Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
3135 lines
118 KiB
3135 lines
118 KiB
// This file is part of OpenCV project. |
|
// It is subject to the license terms in the LICENSE file found in the top-level directory |
|
// of this distribution and at http://opencv.org/license.html. |
|
|
|
// Copyright (C) 2018, Intel Corporation, all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
|
|
#include "../precomp.hpp" |
|
#include <opencv2/dnn/shape_utils.hpp> |
|
|
|
#include <opencv2/dnn/layer_reg.private.hpp> |
|
|
|
#include <opencv2/core/utils/logger.defines.hpp> |
|
#undef CV_LOG_STRIP_LEVEL |
|
#define CV_LOG_STRIP_LEVEL CV_LOG_LEVEL_DEBUG + 1 |
|
#include <opencv2/core/utils/logger.hpp> |
|
|
|
#ifdef HAVE_PROTOBUF |
|
|
|
#include <iostream> |
|
#include <fstream> |
|
#include <string> |
|
#include <limits> |
|
#include <algorithm> |
|
|
|
|
|
#if defined(__GNUC__) && __GNUC__ >= 5 |
|
#pragma GCC diagnostic push |
|
#pragma GCC diagnostic ignored "-Wsuggest-override" |
|
#endif |
|
#include "opencv-onnx.pb.h" |
|
#if defined(__GNUC__) && __GNUC__ >= 5 |
|
#pragma GCC diagnostic pop |
|
#endif |
|
|
|
#include "onnx_graph_simplifier.hpp" |
|
|
|
namespace cv { |
|
namespace dnn { |
|
CV__DNN_INLINE_NS_BEGIN |
|
|
|
extern bool DNN_DIAGNOSTICS_RUN; |
|
|
|
class ONNXLayerHandler; |
|
|
|
class ONNXImporter |
|
{ |
|
opencv_onnx::ModelProto model_proto; |
|
struct LayerInfo { |
|
int layerId; |
|
int outputId; |
|
LayerInfo(int _layerId = 0, int _outputId = 0) : layerId(_layerId), outputId(_outputId) {} |
|
}; |
|
|
|
std::map<std::string, Mat> getGraphTensors( |
|
const opencv_onnx::GraphProto& graph_proto); |
|
Mat getBlob(const opencv_onnx::NodeProto& node_proto, int index); |
|
Mat getBlob(const std::string& input_name); |
|
|
|
LayerParams getLayerParams(const opencv_onnx::NodeProto& node_proto); |
|
|
|
void addConstant(const std::string& name, const Mat& blob); |
|
void addLayer(LayerParams& layerParams, |
|
const opencv_onnx::NodeProto& node_proto); |
|
void handleQuantizedNode(LayerParams& layerParams, |
|
const opencv_onnx::NodeProto& node_proto); |
|
|
|
void expandMid(const std::string& prefix, opencv_onnx::NodeProto& node_proto, |
|
const std::string& input, size_t n); |
|
void addNegation(const LayerParams& layerParams, opencv_onnx::NodeProto& node_proto, int input_id); |
|
public: |
|
ONNXImporter(Net& net, const char *onnxFile); |
|
ONNXImporter(Net& net, const char* buffer, size_t sizeBuffer); |
|
|
|
void populateNet(); |
|
|
|
protected: |
|
std::unique_ptr<ONNXLayerHandler> layerHandler; |
|
Net& dstNet; |
|
|
|
opencv_onnx::GraphProto graph_proto; |
|
std::string framework_name; |
|
|
|
std::map<std::string, Mat> constBlobs; |
|
|
|
std::map<std::string, MatShape> outShapes; // List of internal blobs shapes. |
|
bool hasDynamicShapes; // Whether the model has inputs with dynamic shapes |
|
typedef std::map<std::string, MatShape>::iterator IterShape_t; |
|
|
|
std::map<std::string, LayerInfo> layer_id; |
|
typedef std::map<std::string, LayerInfo>::iterator IterLayerId_t; |
|
|
|
void handleNode(const opencv_onnx::NodeProto& node_proto); |
|
|
|
private: |
|
friend class ONNXLayerHandler; |
|
typedef void (ONNXImporter::*ONNXImporterNodeParser)(LayerParams& layerParams, const opencv_onnx::NodeProto& node_proto); |
|
typedef std::map<std::string, ONNXImporterNodeParser> DispatchMap; |
|
|
|
const DispatchMap dispatch; |
|
static const DispatchMap buildDispatchMap(); |
|
|
|
