
virtual void setImage(const Mat& img, uchar clsLabel, int idx); |
|
virtual float operator()(int varIdx, int sampleIdx) const; |
|
virtual void writeFeatures( FileStorage &fs, const Mat& featureMap ) const; |
|
protected: |
|
virtual void generateFeatures(); |
|
virtual void integralHistogram(const Mat &img, vector<Mat> &histogram, Mat &norm, int nbins) const; |
|
class Feature |
|
{ |
|
public: |
|
Feature(); |
|
Feature( int offset, int x, int y, int cellW, int cellH ); |
|
float calc( const vector<Mat> &_hists, const Mat &_normSum, size_t y, int featComponent ) const; |
|
void write( FileStorage &fs ) const; |
|
void write( FileStorage &fs, int varIdx ) const; |
|
|
|
Rect rect[N_CELLS]; //cells |
|
|
|
struct |
|
{ |
|
int p0, p1, p2, p3; |
|
} fastRect[N_CELLS]; |
|
}; |
|
vector<Feature> features; |
|
|
|
Mat normSum; //for nomalization calculation (L1 or L2) |
|
vector<Mat> hist; |
|
}; |
|
|
|
inline float CvHOGEvaluator::operator()(int varIdx, int sampleIdx) const |
|
{ |
|
int featureIdx = varIdx / (N_BINS * N_CELLS); |
|
int componentIdx = varIdx % (N_BINS * N_CELLS); |
|
//return features[featureIdx].calc( hist, sampleIdx, componentIdx); |
|
return features[featureIdx].calc( hist, normSum, sampleIdx, componentIdx); |
|
} |
|
|
|
inline float CvHOGEvaluator::Feature::calc( const vector<Mat>& _hists, const Mat& _normSum, size_t y, int featComponent ) const |
|
{ |
|
float normFactor; |
|
float res; |
|
|
|
int binIdx = featComponent % N_BINS; |
|
int cellIdx = featComponent / N_BINS; |
|
|
|
const float *hist = _hists[binIdx].ptr<float>((int)y); |
|
res = hist[fastRect[cellIdx].p0] - hist[fastRect[cellIdx].p1] - hist[fastRect[cellIdx].p2] + hist[fastRect[cellIdx].p3]; |
|
|
|
const float *normSum = _normSum.ptr<float>((int)y); |
|
normFactor = (float)(normSum[fastRect[0].p0] - normSum[fastRect[1].p1] - normSum[fastRect[2].p2] + normSum[fastRect[3].p3]); |
|
res = (res > 0.001f) ? ( res / (normFactor + 0.001f) ) : 0.f; //for cutting negative values, which apper due to floating precision |
|
|
|
return res; |
|
} |
|
|
|
#endif // _OPENCV_HOGFEATURES_H_
|
|
|