Open Source Computer Vision Library https://opencv.org/
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

3135 lines
118 KiB

// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
// Copyright (C) 2018, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.
#include "../precomp.hpp"
#include <opencv2/dnn/shape_utils.hpp>
#include <opencv2/dnn/layer_reg.private.hpp>
#include <opencv2/core/utils/logger.defines.hpp>
#undef CV_LOG_STRIP_LEVEL
#define CV_LOG_STRIP_LEVEL CV_LOG_LEVEL_DEBUG + 1
#include <opencv2/core/utils/logger.hpp>
#ifdef HAVE_PROTOBUF
#include <iostream>
#include <fstream>
#include <string>
#include <limits>
#include <algorithm>
#if defined(__GNUC__) && __GNUC__ >= 5
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wsuggest-override"
#endif
#include "opencv-onnx.pb.h"
#if defined(__GNUC__) && __GNUC__ >= 5
#pragma GCC diagnostic pop
#endif
#include "onnx_graph_simplifier.hpp"
namespace cv {
namespace dnn {
CV__DNN_INLINE_NS_BEGIN
extern bool DNN_DIAGNOSTICS_RUN;
class ONNXLayerHandler;
class ONNXImporter
{
opencv_onnx::ModelProto model_proto;
struct LayerInfo {
int layerId;
int outputId;
LayerInfo(int _layerId = 0, int _outputId = 0) : layerId(_layerId), outputId(_outputId) {}
};
std::map<std::string, Mat> getGraphTensors(
const opencv_onnx::GraphProto& graph_proto);
Mat getBlob(const opencv_onnx::NodeProto& node_proto, int index);
Mat getBlob(const std::string& input_name);
LayerParams getLayerParams(const opencv_onnx::NodeProto& node_proto);
void addConstant(const std::string& name, const Mat& blob);
void addLayer(LayerParams& layerParams,
const opencv_onnx::NodeProto& node_proto);
void handleQuantizedNode(LayerParams& layerParams,
const opencv_onnx::NodeProto& node_proto);
void expandMid(const std::string& prefix, opencv_onnx::NodeProto& node_proto,
const std::string& input, size_t n);
void addNegation(const LayerParams& layerParams, opencv_onnx::NodeProto& node_proto, int input_id);
public:
ONNXImporter(Net& net, const char *onnxFile);
ONNXImporter(Net& net, const char* buffer, size_t sizeBuffer);
void populateNet();
protected:
std::unique_ptr<ONNXLayerHandler> layerHandler;
Net& dstNet;
opencv_onnx::GraphProto graph_proto;
std::string framework_name;
std::map<std::string, Mat> constBlobs;
std::map<std::string, MatShape> outShapes; // List of internal blobs shapes.
bool hasDynamicShapes; // Whether the model has inputs with dynamic shapes
typedef std::map<std::string, MatShape>::iterator IterShape_t;
std::map<std::string, LayerInfo> layer_id;
typedef std::map<std::string, LayerInfo>::iterator IterLayerId_t;
void handleNode(const opencv_onnx::NodeProto& node_proto);
private:
friend class ONNXLayerHandler;
typedef void (ONNXImporter::*ONNXImporterNodeParser)(LayerParams& layerParams, const opencv_onnx::NodeProto& node_proto);
typedef std::map<std::string, ONNXImporterNodeParser> DispatchMap;
const DispatchMap dispatch;
static const DispatchMap buildDispatchMap();
void parseArg (LayerParams& layerParams, const opencv_onnx::NodeProto& node_proto);
void parseMaxUnpool (LayerParams& layerParams, const opencv_onnx::NodeProto& node_proto);
void parseMaxPool (LayerParams& layerParams, const opencv_onnx::NodeProto& node_proto);
void parseAveragePool (LayerParams& layerParams, const opencv_onnx::NodeProto& node_proto);
void parseReduce (LayerParams& layerParams, const opencv_onnx::NodeProto& node_proto);
void parseSlice (LayerParams& layerParams, const opencv_onnx::NodeProto& node_proto);
void parseSplit (LayerParams& layerParams, const opencv_onnx::NodeProto& node_proto);
void parseBias (LayerParams& layerParams, const opencv_onnx::NodeProto& node_proto);
void parsePow (LayerParams& layerParams, const opencv_onnx::NodeProto& node_proto);
void parseMinMax (LayerParams& layerParams, const opencv_onnx::NodeProto& node_proto);
void parseNeg (LayerParams& layerParams, const opencv_onnx::NodeProto& node_proto);
void parseConstant (LayerParams& layerParams, const opencv_onnx::NodeProto& node_proto);
void parseLSTM (LayerParams& layerParams, const opencv_onnx::NodeProto& node_proto);
void parseGRU (LayerParams& layerParams, const opencv_onnx::NodeProto& node_proto);
void parseImageScaler (LayerParams& layerParams, const opencv_onnx::NodeProto& node_proto);
void parseClip (LayerParams& layerParams, const opencv_onnx::NodeProto& node_proto);
void parseLeakyRelu (LayerParams& layerParams, const opencv_onnx::NodeProto& node_proto);
void parseRelu (LayerParams& layerParams, const opencv_onnx::NodeProto& node_proto);
void parseElu (LayerParams& layerParams, const opencv_onnx::NodeProto& node_proto);
void parseTanh (LayerParams& layerParams, const opencv_onnx::NodeProto& node_proto);
void parseAbs (LayerParams& layerParams, const opencv_onnx::NodeProto& node_proto);
void parseCompare (LayerParams& layerParams, const opencv_onnx::NodeProto& node_proto);
void parsePRelu (LayerParams& layerParams, const opencv_onnx::NodeProto& node_proto);
void parseLRN (LayerParams& layerParams, const opencv_onnx::NodeProto& node_proto);
void parseInstanceNormalization(LayerParams& layerParams, const opencv_onnx::NodeProto& node_proto);
void parseBatchNormalization (LayerParams& layerParams, const opencv_onnx::NodeProto& node_proto);
void parseGemm (LayerParams& layerParams, const opencv_onnx::NodeProto& node_proto);
void parseMatMul (LayerParams& layerParams, const opencv_onnx::NodeProto& node_proto);
void parseMul (LayerParams& layerParams, const opencv_onnx::NodeProto& node_proto);
void parseConv (LayerParams& layerParams, const opencv_onnx::NodeProto& node_proto);
void parseConvTranspose (LayerParams& layerParams, const opencv_onnx::NodeProto& node_proto);
void parseTranspose (LayerParams& layerParams, const opencv_onnx::NodeProto& node_proto);
void parseSqueeze (LayerParams& layerParams, const opencv_onnx::NodeProto& node_proto);
void parseFlatten (LayerParams& layerParams, const opencv_onnx::NodeProto& node_proto);
void parseUnsqueeze (LayerParams& layerParams, const opencv_onnx::NodeProto& node_proto);
void parseExpand (LayerParams& layerParams, const opencv_onnx::NodeProto& node_proto);
void parseReshape (LayerParams& layerParams, const opencv_onnx::NodeProto& node_proto);
void parsePad (LayerParams& layerParams, const opencv_onnx::NodeProto& node_proto);
void parseShape (LayerParams& layerParams, const opencv_onnx::NodeProto& node_proto);
void parseCast (LayerParams& layerParams, const opencv_onnx::NodeProto& node_proto);
void parseConstantFill (LayerParams& layerParams, const opencv_onnx::NodeProto& node_proto);
void parseGather (LayerParams& layerParams, const opencv_onnx::NodeProto& node_proto);
void parseConcat (LayerParams& layerParams, const opencv_onnx::NodeProto& node_proto);
void parseResize (LayerParams& layerParams, const opencv_onnx::NodeProto& node_proto);
void parseUpsample (LayerParams& layerParams, const opencv_onnx::NodeProto& node_proto);
void parseSoftMax (LayerParams& layerParams, const opencv_onnx::NodeProto& node_proto);
void parseDetectionOutput (LayerParams& layerParams, const opencv_onnx::NodeProto& node_proto);
void parseCumSum (LayerParams& layerParams, const opencv_onnx::NodeProto& node_proto);
void parseQuantDequant (LayerParams& layerParams, const opencv_onnx::NodeProto& node_proto);
void parseQConv (LayerParams& layerParams, const opencv_onnx::NodeProto& node_proto);
void parseQMatMul (LayerParams& layerParams, const opencv_onnx::NodeProto& node_proto);
void parseQEltwise (LayerParams& layerParams, const opencv_onnx::NodeProto& node_proto);
void parseQLeakyRelu (LayerParams& layerParams, const opencv_onnx::NodeProto& node_proto);
void parseQSigmoid (LayerParams& layerParams, const opencv_onnx::NodeProto& node_proto);
void parseQAvgPool (LayerParams& layerParams, const opencv_onnx::NodeProto& node_proto);
void parseQConcat (LayerParams& layerParams, const opencv_onnx::NodeProto& node_proto);
void parseCustomLayer (LayerParams& layerParams, const opencv_onnx::NodeProto& node_proto);
};
class ONNXLayerHandler : public detail::LayerHandler
{
public:
explicit ONNXLayerHandler(ONNXImporter* importer_);
void fillRegistry(const opencv_onnx::GraphProto& net);
protected:
ONNXImporter* importer;
};
ONNXLayerHandler::ONNXLayerHandler(ONNXImporter* importer_) : importer(importer_){}
void ONNXLayerHandler::fillRegistry(const opencv_onnx::GraphProto &net)
{
int layersSize = net.node_size();
for (int li = 0; li < layersSize; li++) {
const opencv_onnx::NodeProto &node_proto = net.node(li);
const std::string& name = node_proto.output(0);
const std::string& type = node_proto.op_type();
if (importer->dispatch.find(type) == importer->dispatch.end())
{
addMissing(name, type);
}
}
printMissing();
}
ONNXImporter::ONNXImporter(Net& net, const char *onnxFile)
: layerHandler(DNN_DIAGNOSTICS_RUN ? new ONNXLayerHandler(this) : nullptr),
dstNet(net), dispatch(buildDispatchMap())
{
hasDynamicShapes = false;
CV_Assert(onnxFile);
CV_LOG_DEBUG(NULL, "DNN/ONNX: processing ONNX model from file: " << onnxFile);
std::fstream input(onnxFile, std::ios::in | std::ios::binary);
if (!input)
{
CV_Error(Error::StsBadArg, cv::format("Can't read ONNX file: %s", onnxFile));
}
if (!model_proto.ParseFromIstream(&input))
{
CV_Error(Error::StsUnsupportedFormat, cv::format("Failed to parse ONNX model: %s", onnxFile));
}
populateNet();
}
ONNXImporter::ONNXImporter(Net& net, const char* buffer, size_t sizeBuffer)
: layerHandler(DNN_DIAGNOSTICS_RUN ? new ONNXLayerHandler(this) : nullptr), dstNet(net), dispatch(buildDispatchMap())
{
hasDynamicShapes = false;
CV_LOG_DEBUG(NULL, "DNN/ONNX: processing in-memory ONNX model (" << sizeBuffer << " bytes)");
struct _Buf : public std::streambuf
{
_Buf(const char* buffer, size_t sizeBuffer)
{
char* p = const_cast<char*>(buffer);
setg(p, p, p + sizeBuffer);
}
};
_Buf buf(buffer, sizeBuffer);
std::istream input(&buf);
if (!model_proto.ParseFromIstream(&input))
CV_Error(Error::StsUnsupportedFormat, "Failed to parse onnx model from in-memory byte array.");
populateNet();
}
inline void replaceLayerParam(LayerParams& layerParams, const String& oldKey, const String& newKey)
{
if (layerParams.has(oldKey)) {
layerParams.set(newKey, layerParams.get(oldKey));
layerParams.erase(oldKey);
}
}
void releaseONNXTensor(opencv_onnx::TensorProto& tensor_proto)
{
if (!tensor_proto.raw_data().empty()) {
delete tensor_proto.release_raw_data();
}
}
void runLayer(LayerParams& params, const std::vector<Mat>& inputs,
std::vector<Mat>& outputs)
{
Ptr<Layer> layer = LayerFactory::createLayerInstance(params.type, params);
CV_Assert((bool)layer);
std::vector<MatShape> inpShapes(inputs.size());
int ddepth = params.get<int>("depth", CV_32F);
for (size_t i = 0; i < inputs.size(); ++i)
{
inpShapes[i] = shape(inputs[i]);
if (i > 0 && ddepth != inputs[i].depth())
CV_Error(Error::StsNotImplemented, "Mixed input data types.");
ddepth = inputs[i].depth();
}
std::vector<MatShape> outShapes, internalShapes;
layer->getMemoryShapes(inpShapes, 0, outShapes, internalShapes);
std::vector<Mat> internals(internalShapes.size());
outputs.resize(outShapes.size());
for (size_t i = 0; i < outShapes.size(); ++i)
outputs[i].create(outShapes[i], ddepth);
for (size_t i = 0; i < internalShapes.size(); ++i)
internals[i].create(internalShapes[i], ddepth);
layer->finalize(inputs, outputs);
layer->forward(inputs, outputs, internals);
}
std::map<std::string, Mat> ONNXImporter::getGraphTensors(
const opencv_onnx::GraphProto& graph_proto)
{
opencv_onnx::TensorProto tensor_proto;
std::map<std::string, Mat> layers_weights;
for (int i = 0; i < graph_proto.initializer_size(); i++)
{
tensor_proto = graph_proto.initializer(i);
Mat mat = getMatFromTensor(tensor_proto);
releaseONNXTensor(tensor_proto);
if (DNN_DIAGNOSTICS_RUN && mat.empty())
continue;
layers_weights.insert(std::make_pair(tensor_proto.name(), mat));
}
return layers_weights;
}
static DictValue parse(const ::google::protobuf::RepeatedField< ::google::protobuf::int64>& src) {
std::vector<int32_t> dst(src.size());
convertInt64ToInt32(src, dst, src.size());
return DictValue::arrayInt(&dst[0], src.size());
}
static DictValue parseStr(const ::google::protobuf::RepeatedPtrField< ::std::string>& src) {
return DictValue::arrayString(src.begin(), static_cast<int>(src.size()));
}
LayerParams ONNXImporter::getLayerParams(const opencv_onnx::NodeProto& node_proto)
{
LayerParams lp;
for(int i = 0; i < node_proto.attribute_size(); i++)
{
opencv_onnx::AttributeProto attribute_proto = node_proto.attribute(i);
std::string attribute_name = attribute_proto.name();
try
{
if(attribute_name == "kernel_shape")
{
CV_Assert(attribute_proto.ints_size() == 1 || attribute_proto.ints_size() == 2 || attribute_proto.ints_size() == 3);
lp.set("kernel_size", parse(attribute_proto.ints()));
}
else if(attribute_name == "strides")
{
CV_Assert(attribute_proto.ints_size() == 1 || attribute_proto.ints_size() == 2 || attribute_proto.ints_size() == 3);
lp.set("stride", parse(attribute_proto.ints()));
}
else if(attribute_name == "pads")
{
if (node_proto.op_type() == "Pad")
{
// Padding layer.
// Paddings are in order begin0, begin1, .. beginN, end0, end1, ..., endN.
