mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
410 lines
14 KiB
410 lines
14 KiB
/*M/////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// |
|
// License Agreement |
|
// For Open Source Computer Vision Library |
|
// |
|
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. |
|
// Copyright (C) 2009, Willow Garage Inc., all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
// |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistribution's of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistribution's in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other GpuMaterials provided with the distribution. |
|
// |
|
// * The name of the copyright holders may not be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors "as is" and |
|
// any express or bpied warranties, including, but not limited to, the bpied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall the Intel Corporation or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
// |
|
//M*/ |
|
|
|
#include "precomp.hpp" |
|
|
|
#define MIN_SIZE 32 |
|
|
|
#define S(x) StreamAccessor::getStream(x) |
|
|
|
// GPU resize() is fast, but it differs from the CPU analog. Disabling this flag |
|
// leads to an inefficient code. It's for debug purposes only. |
|
#define ENABLE_GPU_RESIZE 1 |
|
|
|
using namespace std; |
|
using namespace cv; |
|
using namespace cv::gpu; |
|
|
|
#if !defined HAVE_CUDA || defined(CUDA_DISABLER) |
|
|
|
void cv::gpu::FarnebackOpticalFlow::operator ()(const GpuMat&, const GpuMat&, GpuMat&, GpuMat&, Stream&) { throw_nogpu(); } |
|
|
|
#else |
|
|
|
namespace cv { namespace gpu { namespace device { namespace optflow_farneback |
|
{ |
|
void setPolynomialExpansionConsts( |
|
int polyN, const float *g, const float *xg, const float *xxg, |
|
float ig11, float ig03, float ig33, float ig55); |
|
|
|
void polynomialExpansionGpu(const PtrStepSzf &src, int polyN, PtrStepSzf dst, cudaStream_t stream); |
|
|
|
void setUpdateMatricesConsts(); |
|
|
|
void updateMatricesGpu( |
|
const PtrStepSzf flowx, const PtrStepSzf flowy, const PtrStepSzf R0, const PtrStepSzf R1, |
|
PtrStepSzf M, cudaStream_t stream); |
|
|
|
void updateFlowGpu( |
|
const PtrStepSzf M, PtrStepSzf flowx, PtrStepSzf flowy, cudaStream_t stream); |
|
|
|
/*void boxFilterGpu(const PtrStepSzf src, int ksizeHalf, PtrStepSzf dst, cudaStream_t stream);*/ |
|
|
|
void boxFilter5Gpu(const PtrStepSzf src, int ksizeHalf, PtrStepSzf dst, cudaStream_t stream); |
|
|
|
void boxFilter5Gpu_CC11(const PtrStepSzf src, int ksizeHalf, PtrStepSzf dst, cudaStream_t stream); |
|
|
|
void setGaussianBlurKernel(const float *gKer, int ksizeHalf); |
|
|
|
void gaussianBlurGpu( |
|
const PtrStepSzf src, int ksizeHalf, PtrStepSzf dst, int borderType, cudaStream_t stream); |
|
|
|
void gaussianBlur5Gpu( |
|
const PtrStepSzf src, int ksizeHalf, PtrStepSzf dst, int borderType, cudaStream_t stream); |
|
|
|
void gaussianBlur5Gpu_CC11( |
|
const PtrStepSzf src, int ksizeHalf, PtrStepSzf dst, int borderType, cudaStream_t stream); |
|
|
|
}}}} // namespace cv { namespace gpu { namespace device { namespace optflow_farneback |
|
