mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
184 lines
5.5 KiB
184 lines
5.5 KiB
/* |
|
* pca.cpp |
|
* |
|
* Author: |
|
* Kevin Hughes <kevinhughes27[at]gmail[dot]com> |
|
* |
|
* Special Thanks to: |
|
* Philipp Wagner <bytefish[at]gmx[dot]de> |
|
* |
|
* This program demonstrates how to use OpenCV PCA with a |
|
* specified amount of variance to retain. The effect |
|
* is illustrated further by using a trackbar to |
|
* change the value for retained varaince. |
|
* |
|
* The program takes as input a text file with each line |
|
* begin the full path to an image. PCA will be performed |
|
* on this list of images. The author recommends using |
|
* the first 15 faces of the AT&T face data set: |
|
* http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html |
|
* |
|
* so for example your input text file would look like this: |
|
* |
|
* <path_to_at&t_faces>/orl_faces/s1/1.pgm |
|
* <path_to_at&t_faces>/orl_faces/s2/1.pgm |
|
* <path_to_at&t_faces>/orl_faces/s3/1.pgm |
|
* <path_to_at&t_faces>/orl_faces/s4/1.pgm |
|
* <path_to_at&t_faces>/orl_faces/s5/1.pgm |
|
* <path_to_at&t_faces>/orl_faces/s6/1.pgm |
|
* <path_to_at&t_faces>/orl_faces/s7/1.pgm |
|
* <path_to_at&t_faces>/orl_faces/s8/1.pgm |
|
* <path_to_at&t_faces>/orl_faces/s9/1.pgm |
|
* <path_to_at&t_faces>/orl_faces/s10/1.pgm |
|
* <path_to_at&t_faces>/orl_faces/s11/1.pgm |
|
* <path_to_at&t_faces>/orl_faces/s12/1.pgm |
|
* <path_to_at&t_faces>/orl_faces/s13/1.pgm |
|
* <path_to_at&t_faces>/orl_faces/s14/1.pgm |
|
* <path_to_at&t_faces>/orl_faces/s15/1.pgm |
|
* |
|
*/ |
|
|
|
#include <iostream> |
|
#include <fstream> |
|
#include <sstream> |
|
|
|
#include <opencv2/core/core.hpp> |
|
#include <opencv2/highgui/highgui.hpp> |
|
|
|
using namespace cv; |
|
using namespace std; |
|
|
|
/////////////////////// |
|
// Functions |
|
static void read_imgList(const string& filename, vector<Mat>& images) { |
|
std::ifstream file(filename.c_str(), ifstream::in); |
|
if (!file) { |
|
string error_message = "No valid input file was given, please check the given filename."; |
|
CV_Error(CV_StsBadArg, error_message); |
|
} |
|
string line; |
|
while (getline(file, line)) { |
|
images.push_back(imread(line, 0)); |
|
} |
|
} |
|
|
|
static Mat formatImagesForPCA(const vector<Mat> &data) |
|
{ |
|
Mat dst(data.size(), data[0].rows*data[0].cols, CV_32F); |
|
for(unsigned int i = 0; i < data.size(); i++) |
|
{ |
|
Mat image_row = data[i].clone().reshape(1,1); |
|
Mat row_i = dst.row(i); |
|
image_row.convertTo(row_i,CV_32F); |
|
} |
|
return dst; |
|
} |
|
|
|
static Mat toGrayscale(InputArray _src) { |
|
Mat src = _src.getMat(); |
|
// only allow one channel |
|
if(src.channels() != 1) { |
|
CV_Error(CV_StsBadArg, "Only Matrices with one channel are supported"); |
|
} |
|
// create and return normalized image |
|
Mat dst; |
|
cv::normalize(_src, dst, 0, 255, NORM_MINMAX, CV_8UC1); |
|
return dst; |
|
} |
|
|
|
struct params |
|
{ |
|
Mat data; |
|
int ch; |
|
int rows; |
|
PCA pca; |
|
string winName; |
|
}; |
|
|
|
static void onTrackbar(int pos, void* ptr) |
|
{ |
|
cout << "Retained Variance = " << pos << "% "; |
|
cout << "re-calculating PCA..." << std::flush; |
|
|
|
double var = pos / 100.0; |
|
|
|
struct params *p = (struct params *)ptr; |
|
|
|
p->pca = PCA(p->data, cv::Mat(), CV_PCA_DATA_AS_ROW, var); |
|
|
|
Mat point = p->pca.project(p->data.row(0)); |
|
Mat reconstruction = p->pca.backProject(point); |
|
reconstruction = reconstruction.reshape(p->ch, p->rows); |
|
reconstruction = toGrayscale(reconstruction); |
|
|
|
imshow(p->winName, reconstruction); |
|
cout << "done! # of principal components: " << p->pca.eigenvectors.rows << endl; |
|
} |
|
|
|
|
|
/////////////////////// |
|
// Main |
|
int main(int argc, char** argv) |
|
{ |
|
if (argc != 2) { |
|
cout << "usage: " << argv[0] << " <image_list.txt>" << endl; |
|
exit(1); |
|
} |
|
|
|
// Get the path to your CSV. |
|
string imgList = string(argv[1]); |
|
|
|
// vector to hold the images |
|
vector<Mat> images; |
|
|
|
// Read in the data. This can fail if not valid |
|
try { |
|
read_imgList(imgList, images); |
|
} catch (cv::Exception& e) { |
|
cerr << "Error opening file \"" << imgList << "\". Reason: " << e.msg << endl; |
|
exit(1); |
|
} |
|
|
|
// Quit if there are not enough images for this demo. |
|
if(images.size() <= 1) { |
|
string error_message = "This demo needs at least 2 images to work. Please add more images to your data set!"; |
|
CV_Error(CV_StsError, error_message); |
|
} |
|
|
|
// Reshape and stack images into a rowMatrix |
|
Mat data = formatImagesForPCA(images); |
|
|
|
// perform PCA |
|
PCA pca(data, cv::Mat(), CV_PCA_DATA_AS_ROW, 0.95); // trackbar is initially set here, also this is a common value for retainedVariance |
|
|
|
// Demonstration of the effect of retainedVariance on the first image |
|
Mat point = pca.project(data.row(0)); // project into the eigenspace, thus the image becomes a "point" |
|
Mat reconstruction = pca.backProject(point); // re-create the image from the "point" |
|
reconstruction = reconstruction.reshape(images[0].channels(), images[0].rows); // reshape from a row vector into image shape |
|
reconstruction = toGrayscale(reconstruction); // re-scale for displaying purposes |
|
|
|
// init highgui window |
|
string winName = "Reconstruction | press 'q' to quit"; |
|
namedWindow(winName, CV_WINDOW_NORMAL); |
|
|
|
// params struct to pass to the trackbar handler |
|
params p; |
|
p.data = data; |
|
p.ch = images[0].channels(); |
|
p.rows = images[0].rows; |
|
p.pca = pca; |
|
p.winName = winName; |
|
|
|
// create the tracbar |
|
int pos = 95; |
|
createTrackbar("Retained Variance (%)", winName, &pos, 100, onTrackbar, (void*)&p); |
|
|
|
// display until user presses q |
|
imshow(winName, reconstruction); |
|
|
|
int key = 0; |
|
while(key != 'q') |
|
key = waitKey(); |
|
|
|
return 0; |
|
}
|
|
|