// We need to shuffle it to begin0, end0, begin1, end1, ...
CV_Assert(attribute_proto.ints_size() % 2 == 0);
const int dims = attribute_proto.ints_size() / 2;
std::vector<int32_t> paddings;
paddings.reserve(attribute_proto.ints_size());
for (int i = 0; i < dims; ++i)
{
paddings.push_back(attribute_proto.ints(i));
paddings.push_back(attribute_proto.ints(dims + i));
}
lp.set("paddings", DictValue::arrayInt(&paddings[0], paddings.size()));
}
else
{
// Convolution or pooling.
CV_Assert(attribute_proto.ints_size() == 2 || attribute_proto.ints_size() == 4 || attribute_proto.ints_size() == 6);
lp.set("pad", parse(attribute_proto.ints()));
}
}
else if(attribute_name == "auto_pad")
{
if (attribute_proto.s() == "SAME_UPPER" || attribute_proto.s() == "SAME_LOWER") {
lp.set("pad_mode", "SAME");
}
else if (attribute_proto.s() == "VALID") {
lp.set("pad_mode", "VALID");
}
}
else if(attribute_name == "dilations")
{
CV_Assert(attribute_proto.ints_size() == 1 || attribute_proto.ints_size() == 2 || attribute_proto.ints_size() == 3);
lp.set("dilation", parse(attribute_proto.ints()));
}
else if(attribute_name == "activations" && node_proto.op_type() == "LSTM")
{
lp.set(attribute_name, parseStr(attribute_proto.strings()));
}
else if (attribute_proto.has_i())
{
::google::protobuf::int64 src = attribute_proto.i();
if (src < std::numeric_limits<int32_t>::min() || src > std::numeric_limits<int32_t>::max())
CV_Error(Error::StsOutOfRange, "Input is out of OpenCV 32S range");
else
lp.set(attribute_name, saturate_cast<int32_t>(src));
}
else if (attribute_proto.has_f())
{
lp.set(attribute_name, attribute_proto.f());
}
else if (attribute_proto.has_s())
{
lp.set(attribute_name, attribute_proto.s());
}
else if (attribute_proto.floats_size() > 0)
{
lp.set(attribute_name, DictValue::arrayReal(
attribute_proto.floats().data(), attribute_proto.floats_size()));
}
else if (attribute_proto.ints_size() > 0)
{
lp.set(attribute_name, parse(attribute_proto.ints()));
}
else if (attribute_proto.has_t())
{
opencv_onnx::TensorProto tensor = attribute_proto.t();
Mat blob = getMatFromTensor(tensor);
lp.blobs.push_back(blob);
}
else if (attribute_proto.has_g())
{
CV_Error(Error::StsNotImplemented, cv::format("DNN/ONNX/Attribute[%s]: 'Graph' is not supported", attribute_name.c_str()));
}
else if (attribute_proto.graphs_size() > 0)
{
CV_Error(Error::StsNotImplemented,
cv::format("DNN/ONNX/Attribute[%s]: 'Graphs' (%d) in attributes is not supported",
attribute_name.c_str(), attribute_proto.graphs_size())
);
}
else if (attribute_proto.strings_size() > 0)
{
std::string msg = cv::format("DNN/ONNX/Attribute[%s]: 'Strings' (%d) are not supported",
attribute_name.c_str(), attribute_proto.strings_size());
CV_LOG_ERROR(NULL, msg);
for (int i = 0; i < attribute_proto.strings_size(); i++)
{
CV_LOG_ERROR(NULL, " Attribute[" << attribute_name << "].string(" << i << ") = '" << attribute_proto.strings(i) << "'");
}
CV_Error(Error::StsNotImplemented, msg);
}
else if (attribute_proto.tensors_size() > 0)
{
CV_Error(Error::StsNotImplemented,
cv::format("DNN/ONNX/Attribute[%s]: 'Tensors' (%d) in attributes are not supported",
attribute_name.c_str(), attribute_proto.tensors_size())
);
}
else
{
CV_Error(Error::StsNotImplemented, cv::format("DNN/ONNX/Attribute[%s]: unsupported attribute format", attribute_name.c_str()));
}
}
catch (const cv::Exception& e)
{
CV_UNUSED(e);
if (DNN_DIAGNOSTICS_RUN)
{
CV_LOG_ERROR(NULL, "DNN/ONNX: Potential problem with processing attributes for node " << node_proto.name() << " Attribute " << attribute_name.c_str()
);
continue;
}
throw;
}
}
return lp;
}
Mat ONNXImporter::getBlob(const opencv_onnx::NodeProto& node_proto, int index)
{
CV_Assert(index < node_proto.input_size());
const std::string& input_name = node_proto.input(index);
return getBlob(input_name);
}
Mat ONNXImporter::getBlob(const std::string& input_name)
{
std::map<std::string, Mat>::const_iterator constBlob = constBlobs.find(input_name);
if (constBlob == constBlobs.end())
{
CV_Error(Error::StsBadArg, std::string("Blob ") + input_name + " not found in const blobs");
}
return constBlob->second;
}
void ONNXImporter::addLayer(LayerParams& layerParams,
const opencv_onnx::NodeProto& node_proto)
{
int depth = layerParams.get<int>("depth", CV_32F);
int id = dstNet.addLayer(layerParams.name, layerParams.type, depth, layerParams);
for (int i = 0; i < node_proto.output_size(); ++i)
{
layer_id.insert(std::make_pair(node_proto.output(i), LayerInfo(id, i)));
}
std::vector<MatShape> layerInpShapes, layerOutShapes, layerInternalShapes;
int inpNum = 0;
for (int j = 0; j < node_proto.input_size(); j++)
{
const std::string& input_name = node_proto.input(j);
IterLayerId_t layerId = layer_id.find(input_name);
if (layerId != layer_id.end()) {
dstNet.connect(layerId->second.layerId, layerId->second.outputId, id, inpNum);
++inpNum;
// Collect input shapes.
IterShape_t shapeIt = outShapes.find(input_name);
CV_Assert(shapeIt != outShapes.end());
layerInpShapes.push_back(shapeIt->second);
}
}
// Compute shape of output blob for this layer.
Ptr<Layer> layer = dstNet.getLayer(id); // FIXIT: avoid instantiation of layers during the import stage
layer->getMemoryShapes(layerInpShapes, 0, layerOutShapes, layerInternalShapes);
for (int i = 0; i < node_proto.output_size() && i < (int)layerOutShapes.size(); ++i)
{
outShapes[node_proto.output(i)] = layerOutShapes[i];
}
}
/** @brief Make N copies of input layer and set them as input to node_proto.
* @param prefix prefix of new layers' names
* @param node_proto node which will contain all copies as inputs
* @param input name of the node to copy
* @param n number of copies
*/
void ONNXImporter::expandMid(const std::string& prefix, opencv_onnx::NodeProto& node_proto,
const std::string& input, size_t n)
{
std::vector<std::string> input_names;
input_names.reserve(n);
for (size_t j = 0; j < n; j++)
{
LayerParams copyLP;
copyLP.name = format("%s/copy_%zu", prefix.c_str(), j);
copyLP.type = "Identity";
CV_Assert((layer_id.find(copyLP.name) == layer_id.end()) &&
"Couldn't copy the node: generated name already exists in the graph.");
input_names.push_back(copyLP.name);
node_proto.set_input(0, input);
node_proto.set_output(0, copyLP.name);
addLayer(copyLP, node_proto);
}
node_proto.clear_input();
for (size_t i = 0; i < input_names.size(); i++)
{
node_proto.add_input(input_names[i]);
}
}
/** @brief Multiply one of node_proto inputs by -1
* @param layerParams parameters of the node
* @param node_proto node which input will be replaced
* @param input_id id of input to be multiplied by -1
*/
void ONNXImporter::addNegation(const LayerParams& layerParams, opencv_onnx::NodeProto& node_proto, int input_id)
{
LayerParams powerParams;
powerParams.name = layerParams.name + "/neg";
powerParams.type = "Power";
powerParams.set("scale", -1.f);
//Create Power layer
int id = dstNet.addLayer(powerParams.name, powerParams.type, powerParams);
//Connect to input
IterLayerId_t layerId = layer_id.find(node_proto.input(input_id));
CV_Assert(layerId != layer_id.end());
dstNet.connect(layerId->second.layerId, layerId->second.outputId, id, 0);
//Add shape
layer_id.insert(std::make_pair(powerParams.name, LayerInfo(id, 0)));
outShapes[powerParams.name] = outShapes[node_proto.input(input_id)];
//Replace input to Power
node_proto.set_input(input_id, powerParams.name);
}
void ONNXImporter::addConstant(const std::string& name, const Mat& blob)
{
constBlobs.insert(std::make_pair(name, blob));
outShapes.insert(std::make_pair(name, shape(blob)));
}
void ONNXImporter::handleQuantizedNode(LayerParams& layerParams,
const opencv_onnx::NodeProto& node_proto)
{
// Quantized nodes have output names ending with 'quantized'
std::string outName = node_proto.output(0);
int len = outName.length();
if (len <= 9)
return;
if (outName.substr(len - 9) == "quantized")
{
outName = outName.substr(0, len - 9);
Mat scale, zeropoint;
if (constBlobs.find(outName + "scale") != constBlobs.end() &&
constBlobs.find(outName + "zero_point") != constBlobs.end())
{
scale = getBlob(outName + "scale");
zeropoint = getBlob(outName + "zero_point");
}
else
{
std::string inpName = node_proto.input(0);
inpName = inpName.substr(0, inpName.length() - 9);
scale = getBlob(inpName + "scale");
zeropoint = getBlob(inpName + "zero_point");
for (int i = 0; i < node_proto.output_size(); i++)
{
std::string out = node_proto.output(i);
out = out.substr(0, out.length() - 9);
addConstant(out + "scale", scale);
addConstant(out + "zero_point", zeropoint);
}
}
if (scale.total() != 1 || zeropoint.total() != 1)
CV_Error(Error::StsNotImplemented, "Per-channel scales/zeropoints are not supported");
layerParams.set("depth", CV_8S);
layerParams.set("scales", DictValue::arrayReal(scale.ptr<float>(), 1));
layerParams.set("zeropoints", DictValue::arrayInt(zeropoint.ptr<int8_t>(), 1));
}
}
void ONNXImporter::populateNet()
{
CV_Assert(model_proto.has_graph());
graph_proto = model_proto.graph();
std::string framework_version;
if (model_proto.has_producer_name())
framework_name = model_proto.producer_name();
if (model_proto.has_producer_version())
framework_version = model_proto.producer_version();
CV_LOG_INFO(NULL, "DNN/ONNX: loading ONNX"
<< (model_proto.has_ir_version() ? cv::format(" v%d", (int)model_proto.ir_version()) : cv::String())
<< " model produced by '" << framework_name << "'"
<< (framework_version.empty() ? cv::String() : cv::format(":%s", framework_version.c_str()))
<< ". Number of nodes = " << graph_proto.node_size()
<< ", inputs = " << graph_proto.input_size()
<< ", outputs = " << graph_proto.output_size()
);
simplifySubgraphs(graph_proto);
const int layersSize = graph_proto.node_size();
CV_LOG_DEBUG(NULL, "DNN/ONNX: graph simplified to " << layersSize << " nodes");
constBlobs = getGraphTensors(graph_proto);
// Add all the inputs shapes. It includes as constant blobs as network's inputs shapes.