|
|
|
|
void cv::gpu::FarnebackOpticalFlow::prepareGaussian( |
|
int n, double sigma, float *g, float *xg, float *xxg, |
|
double &ig11, double &ig03, double &ig33, double &ig55) |
|
{ |
|
double s = 0.; |
|
for (int x = -n; x <= n; x++) |
|
{ |
|
g[x] = (float)std::exp(-x*x/(2*sigma*sigma)); |
|
s += g[x]; |
|
} |
|
|
|
s = 1./s; |
|
for (int x = -n; x <= n; x++) |
|
{ |
|
g[x] = (float)(g[x]*s); |
|
xg[x] = (float)(x*g[x]); |
|
xxg[x] = (float)(x*x*g[x]); |
|
} |
|
|
|
Mat_<double> G(6, 6); |
|
G.setTo(0); |
|
|
|
for (int y = -n; y <= n; y++) |
|
{ |
|
for (int x = -n; x <= n; x++) |
|
{ |
|
G(0,0) += g[y]*g[x]; |
|
G(1,1) += g[y]*g[x]*x*x; |
|
G(3,3) += g[y]*g[x]*x*x*x*x; |
|
G(5,5) += g[y]*g[x]*x*x*y*y; |
|
} |
|
} |
|
|
|
//G[0][0] = 1.; |
|
G(2,2) = G(0,3) = G(0,4) = G(3,0) = G(4,0) = G(1,1); |
|
G(4,4) = G(3,3); |
|
G(3,4) = G(4,3) = G(5,5); |
|
|
|
// invG: |
|
// [ x e e ] |
|
// [ y ] |
|
// [ y ] |
|
// [ e z ] |
|
// [ e z ] |
|
// [ u ] |
|
Mat_<double> invG = G.inv(DECOMP_CHOLESKY); |
|
|
|
ig11 = invG(1,1); |
|
ig03 = invG(0,3); |
|
ig33 = invG(3,3); |
|
ig55 = invG(5,5); |
|
} |
|
|
|
|
|
void cv::gpu::FarnebackOpticalFlow::setPolynomialExpansionConsts(int n, double sigma) |
|
{ |
|
vector<float> buf(n*6 + 3); |
|
float* g = &buf[0] + n; |
|
float* xg = g + n*2 + 1; |
|
float* xxg = xg + n*2 + 1; |
|
|
|
if (sigma < FLT_EPSILON) |
|
sigma = n*0.3; |
|
|
|
double ig11, ig03, ig33, ig55; |
|
prepareGaussian(n, sigma, g, xg, xxg, ig11, ig03, ig33, ig55); |
|
|
|
device::optflow_farneback::setPolynomialExpansionConsts(n, g, xg, xxg, static_cast<float>(ig11), static_cast<float>(ig03), static_cast<float>(ig33), static_cast<float>(ig55)); |
|
} |
|
|
|
|
|
void cv::gpu::FarnebackOpticalFlow::updateFlow_boxFilter( |
|
const GpuMat& R0, const GpuMat& R1, GpuMat& flowx, GpuMat &flowy, |
|
GpuMat& M, GpuMat &bufM, int blockSize, bool updateMatrices, Stream streams[]) |
|
{ |
|
if (!isDeviceArch11_) |
|
device::optflow_farneback::boxFilter5Gpu(M, blockSize/2, bufM, S(streams[0])); |
|
else |
|
device::optflow_farneback::boxFilter5Gpu_CC11(M, blockSize/2, bufM, S(streams[0])); |
|
swap(M, bufM); |
|
|
|
for (int i = 1; i < 5; ++i) |
|
streams[i].waitForCompletion(); |
|
device::optflow_farneback::updateFlowGpu(M, flowx, flowy, S(streams[0])); |
|
|
|
if (updateMatrices) |
|
device::optflow_farneback::updateMatricesGpu(flowx, flowy, R0, R1, M, S(streams[0])); |
|
} |
|
|
|
|
|
void cv::gpu::FarnebackOpticalFlow::updateFlow_gaussianBlur( |
|
const GpuMat& R0, const GpuMat& R1, GpuMat& flowx, GpuMat& flowy, |
|
GpuMat& M, GpuMat &bufM, int blockSize, bool updateMatrices, Stream streams[]) |
|
{ |
|
if (!isDeviceArch11_) |
|
device::optflow_farneback::gaussianBlur5Gpu( |
|
M, blockSize/2, bufM, BORDER_REPLICATE_GPU, S(streams[0])); |
|
else |
|
device::optflow_farneback::gaussianBlur5Gpu_CC11( |
|
M, blockSize/2, bufM, BORDER_REPLICATE_GPU, S(streams[0])); |
|
swap(M, bufM); |
|
|
|
device::optflow_farneback::updateFlowGpu(M, flowx, flowy, S(streams[0])); |
|
|
|
if (updateMatrices) |
|
device::optflow_farneback::updateMatricesGpu(flowx, flowy, R0, R1, M, S(streams[0])); |