for (int i = 0; i < graph_proto.input_size(); ++i)
{
const opencv_onnx::ValueInfoProto& valueInfoProto = graph_proto.input(i);
CV_Assert(valueInfoProto.has_name());
CV_Assert(valueInfoProto.has_type());
opencv_onnx::TypeProto typeProto = valueInfoProto.type();
CV_Assert(typeProto.has_tensor_type());
opencv_onnx::TypeProto::Tensor tensor = typeProto.tensor_type();
CV_Assert(tensor.has_shape());
opencv_onnx::TensorShapeProto tensorShape = tensor.shape();
MatShape inpShape(tensorShape.dim_size());
for (int j = 0; j < inpShape.size(); ++j)
{
inpShape[j] = tensorShape.dim(j).dim_value();
// NHW, NCHW(NHWC), NCDHW(NDHWC); do not set this flag if only N is dynamic
if (!tensorShape.dim(j).dim_param().empty() && !(j == 0 && inpShape.size() >= 3))
hasDynamicShapes = true;
}
if (!inpShape.empty() && !hasDynamicShapes)
{
inpShape[0] = std::max(inpShape[0], 1); // It's OK to have undetermined batch size
}
outShapes[valueInfoProto.name()] = inpShape;
}
// create map with network inputs (without const blobs)
// fill map: push layer name, layer id and output id
std::vector<String> netInputs;
for (int j = 0; j < graph_proto.input_size(); j++)
{
const std::string& name = graph_proto.input(j).name();
if (constBlobs.find(name) == constBlobs.end()) {
netInputs.push_back(name);
layer_id.insert(std::make_pair(name, LayerInfo(0, netInputs.size() - 1)));
}
}
dstNet.setInputsNames(netInputs);
if (DNN_DIAGNOSTICS_RUN) {
CV_LOG_INFO(NULL, "DNN/ONNX: start diagnostic run!");
layerHandler->fillRegistry(graph_proto);
}
for(int li = 0; li < layersSize; li++)
{
const opencv_onnx::NodeProto& node_proto = graph_proto.node(li);
handleNode(node_proto);
}
CV_LOG_DEBUG(NULL, (DNN_DIAGNOSTICS_RUN ? "DNN/ONNX: diagnostic run completed!" : "DNN/ONNX: import completed!"));
}
void ONNXImporter::handleNode(const opencv_onnx::NodeProto& node_proto)
{
CV_Assert(node_proto.output_size() >= 1);
std::string name = node_proto.output(0);
const std::string& layer_type = node_proto.op_type();
CV_LOG_DEBUG(NULL, "DNN/ONNX: processing node with " << node_proto.input_size() << " inputs and " << node_proto.output_size() << " outputs: "
<< cv::format("[%s]:(%s)", layer_type.c_str(), name.c_str())
);
LayerParams layerParams;
try
{
// FIXIT not all cases can be repacked into "LayerParams". Importer should handle such cases directly for each "layer_type"
layerParams = getLayerParams(node_proto);
layerParams.name = name;
layerParams.type = layer_type;
layerParams.set("has_dynamic_shapes", hasDynamicShapes);
handleQuantizedNode(layerParams, node_proto);
DispatchMap::const_iterator iter = dispatch.find(layer_type);
if (iter != dispatch.end())
{
CALL_MEMBER_FN(*this, iter->second)(layerParams, node_proto);
}
else
{
parseCustomLayer(layerParams, node_proto);
}
}
catch (const cv::Exception& e)
{
if (DNN_DIAGNOSTICS_RUN)
{
CV_LOG_ERROR(NULL, "DNN/ONNX: Potential problem during processing node with " << node_proto.input_size() << " inputs and " << node_proto.output_size() << " outputs: "
<< cv::format("[%s]:(%s)", layer_type.c_str(), name.c_str()) << "\n" << e.msg
);
cv::AutoLock lock(getLayerFactoryMutex());
auto registeredLayers = getLayerFactoryImpl();
if (registeredLayers.find(layerParams.type) != registeredLayers.end())
{
try
{
Ptr<Layer> layer = LayerFactory::createLayerInstance(layerParams.type, layerParams);
}
catch (const std::exception& e)
{
CV_LOG_ERROR(NULL, "DNN/ONNX: Layer of type " << layerParams.type << "(" << layer_type << ") cannot be created with parameters " << layerParams << ". Error: " << e.what()
);
}
}
}
else
{
CV_LOG_ERROR(NULL, "DNN/ONNX: ERROR during processing node with " << node_proto.input_size() << " inputs and " << node_proto.output_size() << " outputs: "
<< cv::format("[%s]:(%s)", layer_type.c_str(), name.c_str())
);
}
for (int i = 0; i < node_proto.input_size(); i++)
{
CV_LOG_INFO(NULL, " Input[" << i << "] = '" << node_proto.input(i) << "'");
}
for (int i = 0; i < node_proto.output_size(); i++)
{
CV_LOG_INFO(NULL, " Output[" << i << "] = '" << node_proto.output(i) << "'");
}
if (DNN_DIAGNOSTICS_RUN)
{
for (int i = 0; i < node_proto.output_size(); ++i)
{
layer_id.insert(std::make_pair(node_proto.output(i), LayerInfo(0, i)));
outShapes[node_proto.output(i)] = outShapes[node_proto.input(0)];
}
}
else
CV_Error(Error::StsError, cv::format("Node [%s]:(%s) parse error: %s", layer_type.c_str(), name.c_str(), e.what()));
}
}
void ONNXImporter::parseArg(LayerParams& layerParams, const opencv_onnx::NodeProto& node_proto)
{
const std::string& layer_type = node_proto.op_type();
layerParams.type = "Arg";
layerParams.set("op", layer_type == "ArgMax" ? "max" : "min");
addLayer(layerParams, node_proto);
}
void setCeilMode(LayerParams& layerParams)
{
// auto_pad attribute is deprecated and uses ceil
if (layerParams.has("pad_mode"))
{
layerParams.set("ceil_mode", true);
}
else if (!layerParams.has("ceil_mode"))
{
layerParams.set("ceil_mode", false);
}
}
void ONNXImporter::parseMaxUnpool(LayerParams& layerParams, const opencv_onnx::NodeProto& node_proto)
{
layerParams.type = "MaxUnpool";
DictValue kernel_shape = layerParams.get("kernel_size");
CV_Assert(kernel_shape.size() == 2);
layerParams.set("pool_k_w", kernel_shape.get<int>(0));
layerParams.set("pool_k_h", kernel_shape.get<int>(1));
int pool_pad_w = 0, pool_pad_h = 0;
if (layerParams.has("pad"))
{
DictValue pads = layerParams.get("pad");
CV_CheckEQ(pads.size(), 2, "");
pool_pad_w = pads.get<int>(0);
pool_pad_h = pads.get<int>(1);
}
layerParams.set("pool_pad_w", pool_pad_w);
layerParams.set("pool_pad_h", pool_pad_h);
int pool_stride_w = 1, pool_stride_h = 1;
if (layerParams.has("stride"))
{
DictValue strides = layerParams.get("stride");
CV_CheckEQ(strides.size(), 2, "");
pool_stride_w = strides.get<int>(0);
pool_stride_h = strides.get<int>(1);
}
layerParams.set("pool_stride_w", pool_stride_w);
layerParams.set("pool_stride_h", pool_stride_h);
addLayer(layerParams, node_proto);
}
void ONNXImporter::parseMaxPool(LayerParams& layerParams, const opencv_onnx::NodeProto& node_proto)
{
int depth = layerParams.get<int>("depth", CV_32F);
layerParams.type = (depth == CV_8S) ? "PoolingInt8" : "Pooling";
layerParams.set("pool", "MAX");
setCeilMode(layerParams);
addLayer(layerParams, node_proto);
}
void ONNXImporter::parseAveragePool(LayerParams& layerParams, const opencv_onnx::NodeProto& node_proto)
{
layerParams.type = "Pooling";
layerParams.set("pool", "AVE");
setCeilMode(layerParams);
layerParams.set("ave_pool_padded_area", framework_name == "pytorch");
addLayer(layerParams, node_proto);
}
void ONNXImporter::parseReduce(LayerParams& layerParams, const opencv_onnx::NodeProto& node_proto_)
{
opencv_onnx::NodeProto node_proto = node_proto_;
const std::string& layer_type = node_proto.op_type();
CV_Assert(node_proto.input_size() == 1);
layerParams.type = "Pooling";
String pool;
if (layer_type == "GlobalMaxPool" || layer_type == "ReduceMax")
pool = "MAX";
else if (layer_type == "ReduceSum")
pool = "SUM";
else
pool = "AVE";
layerParams.set("pool", pool);
layerParams.set("global_pooling", !layerParams.has("axes"));
bool keepdims = layerParams.get<int>("keepdims", 1) == 1;
if (layerParams.has("axes") && (layer_type == "ReduceMean" || layer_type == "ReduceSum" || layer_type == "ReduceMax"))
{
MatShape inpShape = outShapes[node_proto.input(0)];
DictValue axes = layerParams.get("axes");
MatShape targetShape;
std::vector<bool> shouldDelete(inpShape.size(), false);
for (int i = 0; i < axes.size(); i++) {
int axis = normalize_axis(axes.get<int>(i), inpShape.size());
shouldDelete[axis] = true;
}
for (int axis = 0; axis < inpShape.size(); ++axis){
if (!shouldDelete[axis])
targetShape.push_back(inpShape[axis]);
else if (keepdims)
targetShape.push_back(1);
}
if (inpShape.size() == 3 && axes.size() <= 2)
{
int axis = normalize_axis(axes.get<int>(0), inpShape.size());
CV_CheckNE(axis, 0, "");
LayerParams reshapeLp;
reshapeLp.name = layerParams.name + "/reshape";
reshapeLp.type = "Reshape";
CV_Assert(layer_id.find(reshapeLp.name) == layer_id.end());
reshapeLp.set("axis", 0);
reshapeLp.set("num_axes", 1);
int newShape[] = {1, -1};
reshapeLp.set("dim", DictValue::arrayInt(&newShape[0], 2));
opencv_onnx::NodeProto proto;
proto.add_input(node_proto.input(0));
proto.add_output(reshapeLp.name);
addLayer(reshapeLp, proto);
LayerParams avgLp;
avgLp.name = layerParams.name + "/avg";
avgLp.type = "Pooling";
CV_Assert(layer_id.find(avgLp.name) == layer_id.end());
avgLp.set("pool", pool);
if (axes.size() == 2)
{
CV_CheckEQ(normalize_axis(axes.get<int>(0), inpShape.size()), 1, "Unsupported mode");
CV_CheckEQ(normalize_axis(axes.get<int>(1), inpShape.size()), 2, "Unsupported mode");
avgLp.set("global_pooling", true);
}
else
{
avgLp.set(axis == 2 ? "global_pooling_w" : "global_pooling_h", true);
avgLp.set(axis == 2 ? "kernel_h" : "kernel_w", 1);
}
node_proto.set_input(0, reshapeLp.name);
node_proto.set_output(0, avgLp.name);
addLayer(avgLp, node_proto);
}
else
{
if (inpShape.size() != 4 && inpShape.size() != 5)
CV_Error(Error::StsNotImplemented, "Unsupported input shape of " + layer_type + " operation.");
CV_Assert(axes.size() <= inpShape.size() - 2);
std::vector<int> kernel_size(inpShape.size() - 2, 1);
if (axes.size() == 1 && (normalize_axis(axes.get<int>(0), inpShape.size()) <= 1))
{
int axis = normalize_axis(axes.get<int>(0), inpShape.size());
MatShape newShape = inpShape;
newShape[axis + 1] = total(newShape, axis + 1);
newShape.resize(axis + 2);
newShape.insert(newShape.begin(), 2 - axis, 1);
LayerParams reshapeLp;
reshapeLp.type = "Reshape";
reshapeLp.name = layerParams.name + "/reshape";
CV_Assert(layer_id.find(reshapeLp.name) == layer_id.end());
reshapeLp.set("dim", DictValue::arrayInt(&newShape[0], newShape.size()));
node_proto.set_output(0, reshapeLp.name);
addLayer(reshapeLp, node_proto);
kernel_size.resize(2);
kernel_size[0] = inpShape[axis];
node_proto.set_input(0, node_proto.output(0));
}
else
{
for (int i = 0; i < axes.size(); i++) {
int axis = normalize_axis(axes.get<int>(i), inpShape.size());
CV_Assert_N(axis >= 2 + i, axis < inpShape.size());
kernel_size[axis - 2] = inpShape[axis];
}
}
LayerParams poolLp = layerParams;
poolLp.name = layerParams.name + "/avg";
CV_Assert(layer_id.find(poolLp.name) == layer_id.end());
poolLp.set("kernel_size", DictValue::arrayInt(&kernel_size[0], kernel_size.size()));
node_proto.set_output(0, poolLp.name);
addLayer(poolLp, node_proto);
}
layerParams.type = "Reshape";
layerParams.set("dim", DictValue::arrayInt(&targetShape[0], targetShape.size()));
node_proto.set_input(0, node_proto.output(0));
node_proto.set_output(0, layerParams.name);
}
else if (!layerParams.has("axes") && (layer_type == "ReduceMean" || layer_type == "ReduceSum" || layer_type == "ReduceMax"))
{
IterShape_t shapeIt = outShapes.find(node_proto.input(0));
CV_Assert(shapeIt != outShapes.end());
const size_t dims = keepdims ? shapeIt->second.size() : 1;
LayerParams reshapeLp;
reshapeLp.name = layerParams.name + "/reshape";
reshapeLp.type = "Reshape";
CV_Assert(layer_id.find(reshapeLp.name) == layer_id.end());
int newShape[] = {1, 1, 1, -1};
reshapeLp.set("dim", DictValue::arrayInt(&newShape[0], 4));
opencv_onnx::NodeProto proto;
proto.add_input(node_proto.input(0));
proto.add_output(reshapeLp.name);
addLayer(reshapeLp, proto);
LayerParams poolLp = layerParams;
poolLp.name = layerParams.name + "/pool";
CV_Assert(layer_id.find(poolLp.name) == layer_id.end());
node_proto.set_input(0, reshapeLp.name);
node_proto.set_output(0, poolLp.name);
addLayer(poolLp, node_proto);
layerParams.type = "Reshape";
std::vector<int> targetShape(dims, 1);
layerParams.set("dim", DictValue::arrayInt(targetShape.data(), targetShape.size()));
node_proto.set_input(0, node_proto.output(0));
node_proto.set_output(0, layerParams.name);
}
addLayer(layerParams, node_proto);
}
void ONNXImporter::parseSlice(LayerParams& layerParams, const opencv_onnx::NodeProto& node_proto)
{
int axis = 0;
std::vector<int> begin;
std::vector<int> end;
std::vector<int> steps;
int inp_size = node_proto.input_size();
if (inp_size == 1)
{
if (layerParams.has("axes")) {
DictValue axes = layerParams.get("axes");
for (int i = 1; i < axes.size(); ++i) {
CV_Assert(axes.get<int>(i - 1) == axes.get<int>(i) - 1);
}
axis = axes.get<int>(0);
}
DictValue starts = layerParams.get("starts");
DictValue ends = layerParams.get("ends");
CV_Assert(starts.size() == ends.size());
if (axis > 0) {
begin.resize(axis, 0);
end.resize(axis, -1);
}
for (int i = 0; i < starts.size(); ++i)
{
begin.push_back(starts.get<int>(i));
int finish = ends.get<int>(i);
end.push_back((finish < 0) ? --finish : finish); // numpy doesn't include last dim
}
} else { // inp_size > 1
CV_Assert(inp_size >= 3);
for (int i = 1; i < inp_size; i++) {
CV_Assert(constBlobs.find(node_proto.input(i)) != constBlobs.end());
}
Mat start_blob = getBlob(node_proto, 1);
Mat end_blob = getBlob(node_proto, 2);
CV_Assert(start_blob.total() == end_blob.total());
if (inp_size > 3) {
Mat axes_blob = getBlob(node_proto, 3);
const int* axes = (int*)axes_blob.data;
for (int i = 1; i < axes_blob.total(); ++i) {
CV_Assert(axes[i - 1] == axes[i] - 1);
}
axis = axes[0];
}
const int* starts = start_blob.ptr<int>();
const int* ends = end_blob.ptr<int>();
if (axis > 0) {
begin.resize(axis, 0);
end.resize(axis, -1);
}
std::copy(starts, starts + start_blob.total(), std::back_inserter(begin));
for (int i = 0; i < end_blob.total(); ++i)
{
int finish = ends[i];
end.push_back((finish < 0) ? --finish : finish); // numpy doesn't include last dim
}
if (inp_size == 5) {
CV_Assert(constBlobs.find(node_proto.input(4)) != constBlobs.end());
Mat step_blob = getBlob(node_proto, 4);
const int* steps_ptr = step_blob.ptr<int>();
if (axis > 0)
steps.resize(axis, 1);
std::copy(steps_ptr, steps_ptr + step_blob.total(), std::back_inserter(steps));
// Very strange application for Slice op with tensor reversing.
// We just workaround it for 2d constants.
if (constBlobs.find(node_proto.input(0)) != constBlobs.end() &&
axis == 0 &&
start_blob.at<int>(0) == -1 && step_blob.at<int>(0) == -1 &&
end_blob.at<int>(0) == std::numeric_limits<int32_t>::min())
{
Mat inp = getBlob(node_proto, 0);
if (inp.dims == 2)
{
Mat flipped;
flip(inp, flipped, 0);
addConstant(layerParams.name, flipped);
return;
}
}
}
}
layerParams.set("begin", DictValue::arrayInt(&begin[0], begin.size()));
layerParams.set("end", DictValue::arrayInt(&end[0], end.size()));
layerParams.set("axis", axis);
if (!steps.empty())
layerParams.set("steps", DictValue::arrayInt(&steps[0], steps.size()));
if (constBlobs.find(node_proto.input(0)) != constBlobs.end())
{
Mat inp = getBlob(node_proto, 0);
std::vector<Mat> inputs, sliced;
inputs.push_back(inp);
runLayer(layerParams, inputs, sliced);
CV_Assert(sliced.size() == 1);
addConstant(layerParams.name, sliced[0]);
return;
}
addLayer(layerParams, node_proto);
}
void ONNXImporter::parseSplit(LayerParams& layerParams, const opencv_onnx::NodeProto& node_proto)
{
if (layerParams.has("split"))
{
DictValue splits = layerParams.get("split");
const int numSplits = splits.size();
CV_Assert(numSplits > 1);
std::vector<int> slicePoints(numSplits - 1, splits.get<int>(0));
for (int i = 1; i < splits.size() - 1; ++i)
{
slicePoints[i] = slicePoints[i - 1] + splits.get<int>(i);
}
layerParams.set("slice_point", DictValue::arrayInt(&slicePoints[0], slicePoints.size()));
}
else
{
layerParams.set("num_split", node_proto.output_size());
}
int depth = layerParams.get<int>("depth", CV_32F);
layerParams.type = (depth == CV_8S) ? "SliceInt8" : "Slice";
layerParams.set("axis", layerParams.get<float>("axis", 0));
addLayer(layerParams, node_proto);
}
void ONNXImporter::parseBias(LayerParams& layerParams, const opencv_onnx::NodeProto& node_proto_)
{
opencv_onnx::NodeProto node_proto = node_proto_;
const std::string& layer_type = node_proto.op_type();
bool isSub = layer_type == "Sub";
if (layer_type == "Sum" && node_proto.input_size() == 1)
{
layerParams.type = "Identity";
addLayer(layerParams, node_proto);
return;
}
CV_Assert((node_proto.input_size() == 2) || (layer_type == "Sum" && node_proto.input_size() > 2));
if (layer_type == "Sum" && node_proto.input_size() > 2)
{
for (int i = 0; i < node_proto.input_size(); ++i)
{
if (layer_id.find(node_proto.input(i)) == layer_id.end())
{
CV_Error(Error::StsNotImplemented, "Sum of constants is not implemented for inputs > 2");
}
}
}
bool is_const_0 = layer_id.find(node_proto.input(0)) == layer_id.end();
bool is_const_1 = layer_id.find(node_proto.input(1)) == layer_id.end();
if (is_const_0 && is_const_1)
{
Mat blob_0 = getBlob(node_proto, 0);
Mat blob_1 = getBlob(node_proto, 1);
CV_Assert(blob_0.size == blob_1.size);
Mat output = isSub ? (blob_0 - blob_1) : (blob_0 + blob_1);
addConstant(layerParams.name, output);
return;
}
else if (is_const_0 || is_const_1)
{
int const_blob_id = is_const_0 ? 0 : 1;
int input_id = 1 - const_blob_id;
Mat blob = getBlob(node_proto, const_blob_id);
int blob_total = blob.total();
const float inputScale = isSub && is_const_0 ? -1.f : 1.f;
const float constScale = isSub && is_const_1 ? -1.f : 1.f;
if (blob_total == 1) {
layerParams.type = "Power";
layerParams.set("scale", inputScale);
layerParams.set("shift", constScale * blob.ptr<float>()[0]);
}
else {
MatShape inpShape = outShapes[node_proto.input(input_id)];
if (shape(blob) == inpShape)
{
LayerParams constParams;
constParams.name = layerParams.name + "/const";
constParams.type = "Const";
constParams.blobs.push_back(blob);
int id = dstNet.addLayer(constParams.name, constParams.type, constParams);
layer_id.insert(std::make_pair(constParams.name, LayerInfo(id, 0)));
outShapes[constParams.name] = shape(blob);
layerParams.type = "Eltwise";
float coeffs[] = {1., isSub ? -1.f : 1.f};
layerParams.set("coeff", DictValue::arrayReal<float*>(coeffs, 2));
node_proto.set_input(const_blob_id, constParams.name);
}
else
{
if (inputScale < 0.f)
{
addNegation(layerParams, node_proto, input_id);
}
layerParams.type = "Scale";
layerParams.set("bias_term", true);
int axis = 1;
for (int i = 0; i < graph_proto.initializer_size(); i++)
{
opencv_onnx::TensorProto tensor_proto = graph_proto.initializer(i);
if (tensor_proto.name() == node_proto.input(const_blob_id))
{
axis = inpShape.size() - tensor_proto.dims_size();
break;
}
}
layerParams.set("axis", axis);
blob = blob.reshape(1, 1);
layerParams.blobs.push_back(constScale * blob);
}
}
}
else if (outShapes[node_proto.input(0)] == outShapes[node_proto.input(1)])
{
layerParams.type = "Eltwise";
if (isSub)
{
static float subCoeffs[] = {1.f, -1.f};
layerParams.set("coeff", DictValue::arrayReal<float*>(subCoeffs, 2));
}
}
else
{
if (isSub)
{
addNegation(layerParams, node_proto, 1);
}
layerParams.type = "Scale";
layerParams.set("bias_term", true);
}
addLayer(layerParams, node_proto);
}
void ONNXImporter::parsePow(LayerParams& layerParams, const opencv_onnx::NodeProto& node_proto)
{
if (layer_id.find(node_proto.input(1)) != layer_id.end())
CV_Error(Error::StsNotImplemented, "Unsupported Pow op with variable power");
Mat blob = getBlob(node_proto, 1);
if (blob.total() != 1)
CV_Error(Error::StsNotImplemented, "Pow op supports only scalar power");
blob.convertTo(blob, CV_32F);
layerParams.type = "Power";
layerParams.set("power", blob.ptr<float>()[0]);
addLayer(layerParams, node_proto);
}
// "Min" "Max"
void ONNXImporter::parseMinMax(LayerParams& layerParams, const opencv_onnx::NodeProto& node_proto)
{
const std::string& layer_type = node_proto.op_type();
layerParams.type = "Eltwise";
layerParams.set("operation", layer_type == "Max" ? "max" : "min");
addLayer(layerParams, node_proto);
}
void ONNXImporter::parseNeg(LayerParams& layerParams, const opencv_onnx::NodeProto& node_proto)
{
layerParams.type = "Power";
layerParams.set("scale", -1);
addLayer(layerParams, node_proto);
}
void ONNXImporter::parseConstant(LayerParams& layerParams, const opencv_onnx::NodeProto& node_proto)
{
CV_Assert(node_proto.input_size() == 0);
CV_Assert(layerParams.blobs.size() == 1);
addConstant(layerParams.name, layerParams.blobs[0]);
}
void ONNXImporter::parseLSTM(LayerParams& layerParams, const opencv_onnx::NodeProto& node_proto_)
{
opencv_onnx::NodeProto node_proto = node_proto_;
LayerParams lstmParams = layerParams;
lstmParams.name += "/lstm";
// https://pytorch.org/docs/stable/nn.html#lstm
CV_Assert(node_proto.input_size() >= 7);
Mat Wx = getBlob(node_proto, 1);
Mat Wh = getBlob(node_proto, 2);
Mat b = getBlob(node_proto, 3);
const int numHidden = lstmParams.get<int>("hidden_size");
const int numDirs = Wx.size[0]; // Is 1 for forward only and 2 for bidirectional LSTM.
const int numFeatures = Wx.size[2];
Mat h0, c0;
if (!node_proto.input(5).empty()) {
h0 = getBlob(node_proto, 5);
h0 = h0.reshape(1, h0.size[0] * h0.size[1]);
} else {
// initial_h attribute can be empty in case of keras2onnx producer. fill it with zeros
h0 = Mat::zeros(numDirs * numFeatures, numHidden, CV_32FC1);
}
if (!node_proto.input(6).empty()) {
c0 = getBlob(node_proto, 6);
c0 = c0.reshape(1, c0.size[0] * c0.size[1]);
} else {
// initial_c attribute can be empty in case of keras2onnx producer. fill it with zeros
c0 = Mat::zeros(numDirs * numFeatures, numHidden, CV_32FC1);
}
b = b.reshape(1, b.size[0]);
Mat bx = b.colRange(0, b.cols / 2);
Mat bh = b.colRange(b.cols / 2, b.cols);
b = bx + bh;
// IFGO->IGFO
for (int k = 0; k < numDirs; ++k)
{
float* WxData = Wx.ptr<float>(k);
float* WhData = Wh.ptr<float>(k);
float* biasData = b.ptr<float>(k);
for (int j = 0; j < numHidden; ++j)
{
for (int i = 0; i < numFeatures; ++i)
{
std::swap(WxData[(numHidden + j) * numFeatures + i],
WxData[(numHidden * 2 + j) * numFeatures + i]);
}
for (int i = 0; i < numHidden; ++i)
{
std::swap(WhData[(numHidden + j) * numHidden + i],
WhData[(numHidden * 2 + j) * numHidden + i]);
}
std::swap(biasData[numHidden + j], biasData[numHidden * 2 + j]);
}
}
Wx = Wx.reshape(1, Wx.size[0] * Wx.size[1]);
Wh = Wh.reshape(1, Wh.size[0] * Wh.size[1]);
lstmParams.blobs.resize(5);
lstmParams.blobs[0] = Wh;
lstmParams.blobs[1] = Wx;
lstmParams.blobs[2] = b;
lstmParams.blobs[3] = h0;
lstmParams.blobs[4] = c0;
// read direction attribute
lstmParams.set("reverse", lstmParams.get<String>("direction", "") == "reverse");
lstmParams.set("bidirectional", lstmParams.get<String>("direction", "") == "bidirectional");
node_proto.set_output(0, lstmParams.name); // set different name so output shapes will be registered on that name
addLayer(lstmParams, node_proto);
MatShape lstmShape = outShapes[node_proto.output(0)];
// Add fake 1 as it is done in ONNX
lstmShape.insert(lstmShape.begin() + 1, 1);
layerParams.type = "Reshape";
layerParams.set("dim", DictValue::arrayInt(&lstmShape[0], lstmShape.size()));
node_proto.set_input(0, lstmParams.name); // redirect input to LSTM
node_proto.set_output(0, layerParams.name); // keep origin LSTM's name
addLayer(layerParams, node_proto);
}
void ONNXImporter::parseGRU(LayerParams& layerParams, const opencv_onnx::NodeProto& node_proto_)
{
opencv_onnx::NodeProto node_proto = node_proto_;
LayerParams gruParams = layerParams;
gruParams.name += "/gru";
// https://pytorch.org/docs/stable/generated/torch.nn.GRU.html?highlight=gru#
CV_Assert(node_proto.input_size() == 6);
Mat Wx = getBlob(node_proto, 1);
Mat Wh = getBlob(node_proto, 2);
Mat b = getBlob(node_proto, 3);
Mat h0 = getBlob(node_proto, 5);
Wx = Wx.reshape(1, Wx.size[0] * Wx.size[1]);
Wh = Wh.reshape(1, Wh.size[0] * Wh.size[1]);
h0 = h0.reshape(1, h0.size[0] * h0.size[1]);
b = b.reshape(1, b.size[0]);
gruParams.blobs.resize(4);
gruParams.blobs[0] = Wh;
gruParams.blobs[1] = Wx;
gruParams.blobs[2] = b;
gruParams.blobs[3] = h0;
gruParams.set("bidirectional", gruParams.get<String>("direction", "") == "bidirectional");
node_proto.set_output(0, gruParams.name); // set different name so output shapes will be registered on that name
addLayer(gruParams, node_proto);
MatShape gruShape = outShapes[node_proto.output(0)];
// Add fake 1 as it is done in ONNX
gruShape.insert(gruShape.begin() + 1, 1);
layerParams.type = "Reshape";
layerParams.set("dim", DictValue::arrayInt(&gruShape[0], gruShape.size()));
node_proto.set_input(0, gruParams.name); // redirect input to GRU
node_proto.set_output(0, layerParams.name); // keep origin GRU's name
addLayer(layerParams, node_proto);
}
void ONNXImporter::parseImageScaler(LayerParams& layerParams, const opencv_onnx::NodeProto& node_proto)
{
const float scale = layerParams.has("scale") ? layerParams.get<float>("scale") : 1.0f;
layerParams.erase("scale");
if (layerParams.has("bias"))
{
layerParams.type = "Scale";
layerParams.blobs.push_back(
Mat(Size(1, layerParams.get("bias").size()), CV_32FC1, scale));
layerParams.set("bias_term", true);
Mat bias(1, layerParams.get("bias").size(), CV_32FC1);
for (int j = 0; j < bias.total(); j++) {
bias.at<float>(0, j) = layerParams.get("bias").getRealValue(j);
}
layerParams.blobs.push_back(bias);
layerParams.erase("bias");
}
else {
layerParams.set("scale", scale);
layerParams.type = "Power";
}
addLayer(layerParams, node_proto);
}
void ONNXImporter::parseClip(LayerParams& layerParams, const opencv_onnx::NodeProto& node_proto)
{
CV_CheckEQ(node_proto.input_size(), 1, "");
layerParams.type = "ReLU6";
layerParams.set("min_value", layerParams.get<float>("min", -FLT_MAX));
layerParams.set("max_value", layerParams.get<float>("max", FLT_MAX));
addLayer(layerParams, node_proto);
}
void ONNXImporter::parseLeakyRelu(LayerParams& layerParams, const opencv_onnx::NodeProto& node_proto)
{
layerParams.type = "ReLU";
layerParams.set("negative_slope", layerParams.get<float>("alpha", 0.01));
addLayer(layerParams, node_proto);
}
void ONNXImporter::parseRelu(LayerParams& layerParams, const opencv_onnx::NodeProto& node_proto)
{
layerParams.type = "ReLU";
addLayer(layerParams, node_proto);
}
void ONNXImporter::parseElu(LayerParams& layerParams, const opencv_onnx::NodeProto& node_proto)
{
layerParams.type = "ELU";
addLayer(layerParams, node_proto);
}
void ONNXImporter::parseTanh(LayerParams& layerParams, const opencv_onnx::NodeProto& node_proto)
{
layerParams.type = "TanH";
addLayer(layerParams, node_proto);
}
void ONNXImporter::parseAbs(LayerParams& layerParams, const opencv_onnx::NodeProto& node_proto)
{
layerParams.type = "AbsVal";
addLayer(layerParams, node_proto);
}
void ONNXImporter::parseCompare(LayerParams& layerParams, const opencv_onnx::NodeProto& node_proto)
{
CV_Assert(node_proto.input_size() == 2);
const std::string& layer_type = node_proto.op_type();
bool is_const_0 = layer_id.find(node_proto.input(0)) == layer_id.end();
bool is_const_1 = layer_id.find(node_proto.input(1)) == layer_id.end();
if (is_const_0 || is_const_1)
{
Mat blob = getBlob(node_proto, static_cast<int>(is_const_1));
blob = blob.reshape(1, 1);
layerParams.blobs.push_back(blob);
}
layerParams.type = "Compare";
if (layer_type == "Equal")
layerParams.set("mode", "equal");
else if (layer_type == "Greater")
layerParams.set("mode", "greater");
else
layerParams.set("mode", "less");
addLayer(layerParams, node_proto);
}
void ONNXImporter::parsePRelu(LayerParams& layerParams, const opencv_onnx::NodeProto& node_proto)
{
layerParams.type = "PReLU";
layerParams.blobs.push_back(getBlob(node_proto, 1));
addLayer(layerParams, node_proto);
}
void ONNXImporter::parseLRN(LayerParams& layerParams, const opencv_onnx::NodeProto& node_proto)
{
replaceLayerParam(layerParams, "size", "local_size");
addLayer(layerParams, node_proto);
}
void ONNXImporter::parseInstanceNormalization(LayerParams& layerParams, const opencv_onnx::NodeProto& node_proto_)
{
opencv_onnx::NodeProto node_proto = node_proto_;
if (node_proto.input_size() != 3)
CV_Error(Error::StsNotImplemented,
"Expected input, scale, bias");
layerParams.blobs.resize(4);
layerParams.blobs[2] = getBlob(node_proto, 1); // weightData
layerParams.blobs[3] = getBlob(node_proto, 2); // biasData
layerParams.set("has_bias", true);
layerParams.set("has_weight", true);
// Get number of channels in input
int size = layerParams.blobs[2].total();
layerParams.blobs[0] = Mat::zeros(size, 1, CV_32F); // mean
layerParams.blobs[1] = Mat::ones(size, 1, CV_32F); // std
LayerParams mvnParams;
mvnParams.name = layerParams.name + "/MVN";
mvnParams.type = "MVN";
mvnParams.set("eps", layerParams.get<float>("epsilon"));
layerParams.erase("epsilon");
//Create MVN layer
int id = dstNet.addLayer(mvnParams.name, mvnParams.type, mvnParams);
//Connect to input
IterLayerId_t layerId = layer_id.find(node_proto.input(0));
CV_Assert(layerId != layer_id.end());