|
} |
|
|
|
|
|
void cv::gpu::FarnebackOpticalFlow::operator ()( |
|
const GpuMat &frame0, const GpuMat &frame1, GpuMat &flowx, GpuMat &flowy, Stream &s) |
|
{ |
|
CV_Assert(frame0.type() == CV_8U && frame1.type() == CV_8U); |
|
CV_Assert(frame0.size() == frame1.size()); |
|
CV_Assert(polyN == 5 || polyN == 7); |
|
CV_Assert(!fastPyramids || std::abs(pyrScale - 0.5) < 1e-6); |
|
|
|
Stream streams[5]; |
|
if (S(s)) |
|
streams[0] = s; |
|
|
|
Size size = frame0.size(); |
|
GpuMat prevFlowX, prevFlowY, curFlowX, curFlowY; |
|
|
|
flowx.create(size, CV_32F); |
|
flowy.create(size, CV_32F); |
|
GpuMat flowx0 = flowx; |
|
GpuMat flowy0 = flowy; |
|
|
|
// Crop unnecessary levels |
|
double scale = 1; |
|
int numLevelsCropped = 0; |
|
for (; numLevelsCropped < numLevels; numLevelsCropped++) |
|
{ |
|
scale *= pyrScale; |
|
if (size.width*scale < MIN_SIZE || size.height*scale < MIN_SIZE) |
|
break; |
|
} |
|
|
|
streams[0].enqueueConvert(frame0, frames_[0], CV_32F); |
|
streams[1].enqueueConvert(frame1, frames_[1], CV_32F); |
|
|
|
if (fastPyramids) |
|
{ |
|
// Build Gaussian pyramids using pyrDown() |
|
pyramid0_.resize(numLevelsCropped + 1); |
|
pyramid1_.resize(numLevelsCropped + 1); |
|
pyramid0_[0] = frames_[0]; |
|
pyramid1_[0] = frames_[1]; |
|
for (int i = 1; i <= numLevelsCropped; ++i) |
|
{ |
|
pyrDown(pyramid0_[i - 1], pyramid0_[i], streams[0]); |
|
pyrDown(pyramid1_[i - 1], pyramid1_[i], streams[1]); |
|
} |
|
} |
|
|
|
setPolynomialExpansionConsts(polyN, polySigma); |
|
device::optflow_farneback::setUpdateMatricesConsts(); |
|
|
|
for (int k = numLevelsCropped; k >= 0; k--) |
|
{ |
|
streams[0].waitForCompletion(); |
|
|
|
scale = 1; |
|
for (int i = 0; i < k; i++) |
|
scale *= pyrScale; |
|
|
|
double sigma = (1./scale - 1) * 0.5; |
|
int smoothSize = cvRound(sigma*5) | 1; |
|
smoothSize = std::max(smoothSize, 3); |
|
|
|
int width = cvRound(size.width*scale); |
|
int height = cvRound(size.height*scale); |
|
|
|
if (fastPyramids) |
|
{ |
|
width = pyramid0_[k].cols; |
|
height = pyramid0_[k].rows; |
|
} |
|
|
|
if (k > 0) |
|
{ |
|
curFlowX.create(height, width, CV_32F); |
|
curFlowY.create(height, width, CV_32F); |
|
} |
|
else |
|
{ |
|
curFlowX = flowx0; |
|
curFlowY = flowy0; |
|
} |
|
|
|
if (!prevFlowX.data) |
|
{ |
|
if (flags & OPTFLOW_USE_INITIAL_FLOW) |
|
{ |
|
#if ENABLE_GPU_RESIZE |
|
resize(flowx0, curFlowX, Size(width, height), 0, 0, INTER_LINEAR, streams[0]); |
|
resize(flowy0, curFlowY, Size(width, height), 0, 0, INTER_LINEAR, streams[1]); |
|
streams[0].enqueueConvert(curFlowX, curFlowX, curFlowX.depth(), scale); |
|
streams[1].enqueueConvert(curFlowY, curFlowY, curFlowY.depth(), scale); |
|
#else |
|
Mat tmp1, tmp2; |
|
flowx0.download(tmp1); |
|
resize(tmp1, tmp2, Size(width, height), 0, 0, INTER_AREA); |
|
tmp2 *= scale; |
|
curFlowX.upload(tmp2); |
|
flowy0.download(tmp1); |
|
resize(tmp1, tmp2, Size(width, height), 0, 0, INTER_AREA); |
|
tmp2 *= scale; |
|
curFlowY.upload(tmp2); |
|
#endif |
|
} |
|
else |
|
{ |
|
streams[0].enqueueMemSet(curFlowX, 0); |
|
streams[1].enqueueMemSet(curFlowY, 0); |
|
} |
|
} |
|
else |
|