dstNet.connect(layerId->second.layerId, layerId->second.outputId, id, 0);
//Add shape
layer_id.insert(std::make_pair(mvnParams.name, LayerInfo(id, 0)));
outShapes[mvnParams.name] = outShapes[node_proto.input(0)];
//Replace Batch Norm's input to MVN
node_proto.set_input(0, mvnParams.name);
layerParams.type = "BatchNorm";
addLayer(layerParams, node_proto);
}
void ONNXImporter::parseBatchNormalization(LayerParams& layerParams, const opencv_onnx::NodeProto& node_proto)
{
if (node_proto.input_size() != 5)
CV_Error(Error::StsNotImplemented,
"Expected input, scale, bias, mean and var");
layerParams.type = "BatchNorm";
replaceLayerParam(layerParams, "epsilon", "eps");
replaceLayerParam(layerParams, "spatial", "use_global_stats");
Mat meanData = getBlob(node_proto, 3);
Mat stdData = getBlob(node_proto, 4);
layerParams.blobs.push_back(meanData);
layerParams.blobs.push_back(stdData);
if (!node_proto.input(1).empty()) {
layerParams.set("has_weight", true);
layerParams.blobs.push_back(getBlob(node_proto, 1)); // weightData
} else {
layerParams.set("has_weight", false);
}
if (!node_proto.input(2).empty()) {
layerParams.set("has_bias", true);
layerParams.blobs.push_back(getBlob(node_proto, 2)); // biasData
} else {
layerParams.set("has_bias", false);
}
addLayer(layerParams, node_proto);
}
void ONNXImporter::parseGemm(LayerParams& layerParams, const opencv_onnx::NodeProto& node_proto)
{
CV_Assert(node_proto.input_size() >= 2);
layerParams.type = "InnerProduct";
Mat weights = getBlob(node_proto, 1);
int ind_num_out = 0;
if (layerParams.has("transB") && !layerParams.get<int>("transB")) {
transpose(weights, weights);
ind_num_out = 1;
}
layerParams.blobs.push_back(weights);
if (node_proto.input_size() == 3) {
Mat bias = getBlob(node_proto, 2);
layerParams.blobs.push_back(bias);
}
if (constBlobs.find(node_proto.input(0)) != constBlobs.end())
{
Mat inputBuf = getBlob(node_proto, 0);
LayerParams constParams;
constParams.name = node_proto.input(0);
constParams.type = "Const";
constParams.blobs.push_back(inputBuf);
opencv_onnx::NodeProto proto;
proto.add_output(constParams.name);
addLayer(constParams, proto);
}
layerParams.set("num_output", layerParams.blobs[0].size[ind_num_out]);
layerParams.set("bias_term", node_proto.input_size() == 3);
addLayer(layerParams, node_proto);
}
void ONNXImporter::parseMatMul(LayerParams& layerParams, const opencv_onnx::NodeProto& node_proto)
{
CV_Assert(node_proto.input_size() == 2);
layerParams.type = "InnerProduct";
layerParams.set("bias_term", false);
CV_Assert(constBlobs.find(node_proto.input(0)) == constBlobs.end());
int firstInpDims = outShapes[node_proto.input(0)].size();
int secondInpDims;
if (constBlobs.find(node_proto.input(1)) != constBlobs.end())
{
Mat blob = getBlob(node_proto, 1);
secondInpDims = blob.dims;
layerParams.blobs.push_back(blob.t());
layerParams.set("num_output", layerParams.blobs[0].size[0]);
} else {
secondInpDims = outShapes[node_proto.input(1)].size();
}
layerParams.set("axis", firstInpDims - secondInpDims + 1);
addLayer(layerParams, node_proto);
}
void findBroadAxis(const MatShape& broadShape, const MatShape& outShape, size_t& axis, int& broadAxis)
{
const size_t diff = outShape.size() - broadShape.size();
// find the first non-one element of the broadcasting shape
axis = 0;
for (; axis < broadShape.size() && broadShape[axis] == 1; ++axis) {}
// find the last non-one element of the broadcasting shape
size_t endAxis = broadShape.size();
for (; endAxis > axis && broadShape[endAxis - 1] == 1; --endAxis) {}
// find one between axis and endAxis - as it needs to be broadcasted,
// dimensions from the left of axis and from the right of endAxis will be handled by Scale layer
broadAxis = -1;
for (size_t i = axis; i < endAxis; ++i)
{
size_t outAxis = i + diff;
if (outShape[outAxis] == broadShape[i])
{
continue;
}
// ensure we need to broadcast only 1 dimension in the middle
CV_Assert(broadShape[i] == 1 && broadAxis == -1);
broadAxis = static_cast<int>(outAxis);
}
axis += diff;
}
// "Mul" "Div"
void ONNXImporter::parseMul(LayerParams& layerParams, const opencv_onnx::NodeProto& node_proto_)
{
opencv_onnx::NodeProto node_proto = node_proto_;
const std::string& layer_type = node_proto.op_type();
CV_Assert(node_proto.input_size() == 2);
bool isDiv = layer_type == "Div";
int constId = -1;
bool haveVariables = false;
for (int i = 0; i < 2; ++i)
{
if (constBlobs.find(node_proto.input(i)) != constBlobs.end())
constId = i;
else
haveVariables = true;
}
if (constId != -1 && haveVariables)
{
Mat blob = getBlob(node_proto, constId);
blob = blob.reshape(1, 1);
if (blob.total() == 1) {
float blob_value = blob.ptr<float>()[0];
float coeff = isDiv ? 1.0 / blob_value : blob_value;
layerParams.set("scale", coeff);
layerParams.type = "Power";
}
else {
if (isDiv)
divide(1.0, blob, blob);
layerParams.blobs.push_back(blob);
layerParams.type = "Scale";
}
}
else if (!haveVariables)
{
Mat inp0 = getBlob(node_proto, 0);
Mat inp1 = getBlob(node_proto, 1);
if (inp0.size != inp1.size && (inp0.total() != 1 || inp1.total() != 1))
CV_Error_(Error::StsNotImplemented, ("Different shapes case is not supported with constant inputs: %s", layer_type.c_str()));
if (inp0.total() == 1 && inp1.total() == 1 && inp0.dims != inp1.dims)
{
if (inp0.dims < inp1.dims)
{
inp0 = inp0.reshape(1, inp1.dims, inp1.size);
inp0.dims = inp1.dims;
}
else
{
inp1 = inp1.reshape(1, inp0.dims, inp0.size);
inp1.dims = inp0.dims;
}
}
Mat out;
if (inp0.total() != inp1.total())
{
if (inp0.total() == 1)
{
float inp0_value = inp0.ptr<float>()[0];
float coeff = isDiv ? 1.0 / inp0_value : inp0_value;
multiply(inp1, coeff, out);
}
else
{
float inp1_value = inp1.ptr<float>()[0];
float coeff = isDiv ? 1.0 / inp1_value : inp1_value;
multiply(inp0, coeff, out);
}
}
else
{
out = isDiv ? inp0 / inp1 : inp0.mul(inp1);
}
if (inp0.dims == 1 && inp1.dims == 1)
out.dims = 1; // to workaround dims == 1
addConstant(layerParams.name, out);
return;
}
else if (outShapes[node_proto.input(0)] == outShapes[node_proto.input(1)])
{
layerParams.type = "Eltwise";
layerParams.set("operation", isDiv ? "div" : "prod");
}
else
{
// Scale layer allocate output with the first input shape
if (total(outShapes[node_proto.input(0)]) < total(outShapes[node_proto.input(1)]))
{
opencv_onnx::NodeProto proto;
proto.add_input(node_proto.input(1));
proto.add_input(node_proto.input(0));
proto.add_output(layerParams.name);
node_proto = proto;
}
if (isDiv)
{
LayerParams powerParams;
powerParams.name = layerParams.name + "/inv";
powerParams.type = "Power";
powerParams.set("power", -1);
//Create Power layer
int id = dstNet.addLayer(powerParams.name, powerParams.type, powerParams);
//Connect to input
IterLayerId_t layerId = layer_id.find(node_proto.input(1));
CV_Assert(layerId != layer_id.end());
dstNet.connect(layerId->second.layerId, layerId->second.outputId, id, 0);
//Add shape
layer_id.insert(std::make_pair(powerParams.name, LayerInfo(id, 0)));
outShapes[powerParams.name] = outShapes[node_proto.input(1)];
//Replace input to Power
node_proto.set_input(1, powerParams.name);
}
const MatShape& broadShape = outShapes[node_proto.input(1)];
const MatShape& outShape = outShapes[node_proto.input(0)];
size_t axis = 0;
int broadAxis = -1;
findBroadAxis(broadShape, outShape, axis, broadAxis);
// if there is a one dimension in the middle that should be broadcasted, broadcast it
if (broadAxis != -1)
{
opencv_onnx::NodeProto concat_node_proto = node_proto;
const std::string& input1 = concat_node_proto.input(1);
expandMid(layerParams.name, concat_node_proto, input1, outShape[broadAxis]);
LayerParams concatLP;
concatLP.name = layerParams.name + "/concat";
concatLP.set("axis", broadAxis);
concatLP.type = "Concat";
concat_node_proto.set_output(0, concatLP.name);
addLayer(concatLP, concat_node_proto);
node_proto.set_input(1, concatLP.name);
}
CV_Assert(axis != outShape.size());
layerParams.set("axis", static_cast<int>(axis));
layerParams.type = "Scale";
}
addLayer(layerParams, node_proto);
}
void ONNXImporter::parseConv(LayerParams& layerParams, const opencv_onnx::NodeProto& node_proto_)
{
opencv_onnx::NodeProto node_proto = node_proto_;
CV_Assert(node_proto.input_size() >= 2);
layerParams.type = "Convolution";
for (int j = 1; j < node_proto.input_size(); j++) {
if (constBlobs.find(node_proto.input(j)) != constBlobs.end())
{
layerParams.blobs.push_back(getBlob(node_proto, j));
}
}
int outCn = layerParams.blobs.empty() ? outShapes[node_proto.input(1)][0] : layerParams.blobs[0].size[0];
layerParams.set("num_output", outCn);
// Check for asymmetric padding in Conv2D
if (layerParams.has("pad"))
{
bool asymmetricPadding = false;
DictValue pads = layerParams.get("pad");
const int dims = pads.size() / 2;
for (int i = 0; i < dims; ++i)
{
if (pads.get<int>(i) != pads.get<int>(i + dims))
{
asymmetricPadding = true;
break;
}
}
if (asymmetricPadding && pads.size() == 4) // [pad_t, pad_l, pad_b, pad_r]
{
layerParams.erase("pad");
// No paddings required for N, C axis
std::vector<int> paddings(4, 0);
// Add paddings for H, W axis
for (int i = 0; i < dims; ++i)
{
paddings.push_back(pads.get<int>(i));
paddings.push_back(pads.get<int>(dims + i));
}
LayerParams padLp;
padLp.name = layerParams.name + "/pad";
padLp.type = "Padding";
padLp.set("paddings", DictValue::arrayInt(&paddings[0], paddings.size()));
opencv_onnx::NodeProto proto;
proto.add_input(node_proto.input(0));
proto.add_output(padLp.name);
addLayer(padLp, proto);
node_proto.set_input(0, padLp.name);
}
}
addLayer(layerParams, node_proto);
}
void ONNXImporter::parseConvTranspose(LayerParams& layerParams, const opencv_onnx::NodeProto& node_proto)
{
CV_Assert(node_proto.input_size() >= 2);
layerParams.type = "Deconvolution";
for (int j = 1; j < node_proto.input_size(); j++) {
layerParams.blobs.push_back(getBlob(node_proto, j));
}
layerParams.set("num_output", layerParams.blobs[0].size[1] * layerParams.get<int>("group", 1));
layerParams.set("bias_term", node_proto.input_size() == 3);
if (!layerParams.has("kernel_size"))
CV_Error(Error::StsNotImplemented,
"Required attribute 'kernel_size' is not present.");
if (layerParams.has("output_shape"))
{
const DictValue& outShape = layerParams.get("output_shape");
DictValue strides = layerParams.get("stride");
DictValue kernel = layerParams.get("kernel_size");
String padMode;
std::vector<int> adjust_pads;
if (layerParams.has("pad_mode"))
{
padMode = toUpperCase(layerParams.get<String>("pad_mode"));
if (padMode != "SAME" && padMode != "VALID")
CV_Error(Error::StsError, "Unsupported padding mode " + padMode);
for (int i = 0; i < strides.size(); i++)
{
int sz = outShape.get<int>(2 + i);
int stride = strides.get<int>(i);
adjust_pads.push_back(padMode == "SAME"? (sz - 1) % stride :
(sz - kernel.get<int>(i)) % stride);
}
layerParams.set("adj", DictValue::arrayInt(&adjust_pads[0], adjust_pads.size()));
}
}
else if (layerParams.has("output_padding"))
{
replaceLayerParam(layerParams, "output_padding", "adj");
}
addLayer(layerParams, node_proto);
}
void ONNXImporter::parseTranspose(LayerParams& layerParams, const opencv_onnx::NodeProto& node_proto)
{
int depth = layerParams.get<int>("depth", CV_32F);
layerParams.type = (depth == CV_8S) ? "PermuteInt8" : "Permute";
replaceLayerParam(layerParams, "perm", "order");
if (!layerParams.has("order")) {
MatShape inpShape = outShapes[node_proto.input(0)];
size_t dims = inpShape.size();
std::vector<int> perm(dims);
for (size_t d = 0; d < dims; ++d)
{
perm[d] = static_cast<int>(dims - 1 - d);
}
layerParams.set("order", DictValue::arrayInt(perm.data(), perm.size()));
}
CV_Assert(node_proto.input_size() == 1);
if (constBlobs.find(node_proto.input(0)) != constBlobs.end())
{
std::vector<Mat> inputs(1, getBlob(node_proto, 0)), transposed;
runLayer(layerParams, inputs, transposed);
CV_Assert(transposed.size() == 1);
addConstant(layerParams.name, transposed[0]);
return;
}
addLayer(layerParams, node_proto);
}
void ONNXImporter::parseSqueeze(LayerParams& layerParams, const opencv_onnx::NodeProto& node_proto)
{
CV_Assert_N(node_proto.input_size() == 1, layerParams.has("axes"));
DictValue axes_dict = layerParams.get("axes");
MatShape inpShape = outShapes[node_proto.input(0)];
std::vector<bool> maskedAxes(inpShape.size(), false);
for (int i = 0; i < axes_dict.size(); ++i)
{
int axis = axes_dict.getIntValue(i);
CV_CheckLE(axis, static_cast<int>(inpShape.size()), "Squeeze axis");
maskedAxes[axis] = inpShape[axis] == 1;
}
MatShape outShape;
for (int i = 0; i < inpShape.size(); ++i)
{
if (!maskedAxes[i])
outShape.push_back(inpShape[i]);
}
if (outShape.size() != inpShape.size())
{
layerParams.type = "Reshape";
layerParams.set("dim", DictValue::arrayInt(&outShape[0], outShape.size()));
if (hasDynamicShapes)
{
std::vector<int> dynamicAxes;
std::vector<int> inputIndices;
for (int index = 0; index < inpShape.size(); ++index)
{
if (!maskedAxes[index])
inputIndices.push_back(index);
}
for (int index = 0; index < outShape.size(); ++index)
dynamicAxes.push_back(index);
layerParams.set("dynamic_axes", DictValue::arrayInt(dynamicAxes.data(), dynamicAxes.size()));
layerParams.set("input_indices", DictValue::arrayInt(inputIndices.data(), inputIndices.size()));
}
}
else
layerParams.type = "Identity";
if (constBlobs.find(node_proto.input(0)) != constBlobs.end())
{
Mat inp = getBlob(node_proto, 0);
Mat out = inp.reshape(1, outShape);
out.dims = outShape.size(); // to workaround dims == 1
addConstant(layerParams.name, out);
return;
}
int depth = layerParams.get<int>("depth", CV_32F);
layerParams.type += (depth == CV_8S) ? "Int8" : "";
addLayer(layerParams, node_proto);
}
void ONNXImporter::parseFlatten(LayerParams& layerParams, const opencv_onnx::NodeProto& node_proto)
{
CV_CheckEQ(node_proto.input_size(), 1, "");
if (constBlobs.find(node_proto.input(0)) != constBlobs.end())
{
Mat input = getBlob(node_proto, 0);
int axis = normalize_axis(layerParams.get<int>("axis", 1), input.dims);
std::vector<int> out_size(&input.size[0], &input.size[0] + axis);
out_size.push_back(input.total(axis));
Mat output = input.reshape(1, out_size);
addConstant(layerParams.name, output);
return;
}
addLayer(layerParams, node_proto);
}
void ONNXImporter::parseUnsqueeze(LayerParams& layerParams, const opencv_onnx::NodeProto& node_proto)
{
CV_Assert(node_proto.input_size() == 1 || node_proto.input_size() == 2);
DictValue axes;
if (node_proto.input_size() == 2)
{
Mat blob = getBlob(node_proto, 1);
axes = DictValue::arrayInt(blob.ptr<int>(), blob.total());
}
else
axes = layerParams.get("axes");
if (constBlobs.find(node_proto.input(0)) != constBlobs.end())
{
// Constant input.
Mat input = getBlob(node_proto, 0);
std::vector<int> dims;
for (int j = 0; j < input.dims; j++) {
dims.push_back(input.size[j]);
}
CV_Assert(axes.getIntValue(axes.size()-1) <= dims.size());
for (int j = 0; j < axes.size(); j++) {
dims.insert(dims.begin() + axes.getIntValue(j), 1);
}
Mat out = input.reshape(0, dims);
addConstant(layerParams.name, out);
return;
}
// Variable input.
if (axes.size() != 1)
CV_Error(Error::StsNotImplemented, "Multidimensional unsqueeze");
int depth = layerParams.get<int>("depth", CV_32F);
MatShape inpShape = outShapes[node_proto.input(0)];
int axis = axes.getIntValue(0);
CV_Assert(0 <= axis && axis <= inpShape.size());
std::vector<int> outShape = inpShape;
outShape.insert(outShape.begin() + axis, 1);
layerParams.type = (depth == CV_8S) ? "ReshapeInt8" : "Reshape";
layerParams.set("dim", DictValue::arrayInt(&outShape[0], outShape.size()));
if (hasDynamicShapes)
{
std::vector<int> dynamicAxes;
std::vector<int> inputIndices;
for (int index = 0; index < outShape.size(); ++index) {
if (index != axis)
dynamicAxes.push_back(index);
}
for (int index = 0; index < inpShape.size(); ++index)
inputIndices.push_back(index);
layerParams.set("dynamic_axes", DictValue::arrayInt(dynamicAxes.data(), dynamicAxes.size()));
layerParams.set("input_indices", DictValue::arrayInt(inputIndices.data(), inputIndices.size()));
}
addLayer(layerParams, node_proto);
}
void ONNXImporter::parseExpand(LayerParams& layerParams, const opencv_onnx::NodeProto& node_proto_)
{
opencv_onnx::NodeProto node_proto = node_proto_;
CV_CheckEQ(node_proto.input_size(), 2, "");
const std::string& input0 = node_proto.input(0);
const std::string& input1 = node_proto.input(1);
Mat newShapeMat = getBlob(input1);
MatShape targetShape(newShapeMat.ptr<int>(), newShapeMat.ptr<int>() + newShapeMat.total());
MatShape inpShape;
bool haveVariables = constBlobs.find(input0) == constBlobs.end();
if (haveVariables)
{
IterShape_t shapeIt = outShapes.find(input0);
CV_Assert(shapeIt != outShapes.end());
inpShape = shapeIt->second;
}
else
{
inpShape = shape(getBlob(input0));
}
String srcName = input0;
// Unsqueeze and repeat along new axis
if (targetShape.size() == inpShape.size() + 1)
{
inpShape.insert(inpShape.begin(), targetShape.size() - inpShape.size(), 1);
for (int i = 0; i < targetShape.size(); i++)
{
if (abs(targetShape[i]) == 1)
targetShape[i] = inpShape[i];
}
if (haveVariables)
{
LayerParams reshapeLp;
reshapeLp.name = layerParams.name + "/reshape";
reshapeLp.type = "Reshape";
CV_Assert(layer_id.find(reshapeLp.name) == layer_id.end());
reshapeLp.set("dim", DictValue::arrayInt(&inpShape[0], inpShape.size()));
opencv_onnx::NodeProto proto;
proto.add_input(node_proto.input(0));
proto.add_output(reshapeLp.name);
addLayer(reshapeLp, proto);
srcName = reshapeLp.name;
}
}
CV_CheckEQ(inpShape.size(), targetShape.size(), "Unsupported Expand op with different dims");
std::vector<int> broadcast_axes;
// shapes aren't right-aligned here because targetShape.size() == inpShape.size()
for (int i = 0; i < targetShape.size(); i++)
{
if (targetShape[i] != inpShape[i])
{
if (inpShape[i] == 1)
{
broadcast_axes.push_back(i);
}
else if (targetShape[i] != 1)
{
CV_Error(Error::StsError, format("Could not be broadcast by axis: %d", i));
}
}
}
if (!haveVariables)
{
if (broadcast_axes.size() != 1)
CV_Error(Error::StsNotImplemented, "Expand op doesn't support multiple axes for constant input");
Mat input = getBlob(node_proto, 0);
input = input.reshape(0, total(inpShape, 0, broadcast_axes[0]));
Mat output = cv::repeat(input, 1, targetShape[broadcast_axes[0]]);
output = output.reshape(0, targetShape);
addConstant(layerParams.name, output);
return;
}
if (broadcast_axes.size() == 2 &&
broadcast_axes[0] == broadcast_axes[1] - 1 && broadcast_axes[1] == inpShape.size() - 1)
{
LayerParams constParams;
constParams.name = layerParams.name + "/const";
CV_Assert(layer_id.find(constParams.name) == layer_id.end());
constParams.type = "Const";
Mat inp = Mat::ones(newShapeMat.total(), newShapeMat.ptr<int>(), CV_32F);
constParams.blobs.push_back(inp);
opencv_onnx::NodeProto proto;
proto.add_output(constParams.name);
addLayer(constParams, proto);
layerParams.type = "Scale";
layerParams.set("bias_term", false);
node_proto.set_input(0, constParams.name);
node_proto.set_input(1, srcName);
}
else if (broadcast_axes.size() == 1 && broadcast_axes[0] <= 1)
{
expandMid(layerParams.name, node_proto, srcName, targetShape[broadcast_axes[0]]);
layerParams.set("axis", broadcast_axes[0]);
layerParams.type = "Concat";
node_proto.set_output(0, layerParams.name);
}
else if (broadcast_axes.empty())
{
layerParams.type = "Identity";
}
else
CV_Error(Error::StsNotImplemented, "Unsupported Expand op");
addLayer(layerParams, node_proto);
}
void ONNXImporter::parseReshape(LayerParams& layerParams, const opencv_onnx::NodeProto& node_proto)
{
CV_Assert(node_proto.input_size() == 2 || layerParams.has("shape"));
int depth = layerParams.get<int>("depth", CV_32F);
layerParams.type += (depth == CV_8S) ? "Int8" : "";
if (node_proto.input_size() == 2) {
Mat blob = getBlob(node_proto, 1);
CV_Assert(blob.type() == CV_32SC1);
layerParams.set("dim", DictValue::arrayInt<int*>(blob.ptr<int>(), blob.total()));
if (layer_id.find(node_proto.input(0)) == layer_id.end()) {
std::vector<Mat> inputs(1, getBlob(node_proto, 0)), outputs;
runLayer(layerParams, inputs, outputs);
addConstant(layerParams.name, outputs[0]);
return;
}
}
else {
DictValue shape = layerParams.get("shape");
std::vector<int> dim;
for (int j = 0; j < shape.size(); j++) {
dim.push_back(shape.getIntValue(j));
}
if (layer_id.find(node_proto.input(0)) == layer_id.end()) {
Mat input = getBlob(node_proto, 0);
Mat out = input.reshape(0, dim);
addConstant(layerParams.name, out);
return;
}
replaceLayerParam(layerParams, "shape", "dim");
}
addLayer(layerParams, node_proto);
}
void ONNXImporter::parsePad(LayerParams& layerParams, const opencv_onnx::NodeProto& node_proto)
{
int depth = layerParams.get<int>("depth", CV_32F);
layerParams.type = (depth == CV_8S) ? "PaddingInt8" : "Padding";
replaceLayerParam(layerParams, "mode", "type");
if (node_proto.input_size() == 3 || node_proto.input_size() == 2)
{
// Paddings are in order begin0, begin1, .. beginN, end0, end1, ..., endN.
// We need to shuffle it to begin0, end0, begin1, end1, ...
Mat paddings = getBlob(node_proto, 1).reshape(1, 2);
paddings = paddings.t();
layerParams.set("paddings", DictValue::arrayInt(paddings.ptr<int>(), paddings.total()));
if (node_proto.input_size() == 3)
{
Mat value = getBlob(node_proto, 2);
float padValue = (depth == CV_8S) ? (float)value.ptr<int8_t>()[0] : value.ptr<float>()[0];
layerParams.set("value", padValue);
}
}
addLayer(layerParams, node_proto);
}
void ONNXImporter::parseShape(LayerParams& layerParams, const opencv_onnx::NodeProto& node_proto)
{
CV_Assert(node_proto.input_size() == 1);
IterShape_t shapeIt = outShapes.find(node_proto.input(0));
CV_Assert(shapeIt != outShapes.end());
const MatShape& inpShape = shapeIt->second;
Mat shapeMat(inpShape.size(), 1, CV_32S);
for (int j = 0; j < inpShape.size(); ++j)
shapeMat.at<int>(j) = inpShape[j];
shapeMat.dims = 1;
addConstant(layerParams.name, shapeMat);
}
void ONNXImporter::parseCast(LayerParams& layerParams, const opencv_onnx::NodeProto& node_proto)
{
if (constBlobs.find(node_proto.input(0)) != constBlobs.end())
{
Mat blob = getBlob(node_proto, 0);
int type;
switch (layerParams.get<int>("to"))
{
case opencv_onnx::TensorProto_DataType_FLOAT: type = CV_32F; break;
case opencv_onnx::TensorProto_DataType_UINT8: type = CV_8U; break;
case opencv_onnx::TensorProto_DataType_UINT16: type = CV_16U; break;
case opencv_onnx::TensorProto_DataType_FLOAT16: type = CV_16S; break;
case opencv_onnx::TensorProto_DataType_INT8:
case opencv_onnx::TensorProto_DataType_INT16:
case opencv_onnx::TensorProto_DataType_INT32:
case opencv_onnx::TensorProto_DataType_INT64: type = CV_32S; break;
default: type = blob.type();
}
Mat dst;
blob.convertTo(dst, type);
dst.dims = blob.dims;
addConstant(layerParams.name, dst);
return;
}
else
layerParams.type = "Identity";
addLayer(layerParams, node_proto);
}
void ONNXImporter::parseConstantFill(LayerParams& layerParams, const opencv_onnx::NodeProto& node_proto)
{
int depth = CV_32F;
float fill_value;
if (!layerParams.blobs.empty())
{
CV_Assert(!layerParams.has("value"));
depth = layerParams.blobs[0].depth();
Mat floats;
layerParams.blobs[0].convertTo(floats, CV_32F);
fill_value = floats.at<float>(0, 0);
}
else
fill_value = layerParams.get("value", 0);
MatShape inpShape = getBlob(node_proto, 0);
for (int i = 0; i < inpShape.size(); i++)
CV_CheckGT(inpShape[i], 0, "");
Mat tensor(inpShape.size(), &inpShape[0], depth, Scalar(fill_value));
addConstant(layerParams.name, tensor);
}
void ONNXImporter::parseGather(LayerParams& layerParams, const opencv_onnx::NodeProto& node_proto_)
{
opencv_onnx::NodeProto node_proto = node_proto_;
CV_Assert(node_proto.input_size() == 2);
Mat indexMat = getBlob(node_proto, 1);
CV_Assert_N(indexMat.type() == CV_32S, indexMat.total() == 1);
int index = indexMat.at<int>(0);
int axis = layerParams.get<int>("axis", 0);
if ((constBlobs.find(node_proto.input(0)) != constBlobs.end()))
{
Mat input = getBlob(node_proto, 0);
Mat out;
std::vector<cv::Range> ranges(input.dims, Range::all());
ranges[axis] = Range(index, index + 1);
out = input(ranges);
MatShape outShape = shape(out);
if (outShape.size() > 1)
{
outShape.erase(outShape.begin() + axis);
out.reshape(0, outShape);
} else {
out.dims = 1;
}
addConstant(layerParams.name, out);
return;
}
else
{
IterShape_t shapeIt = outShapes.find(node_proto.input(0));
CV_Assert(shapeIt != outShapes.end());
MatShape inpShape = shapeIt->second;
LayerParams sliceLp;
sliceLp.type = "Slice";
sliceLp.name = inpShape.size() > 1 ? layerParams.name + "/slice" : layerParams.name;
std::vector<int> begin(inpShape.size(), 0);
std::vector<int> end(inpShape.size(), -1);
begin[axis] = index;
end[axis] = index + 1;
cv::dnn::DictValue paramBegin = cv::dnn::DictValue::arrayInt(begin.data(), begin.size());
cv::dnn::DictValue paramEnd = cv::dnn::DictValue::arrayInt(end.data(), end.size());
sliceLp.set("begin", paramBegin);
sliceLp.set("end", paramEnd);
sliceLp.set("has_dynamic_shapes", hasDynamicShapes);
if (inpShape.size() > 1)
{
opencv_onnx::NodeProto proto;
proto.add_input(node_proto.input(0));
proto.add_output(sliceLp.name);
addLayer(sliceLp, proto);
inpShape.erase(inpShape.begin() + axis);
layerParams.type = "Reshape";
layerParams.set("axis", 0);
layerParams.set("dim", DictValue::arrayInt(&inpShape[0], inpShape.size()));
if (hasDynamicShapes)
{
std::vector<int> dynamicAxes;
std::vector<int> inputIndices;
for (int index = 0; index < inpShape.size(); ++index)
dynamicAxes.push_back(index);
for (int index = 0; index < inpShape.size(); ++index)
inputIndices.push_back(index);
layerParams.set("dynamic_axes", DictValue::arrayInt(dynamicAxes.data(), dynamicAxes.size()));
layerParams.set("input_indices", DictValue::arrayInt(inputIndices.data(), inputIndices.size()));
}
node_proto.set_input(0, sliceLp.name);
}
else
{
layerParams = sliceLp;
}
}
addLayer(layerParams, node_proto);
}
void ONNXImporter::parseConcat(LayerParams& layerParams, const opencv_onnx::NodeProto& node_proto)
{
bool hasVariableInps = false;
for (int i = 0; i < node_proto.input_size(); ++i)
{
if (layer_id.find(node_proto.input(i)) != layer_id.end())
{
hasVariableInps = true;
break;
}
}
if (!hasVariableInps)
{
std::vector<Mat> inputs(node_proto.input_size()), concatenated;
// Due constant folding we can get inputs with different number of dimensions
// Insert the missing dimension to inputs
MatShape inputShape;
for (size_t i = 0; i < inputs.size(); ++i)
{
inputs[i] = getBlob(node_proto, i);
if (inputs[i].size.dims() > inputShape.size())
{
inputShape = shape(inputs[i]);
}
}
// Concat-1 has default value for axis is 1: https://github.com/onnx/onnx/blob/master/docs/Changelog.md#Concat-1
int axis = layerParams.get<int>("axis", 1);
for (size_t i = 0; i < inputs.size(); ++i)
{
MatShape targetShape = inputShape;
targetShape[axis] = shape(inputs[i])[axis];
CV_CheckEQ(total(targetShape), total(shape(inputs[i])), "");
inputs[i] = inputs[i].reshape(0, targetShape);
}
runLayer(layerParams, inputs, concatenated);
CV_Assert(concatenated.size() == 1);
addConstant(layerParams.name, concatenated[0]);
return;
}
else
{
for (int i = 0; i < node_proto.input_size(); ++i)
{
if (constBlobs.find(node_proto.input(i)) != constBlobs.end())
{
LayerParams constParams;
constParams.name = node_proto.input(i);
constParams.type = "Const";
constParams.blobs.push_back(getBlob(node_proto, i));
opencv_onnx::NodeProto proto;
proto.add_output(constParams.name);
addLayer(constParams, proto);
}
}
}
addLayer(layerParams, node_proto);
}
void ONNXImporter::parseResize(LayerParams& layerParams, const opencv_onnx::NodeProto& node_proto)
{
for (int i = 1; i < node_proto.input_size(); i++)
CV_Assert(layer_id.find(node_proto.input(i)) == layer_id.end());
int depth = layerParams.get<int>("depth", CV_32F);
layerParams.type += (depth == CV_8S) ? "Int8" : "";
if (layerParams.has("coordinate_transformation_mode"))
{
String interp_mode = layerParams.get<String>("coordinate_transformation_mode");
CV_Assert_N(interp_mode != "tf_crop_and_resize", interp_mode != "tf_half_pixel_for_nn");
layerParams.set("align_corners", interp_mode == "align_corners");
if (layerParams.get<String>("mode") == "linear")
{
layerParams.set("mode", interp_mode == "pytorch_half_pixel" || interp_mode == "half_pixel" ?