{ |
|
#if ENABLE_GPU_RESIZE |
|
resize(prevFlowX, curFlowX, Size(width, height), 0, 0, INTER_LINEAR, streams[0]); |
|
resize(prevFlowY, curFlowY, Size(width, height), 0, 0, INTER_LINEAR, streams[1]); |
|
streams[0].enqueueConvert(curFlowX, curFlowX, curFlowX.depth(), 1./pyrScale); |
|
streams[1].enqueueConvert(curFlowY, curFlowY, curFlowY.depth(), 1./pyrScale); |
|
#else |
|
Mat tmp1, tmp2; |
|
prevFlowX.download(tmp1); |
|
resize(tmp1, tmp2, Size(width, height), 0, 0, INTER_LINEAR); |
|
tmp2 *= 1./pyrScale; |
|
curFlowX.upload(tmp2); |
|
prevFlowY.download(tmp1); |
|
resize(tmp1, tmp2, Size(width, height), 0, 0, INTER_LINEAR); |
|
tmp2 *= 1./pyrScale; |
|
curFlowY.upload(tmp2); |
|
#endif |
|
} |
|
|
|
GpuMat M = allocMatFromBuf(5*height, width, CV_32F, M_); |
|
GpuMat bufM = allocMatFromBuf(5*height, width, CV_32F, bufM_); |
|
GpuMat R[2] = |
|
{ |
|
allocMatFromBuf(5*height, width, CV_32F, R_[0]), |
|
allocMatFromBuf(5*height, width, CV_32F, R_[1]) |
|
}; |
|
|
|
if (fastPyramids) |
|
{ |
|
device::optflow_farneback::polynomialExpansionGpu(pyramid0_[k], polyN, R[0], S(streams[0])); |
|
device::optflow_farneback::polynomialExpansionGpu(pyramid1_[k], polyN, R[1], S(streams[1])); |
|
} |
|
else |
|
{ |
|
GpuMat blurredFrame[2] = |
|
{ |
|
allocMatFromBuf(size.height, size.width, CV_32F, blurredFrame_[0]), |
|
allocMatFromBuf(size.height, size.width, CV_32F, blurredFrame_[1]) |
|
}; |
|
GpuMat pyrLevel[2] = |
|
{ |
|
allocMatFromBuf(height, width, CV_32F, pyrLevel_[0]), |
|
allocMatFromBuf(height, width, CV_32F, pyrLevel_[1]) |
|
}; |
|
|
|
Mat g = getGaussianKernel(smoothSize, sigma, CV_32F); |
|
device::optflow_farneback::setGaussianBlurKernel(g.ptr<float>(smoothSize/2), smoothSize/2); |
|
|
|
for (int i = 0; i < 2; i++) |
|
{ |
|
device::optflow_farneback::gaussianBlurGpu( |
|
frames_[i], smoothSize/2, blurredFrame[i], BORDER_REFLECT101_GPU, S(streams[i])); |
|
#if ENABLE_GPU_RESIZE |
|
resize(blurredFrame[i], pyrLevel[i], Size(width, height), INTER_LINEAR, streams[i]); |
|
#else |
|
Mat tmp1, tmp2; |
|
tmp[i].download(tmp1); |
|
resize(tmp1, tmp2, Size(width, height), INTER_LINEAR); |
|
I[i].upload(tmp2); |
|
#endif |
|
device::optflow_farneback::polynomialExpansionGpu(pyrLevel[i], polyN, R[i], S(streams[i])); |
|
} |
|
} |
|
|
|
streams[1].waitForCompletion(); |
|
device::optflow_farneback::updateMatricesGpu(curFlowX, curFlowY, R[0], R[1], M, S(streams[0])); |
|
|
|
if (flags & OPTFLOW_FARNEBACK_GAUSSIAN) |
|
{ |
|
Mat g = getGaussianKernel(winSize, winSize/2*0.3f, CV_32F); |
|
device::optflow_farneback::setGaussianBlurKernel(g.ptr<float>(winSize/2), winSize/2); |
|
} |
|
for (int i = 0; i < numIters; i++) |
|
{ |
|
if (flags & OPTFLOW_FARNEBACK_GAUSSIAN) |
|
updateFlow_gaussianBlur(R[0], R[1], curFlowX, curFlowY, M, bufM, winSize, i < numIters-1, streams); |
|
else |
|
updateFlow_boxFilter(R[0], R[1], curFlowX, curFlowY, M, bufM, winSize, i < numIters-1, streams); |
|
} |
|
|
|
prevFlowX = curFlowX; |
|
prevFlowY = curFlowY; |
|
} |
|
|
|
flowx = curFlowX; |
|
flowy = curFlowY; |
|
|
|
if (!S(s)) |
|
streams[0].waitForCompletion(); |
|
} |
|
|
|
#endif
|
|
|