"opencv_linear" : "bilinear");
}
}
if (layerParams.get<String>("mode") == "linear" && framework_name == "pytorch")
layerParams.set("mode", "opencv_linear");
// input = [X, scales], [X, roi, scales] or [x, roi, scales, sizes]
int foundScaleId = hasDynamicShapes ? node_proto.input_size() - 1
: node_proto.input_size() > 2 ? 2 : 1;
Mat scales = getBlob(node_proto, foundScaleId);
if (scales.total() == 4)
{
layerParams.set("zoom_factor_y", scales.at<float>(2));
layerParams.set("zoom_factor_x", scales.at<float>(3));
}
else
{
const std::string& inputLast = node_proto.input(node_proto.input_size() - 1);
if (constBlobs.find(inputLast) != constBlobs.end())
{
Mat shapes = getBlob(inputLast);
CV_CheckEQ(shapes.size[0], 4, "");
CV_CheckEQ(shapes.size[1], 1, "");
CV_CheckDepth(shapes.depth(), shapes.depth() == CV_32S || shapes.depth() == CV_32F, "");
if (shapes.depth() == CV_32F)
shapes.convertTo(shapes, CV_32S);
layerParams.set("width", shapes.at<int>(3));
layerParams.set("height", shapes.at<int>(2));
}
}
replaceLayerParam(layerParams, "mode", "interpolation");
addLayer(layerParams, node_proto);
}
void ONNXImporter::parseUpsample(LayerParams& layerParams, const opencv_onnx::NodeProto& node_proto)
{
//fused from Resize Subgraph
if (layerParams.has("coordinate_transformation_mode"))
{
String interp_mode = layerParams.get<String>("coordinate_transformation_mode");
CV_Assert_N(interp_mode != "tf_crop_and_resize", interp_mode != "tf_half_pixel_for_nn");
layerParams.set("align_corners", interp_mode == "align_corners");
if (layerParams.get<String>("mode") == "linear")
{
layerParams.set("mode", interp_mode == "pytorch_half_pixel" ?
"opencv_linear" : "bilinear");
}
}
if (layerParams.get<String>("mode") == "linear" && framework_name == "pytorch")
layerParams.set("mode", "opencv_linear");
layerParams.type = "Resize";
if (layerParams.has("scales"))
{
// Pytorch layer
DictValue scales = layerParams.get("scales");
CV_Assert(scales.size() == 4);
layerParams.set("zoom_factor_y", scales.getIntValue(2));
layerParams.set("zoom_factor_x", scales.getIntValue(3));
}
else if (layerParams.has("height_scale") && layerParams.has("width_scale"))
{
// Caffe2 layer
replaceLayerParam(layerParams, "height_scale", "zoom_factor_y");
replaceLayerParam(layerParams, "width_scale", "zoom_factor_x");
}
else
{
// scales as input
const std::string& input1 = node_proto.input(1);
if (constBlobs.find(input1) != constBlobs.end())
{
Mat scales = getBlob(input1);
CV_Assert(scales.total() == 4);
layerParams.set("zoom_factor_y", scales.at<float>(2));
layerParams.set("zoom_factor_x", scales.at<float>(3));
}
}
replaceLayerParam(layerParams, "mode", "interpolation");
addLayer(layerParams, node_proto);
}
void ONNXImporter::parseSoftMax(LayerParams& layerParams, const opencv_onnx::NodeProto& node_proto)
{
const std::string& layer_type = node_proto.op_type();
layerParams.type = "Softmax";
layerParams.set("log_softmax", layer_type == "LogSoftmax");
addLayer(layerParams, node_proto);
}
void ONNXImporter::parseDetectionOutput(LayerParams& layerParams, const opencv_onnx::NodeProto& node_proto_)
{
opencv_onnx::NodeProto node_proto = node_proto_;
CV_CheckEQ(node_proto.input_size(), 3, "");
if (constBlobs.find(node_proto.input(2)) != constBlobs.end())
{
Mat priors = getBlob(node_proto, 2);
LayerParams constParams;
constParams.name = layerParams.name + "/priors";
constParams.type = "Const";
constParams.blobs.push_back(priors);
opencv_onnx::NodeProto priorsProto;
priorsProto.add_output(constParams.name);
addLayer(constParams, priorsProto);
node_proto.set_input(2, constParams.name);
}
addLayer(layerParams, node_proto);
}
void ONNXImporter::parseCumSum(LayerParams& layerParams, const opencv_onnx::NodeProto& node_proto)
{
layerParams.type = "CumSum";
// Get axis.
const std::string& input1 = node_proto.input(1);
if (constBlobs.find(input1) != constBlobs.end())
{
Mat axis_blob = getBlob(input1);
CV_Assert(axis_blob.total() == 1u);
layerParams.set("axis", axis_blob.at<int>(0));
}
addLayer(layerParams, node_proto);
}
void ONNXImporter::parseCustomLayer(LayerParams& layerParams, const opencv_onnx::NodeProto& node_proto)
{
for (int j = 0; j < node_proto.input_size(); j++) {
if (layer_id.find(node_proto.input(j)) == layer_id.end())
layerParams.blobs.push_back(getBlob(node_proto, j));
}
addLayer(layerParams, node_proto);
}
void ONNXImporter::parseQuantDequant(LayerParams& layerParams, const opencv_onnx::NodeProto& node_proto)
{
CV_Assert(node_proto.input_size() == 3);
layerParams.type = (node_proto.op_type() == "QuantizeLinear") ? "Quantize" : "Dequantize";
if (node_proto.op_type() == "DequantizeLinear")
{
Mat scale = getBlob(node_proto, 1);
Mat zeropoint = getBlob(node_proto, 2);
layerParams.set("scales", DictValue::arrayReal(scale.ptr<float>(), 1));
layerParams.set("zeropoints", DictValue::arrayInt(zeropoint.ptr<int8_t>(), 1));
}
addLayer(layerParams, node_proto);
}
void ONNXImporter::parseQConv(LayerParams& layerParams, const opencv_onnx::NodeProto& node_proto)
{
int ninputs = node_proto.input_size();
CV_Assert(ninputs == 8 || ninputs == 9);
Mat inp_sc = getBlob(node_proto, 1);
Mat inp_zp = getBlob(node_proto, 2);
Mat weights = getBlob(node_proto, 3);
int outCn = weights.size[0];
Mat w_scale = getBlob(node_proto, 4);
CV_Assert(w_scale.total() == 1 || w_scale.total() == outCn);
Mat wt_sc = (w_scale.total() == outCn) ? w_scale : Mat(1, outCn, CV_32F, Scalar(w_scale.at<float>(0)));
Mat out_sc = getBlob(node_proto, 6);
Mat bias = (ninputs == 9) ? getBlob(node_proto, 8) : Mat::zeros(1, outCn, CV_32S);
Mat weights_2d = weights.reshape(1, outCn);
Mat biasFused(1, outCn, CV_32S);
Mat outputMultiplier(1, outCn, CV_32F);
for (int i = 0; i < outCn; i++)
{
biasFused.at<int>(i) = bias.at<int>(i) - inp_zp.at<int8_t>(0)*(cv::sum(weights_2d.row(i))[0]);
outputMultiplier.at<float>(i) = (inp_sc.at<float>(0) * wt_sc.at<float>(i)) / out_sc.at<float>(0);
}
layerParams.type = "ConvolutionInt8";
layerParams.set("num_output", outCn);
layerParams.set("input_zeropoint", inp_zp.at<int8_t>(0));
layerParams.blobs.push_back(weights);
layerParams.blobs.push_back(biasFused);
layerParams.blobs.push_back(outputMultiplier);
addLayer(layerParams, node_proto);
}
void ONNXImporter::parseQMatMul(LayerParams& layerParams, const opencv_onnx::NodeProto& node_proto)
{
int ninputs = node_proto.input_size();
CV_Assert(ninputs == 8);
if (constBlobs.find(node_proto.input(3)) == constBlobs.end())
CV_Error(Error::StsNotImplemented, "Variable weights is not supported");
int firstInpDims = outShapes[node_proto.input(0)].size();
Mat inp_sc = getBlob(node_proto, 1);
Mat inp_zp = getBlob(node_proto, 2);
Mat weights = getBlob(node_proto, 3).t();
int outCn = weights.size[0];
int secondInpDims = weights.dims;
Mat w_scale = getBlob(node_proto, 4);
CV_Assert(w_scale.total() == 1 || w_scale.total() == outCn);
Mat wt_sc = (w_scale.total() == outCn) ? w_scale : Mat(1, outCn, CV_32F, Scalar(w_scale.at<float>(0)));
Mat out_sc = getBlob(node_proto, 6);
Mat bias(1, outCn, CV_32S);
Mat outputMultiplier(1, outCn, CV_32F);
for (int i = 0; i < outCn; i++)
{
bias.at<int>(i) = -inp_zp.at<int8_t>(0)*(cv::sum(weights.row(i))[0]);
outputMultiplier.at<float>(i) = (inp_sc.at<float>(0) * wt_sc.at<float>(i)) / out_sc.at<float>(0);
}
layerParams.type = "InnerProductInt8";
layerParams.set("num_output", outCn);
layerParams.set("axis", firstInpDims - secondInpDims + 1);
layerParams.blobs.push_back(weights);
layerParams.blobs.push_back(bias);
layerParams.blobs.push_back(outputMultiplier);
addLayer(layerParams, node_proto);
}
void ONNXImporter::parseQEltwise(LayerParams& layerParams, const opencv_onnx::NodeProto& node_proto_)
{
opencv_onnx::NodeProto node_proto = node_proto_;
CV_Assert(node_proto.input_size() == 8);
std::string op = (node_proto.op_type() == "QLinearAdd") ? "sum" : "prod";
int constId = -1;
for (int i = 0; i < 4; i += 3)
{
if (constBlobs.find(node_proto.input(i)) != constBlobs.end())
constId = i;
}
Mat inp_0_sc = getBlob(node_proto, 1);
Mat inp_0_zp = getBlob(node_proto, 2);
Mat inp_1_sc = getBlob(node_proto, 4);
Mat inp_1_zp = getBlob(node_proto, 5);
// Set 2nd input as the const input
if (constId == 0)
{
cv::swap(inp_0_sc, inp_1_sc);
cv::swap(inp_0_zp, inp_1_zp);
}
float out_sc = getBlob(node_proto, 6).at<float>(0);
int8_t out_zp = getBlob(node_proto, 7).at<int8_t>(0);
std::vector<float> inp_scales = {inp_0_sc.at<float>(0), inp_1_sc.at<float>(0)};
std::vector<int8_t> inp_zps = {inp_0_zp.at<int8_t>(0), inp_1_zp.at<int8_t>(0)};
std::vector<float> coeffs;
float offset;
if (op == "sum")
{
coeffs = {inp_scales[0]/out_sc, inp_scales[1]/out_sc};
offset = out_zp - coeffs[0]*inp_zps[0] - coeffs[1]*inp_zps[1];
}
else
{
coeffs = {inp_scales[0]/out_sc, inp_scales[1]};
offset = out_zp;
}
if (constId != -1)
{
Mat blob = getBlob(node_proto, constId);
if (blob.total() == 1)
{
float val = inp_scales[1] * (blob.at<int8_t>(0) - inp_zps[1]);
float scale = inp_scales[0] / out_sc;
if (op == "prod")
scale *= val;
float shift = out_zp - scale*inp_zps[0];
if (op == "sum")
shift += (val/out_sc);
LayerParams rescaleParams;
rescaleParams.name = layerParams.name;
rescaleParams.type = "Requantize";
rescaleParams.set("depth", CV_8S);
rescaleParams.set("scale", scale);
rescaleParams.set("shift", shift);
addLayer(rescaleParams, node_proto);
return;
}
else
{
MatShape inpShape = outShapes[node_proto.input(3 - constId)];
if (blob.dims == 2)
blob = blob.t();
if (shape(blob) == inpShape)
{
LayerParams constParams;
constParams.name = layerParams.name + "/const";
constParams.type = "ConstInt8";
constParams.set("depth", CV_8S);
constParams.set("scales", DictValue::arrayReal(inp_1_sc.ptr<float>(), 1));
constParams.set("zeropoints", DictValue::arrayInt(inp_1_zp.ptr<int8_t>(), 1));
constParams.blobs.push_back(blob);
int id = dstNet.addLayer(constParams.name, constParams.type, CV_8S, constParams);
layer_id.insert(std::make_pair(constParams.name, LayerInfo(id, 0)));
outShapes[constParams.name] = shape(blob);
node_proto.set_input(constId, constParams.name);
layerParams.type = "EltwiseInt8";
layerParams.set("operation", op);
layerParams.set("coeff", DictValue::arrayReal(coeffs.data(), coeffs.size()));
layerParams.set("offset", offset);
}
else
{
layerParams.type = "ScaleInt8";
layerParams.set("bias_term", op == "sum");
int axis = 1;
for (int i = 0; i < graph_proto.initializer_size(); i++)
{
opencv_onnx::TensorProto tensor_proto = graph_proto.initializer(i);
if (tensor_proto.name() == node_proto.input(constId))
{
axis = inpShape.size() - tensor_proto.dims_size();
break;
}
}
layerParams.set("axis", axis);
blob = blob.reshape(1, 1);
Mat blob_dequantized;
blob.convertTo(blob_dequantized, CV_32F, inp_scales[1], -(inp_scales[1] * inp_zps[1]));
layerParams.blobs.push_back(blob_dequantized);
layerParams.set("input_scales", DictValue::arrayReal(inp_scales.data(), inp_scales.size()));
}
}
}
else if (outShapes[node_proto.input(0)] == outShapes[node_proto.input(3)])
{
layerParams.type = "EltwiseInt8";
layerParams.set("operation", op);
layerParams.set("coeff", DictValue::arrayReal(coeffs.data(), coeffs.size()));
layerParams.set("offset", offset);
}
else
{
layerParams.type = "ScaleInt8";
layerParams.set("bias_term", op == "sum");
layerParams.set("input_scales", DictValue::arrayReal(inp_scales.data(), inp_scales.size()));
}
layerParams.set("input_zeropoints", DictValue::arrayInt(inp_zps.data(), inp_zps.size()));
addLayer(layerParams, node_proto);
}
void ONNXImporter::parseQLeakyRelu(LayerParams& layerParams, const opencv_onnx::NodeProto& node_proto)
{
CV_Assert(node_proto.input_size() == 5);
float slope = layerParams.get<float>("alpha");
float inp_sc = getBlob(node_proto, 1).at<float>(0);
int8_t inp_zp = getBlob(node_proto, 2).at<int8_t>(0);
float out_sc = getBlob(node_proto, 3).at<float>(0);
int8_t out_zp = getBlob(node_proto, 4).at<int8_t>(0);
Mat lookUpTable(1, 256, CV_8S);
int8_t* table = lookUpTable.ptr<int8_t>();
for (int i = -128; i < 128; i++)
{
float x = inp_sc*(i - inp_zp);
float y = x >= 0.f ? x : slope*x;
int quantized = out_zp + cvRound(y/out_sc);
table[i+128] = saturate_cast<int8_t>(quantized);
}
layerParams.type = "ReLUInt8";
layerParams.blobs.push_back(lookUpTable);
addLayer(layerParams, node_proto);
}
void ONNXImporter::parseQSigmoid(LayerParams& layerParams, const opencv_onnx::NodeProto& node_proto)
{
CV_Assert(node_proto.input_size() == 5);
float inp_sc = getBlob(node_proto, 1).at<float>(0);
int8_t inp_zp = getBlob(node_proto, 2).at<int8_t>(0);
float out_sc = getBlob(node_proto, 3).at<float>(0);
int8_t out_zp = getBlob(node_proto, 4).at<int8_t>(0);
Mat lookUpTable(1, 256, CV_8S);
int8_t* table = lookUpTable.ptr<int8_t>();
for (int i = -128; i < 128; i++)
{
float x = inp_sc*(i - inp_zp);
float y = 1.f/(1.f + std::exp(-x));
int quantized = out_zp + cvRound(y/out_sc);
table[i+128] = saturate_cast<int8_t>(quantized);
}
layerParams.type = "SigmoidInt8";
layerParams.blobs.push_back(lookUpTable);
addLayer(layerParams, node_proto);
}
void ONNXImporter::parseQAvgPool(LayerParams& layerParams, const opencv_onnx::NodeProto& node_proto)
{
CV_Assert(node_proto.input_size() == 5);
float inp_sc = getBlob(node_proto, 1).at<float>(0);
int8_t inp_zp = getBlob(node_proto, 2).at<int8_t>(0);
float out_sc = getBlob(node_proto, 3).at<float>(0);
layerParams.type = "PoolingInt8";
layerParams.set("pool", "ave");
layerParams.set("global_pooling", node_proto.op_type() == "QLinearGlobalAveragePool");
layerParams.set("multiplier", inp_sc/out_sc);
layerParams.set("input_zeropoint", inp_zp);
addLayer(layerParams, node_proto);
}
void ONNXImporter::parseQConcat(LayerParams& layerParams, const opencv_onnx::NodeProto& node_proto_)
{
opencv_onnx::NodeProto node_proto = node_proto_;
layerParams.type = "ConcatInt8";
int num_inputs = node_proto.input_size();
float out_scale = getBlob(node_proto, 0).at<float>(0);
int out_zp = getBlob(node_proto, 1).at<int8_t>(0);
for (int i = 2; i < num_inputs; i += 3)
{
float inp_scale = getBlob(node_proto, i + 1).at<float>(0);
int inp_zp = getBlob(node_proto, i + 2).at<int8_t>(0);
if (inp_scale != out_scale || inp_zp != out_zp)
{
float scale = inp_scale/out_scale;
float shift = out_zp - scale*inp_zp;
if (constBlobs.find(node_proto.input(i)) != constBlobs.end())
{
Mat blob = getBlob(node_proto, i);
Mat blob_rescaled;
blob.convertTo(blob_rescaled, CV_8S, scale, shift);
constBlobs[node_proto.input(i)] = blob_rescaled;
}
else
{
LayerParams rescaleParams;
rescaleParams.name = node_proto.input(i) + "/rescale";
rescaleParams.type = "Requantize";
rescaleParams.set("depth", CV_8S);
rescaleParams.set("scale", scale);
rescaleParams.set("shift", shift);
opencv_onnx::NodeProto proto;
proto.add_input(node_proto.input(i));
proto.add_output(rescaleParams.name);
addLayer(rescaleParams, proto);
node_proto.set_input(i, rescaleParams.name);
}
}
}
bool hasVariableInps = false;
for (int i = 2; i < num_inputs; i += 3)
{
if (layer_id.find(node_proto.input(i)) != layer_id.end())
{
hasVariableInps = true;
break;
}
}
if (!hasVariableInps)
{
std::vector<Mat> inputs, concatenated;
MatShape inputShape;
for (size_t i = 2; i < num_inputs; i += 3)
{
Mat blob = getBlob(node_proto, i);
if (blob.size.dims() > inputShape.size())
{
inputShape = shape(blob);
}
inputs.push_back(blob);
}
int axis = layerParams.get<int>("axis", 1);
for (size_t i = 0; i < inputs.size(); ++i)
{
MatShape targetShape = inputShape;
targetShape[axis] = shape(inputs[i])[axis];
CV_CheckEQ(total(targetShape), total(shape(inputs[i])), "");
inputs[i] = inputs[i].reshape(0, targetShape);
}
runLayer(layerParams, inputs, concatenated);
CV_Assert(concatenated.size() == 1);
addConstant(layerParams.name, concatenated[0]);
return;
}
else
{
for (int i = 2; i < num_inputs; i += 3)
{
if (constBlobs.find(node_proto.input(i)) != constBlobs.end())
{
LayerParams constParams;
constParams.name = node_proto.input(i);
constParams.type = "ConstInt8";
constParams.blobs.push_back(getBlob(node_proto, i));
constParams.set("depth", CV_8S);
opencv_onnx::NodeProto proto;
proto.add_output(constParams.name);
addLayer(constParams, proto);
}
}
}
addLayer(layerParams, node_proto);
}
const ONNXImporter::DispatchMap ONNXImporter::buildDispatchMap()
{
DispatchMap dispatch;
dispatch["ArgMax"] = dispatch["ArgMin"] = &ONNXImporter::parseArg;
dispatch["MaxUnpool"] = &ONNXImporter::parseMaxUnpool;
dispatch["MaxPool"] = &ONNXImporter::parseMaxPool;
dispatch["AveragePool"] = &ONNXImporter::parseAveragePool;
dispatch["GlobalAveragePool"] = dispatch["GlobalMaxPool"] = dispatch["ReduceMean"] = dispatch["ReduceSum"] =
dispatch["ReduceMax"] = &ONNXImporter::parseReduce;
dispatch["Slice"] = &ONNXImporter::parseSlice;
dispatch["Split"] = &ONNXImporter::parseSplit;
dispatch["Add"] = dispatch["Sum"] = dispatch["Sub"] = &ONNXImporter::parseBias;
dispatch["Pow"] = &ONNXImporter::parsePow;
dispatch["Min"] = dispatch["Max"] = &ONNXImporter::parseMinMax;
dispatch["Neg"] = &ONNXImporter::parseNeg;
dispatch["Constant"] = &ONNXImporter::parseConstant;
dispatch["LSTM"] = &ONNXImporter::parseLSTM;
dispatch["GRU"] = &ONNXImporter::parseGRU;
dispatch["ImageScaler"] = &ONNXImporter::parseImageScaler;
dispatch["Clip"] = &ONNXImporter::parseClip;
dispatch["LeakyRelu"] = &ONNXImporter::parseLeakyRelu;
dispatch["Relu"] = &ONNXImporter::parseRelu;
dispatch["Elu"] = &ONNXImporter::parseElu;
dispatch["Tanh"] = &ONNXImporter::parseTanh;
dispatch["Abs"] = &ONNXImporter::parseAbs;
dispatch["Equal"] = dispatch["Greater"] = dispatch["Less"] = &ONNXImporter::parseCompare;
dispatch["PRelu"] = &ONNXImporter::parsePRelu;
dispatch["LRN"] = &ONNXImporter::parseLRN;
dispatch["InstanceNormalization"] = &ONNXImporter::parseInstanceNormalization;
dispatch["BatchNormalization"] = &ONNXImporter::parseBatchNormalization;
dispatch["Gemm"] = &ONNXImporter::parseGemm;
dispatch["MatMul"] = &ONNXImporter::parseMatMul;
dispatch["Mul"] = dispatch["Div"] = &ONNXImporter::parseMul;
dispatch["Conv"] = &ONNXImporter::parseConv;
dispatch["ConvTranspose"] = &ONNXImporter::parseConvTranspose;
dispatch["Transpose"] = &ONNXImporter::parseTranspose;
dispatch["Squeeze"] = &ONNXImporter::parseSqueeze;
dispatch["Flatten"] = &ONNXImporter::parseFlatten;
dispatch["Unsqueeze"] = &ONNXImporter::parseUnsqueeze;
dispatch["Expand"] = &ONNXImporter::parseExpand;
dispatch["Reshape"] = &ONNXImporter::parseReshape;
dispatch["Pad"] = &ONNXImporter::parsePad;
dispatch["Shape"] = &ONNXImporter::parseShape;
dispatch["Cast"] = &ONNXImporter::parseCast;
dispatch["ConstantFill"] = dispatch["ConstantOfShape"] = &ONNXImporter::parseConstantFill;
dispatch["Gather"] = &ONNXImporter::parseGather;
dispatch["Concat"] = &ONNXImporter::parseConcat;
dispatch["Resize"] = &ONNXImporter::parseResize;
dispatch["Upsample"] = &ONNXImporter::parseUpsample;
dispatch["SoftMax"] = dispatch["LogSoftmax"] = &ONNXImporter::parseSoftMax;
dispatch["DetectionOutput"] = &ONNXImporter::parseDetectionOutput;
dispatch["CumSum"] = &ONNXImporter::parseCumSum;
dispatch["QuantizeLinear"] = dispatch["DequantizeLinear"] = &ONNXImporter::parseQuantDequant;
dispatch["QLinearConv"] = &ONNXImporter::parseQConv;
dispatch["QLinearMatMul"] = &ONNXImporter::parseQMatMul;
dispatch["QLinearAdd"] = dispatch["QLinearMul"] = &ONNXImporter::parseQEltwise;
dispatch["QLinearLeakyRelu"] = &ONNXImporter::parseQLeakyRelu;
dispatch["QLinearSigmoid"] = &ONNXImporter::parseQSigmoid;
dispatch["QLinearAveragePool"] = dispatch["QLinearGlobalAveragePool"] = &ONNXImporter::parseQAvgPool;
dispatch["QLinearConcat"] = &ONNXImporter::parseQConcat;
return dispatch;
}
Net readNetFromONNX(const String& onnxFile)
{
return detail::readNetDiagnostic<ONNXImporter>(onnxFile.c_str());
}
Net readNetFromONNX(const char* buffer, size_t sizeBuffer)
{
return detail::readNetDiagnostic<ONNXImporter>(buffer, sizeBuffer);
}
Net readNetFromONNX(const std::vector<uchar>& buffer)
{
return readNetFromONNX(reinterpret_cast<const char*>(buffer.data()), buffer.size());
}
Mat readTensorFromONNX(const String& path)
{
std::fstream input(path.c_str(), std::ios::in | std::ios::binary);
if (!input)
{
CV_Error(Error::StsBadArg, cv::format("Can't read ONNX file: %s", path.c_str()));
}
opencv_onnx::TensorProto tensor_proto = opencv_onnx::TensorProto();
if (!tensor_proto.ParseFromIstream(&input))
{
CV_Error(Error::StsUnsupportedFormat, cv::format("Failed to parse ONNX data: %s", path.c_str()));
}
Mat mat = getMatFromTensor(tensor_proto);
releaseONNXTensor(tensor_proto);
return mat;
}
CV__DNN_INLINE_NS_END
}} // namespace
#endif