void parseArg (LayerParams& layerParams, const opencv_onnx::NodeProto& node_proto); |
|
void parseMaxUnpool (LayerParams& layerParams, const opencv_onnx::NodeProto& node_proto); |
|
void parseMaxPool (LayerParams& layerParams, const opencv_onnx::NodeProto& node_proto); |
|
void parseAveragePool (LayerParams& layerParams, const opencv_onnx::NodeProto& node_proto); |
|
void parseReduce (LayerParams& layerParams, const opencv_onnx::NodeProto& node_proto); |
|
void parseSlice (LayerParams& layerParams, const opencv_onnx::NodeProto& node_proto); |
|
void parseSplit (LayerParams& layerParams, const opencv_onnx::NodeProto& node_proto); |
|
void parseBias (LayerParams& layerParams, const opencv_onnx::NodeProto& node_proto); |
|
void parsePow (LayerParams& layerParams, const opencv_onnx::NodeProto& node_proto); |
|
void parseMinMax (LayerParams& layerParams, const opencv_onnx::NodeProto& node_proto); |
|
void parseNeg (LayerParams& layerParams, const opencv_onnx::NodeProto& node_proto); |
|
void parseConstant (LayerParams& layerParams, const opencv_onnx::NodeProto& node_proto); |
|
void parseLSTM (LayerParams& layerParams, const opencv_onnx::NodeProto& node_proto); |
|
void parseGRU (LayerParams& layerParams, const opencv_onnx::NodeProto& node_proto); |
|
void parseImageScaler (LayerParams& layerParams, const opencv_onnx::NodeProto& node_proto); |
|
void parseClip (LayerParams& layerParams, const opencv_onnx::NodeProto& node_proto); |
|
void parseLeakyRelu (LayerParams& layerParams, const opencv_onnx::NodeProto& node_proto); |
|
void parseRelu (LayerParams& layerParams, const opencv_onnx::NodeProto& node_proto); |
|
void parseElu (LayerParams& layerParams, const opencv_onnx::NodeProto& node_proto); |
|
void parseTanh (LayerParams& layerParams, const opencv_onnx::NodeProto& node_proto); |
|
void parseAbs (LayerParams& layerParams, const opencv_onnx::NodeProto& node_proto); |
|
void parseCompare (LayerParams& layerParams, const opencv_onnx::NodeProto& node_proto); |
|
void parsePRelu (LayerParams& layerParams, const opencv_onnx::NodeProto& node_proto); |
|
void parseLRN (LayerParams& layerParams, const opencv_onnx::NodeProto& node_proto); |
|
void parseInstanceNormalization(LayerParams& layerParams, const opencv_onnx::NodeProto& node_proto); |
|
void parseBatchNormalization (LayerParams& layerParams, const opencv_onnx::NodeProto& node_proto); |
|
void parseGemm (LayerParams& layerParams, const opencv_onnx::NodeProto& node_proto); |
|
void parseMatMul (LayerParams& layerParams, const opencv_onnx::NodeProto& node_proto); |
|
void parseMul (LayerParams& layerParams, const opencv_onnx::NodeProto& node_proto); |
|
void parseConv (LayerParams& layerParams, const opencv_onnx::NodeProto& node_proto); |
|
void parseConvTranspose (LayerParams& layerParams, const opencv_onnx::NodeProto& node_proto); |
|
void parseTranspose (LayerParams& layerParams, const opencv_onnx::NodeProto& node_proto); |
|
void parseSqueeze (LayerParams& layerParams, const opencv_onnx::NodeProto& node_proto); |
|
void parseFlatten (LayerParams& layerParams, const opencv_onnx::NodeProto& node_proto); |
|
void parseUnsqueeze (LayerParams& layerParams, const opencv_onnx::NodeProto& node_proto); |
|
void parseExpand (LayerParams& layerParams, const opencv_onnx::NodeProto& node_proto); |
|
void parseReshape (LayerParams& layerParams, const opencv_onnx::NodeProto& node_proto); |
|
void parsePad (LayerParams& layerParams, const opencv_onnx::NodeProto& node_proto); |
|
void parseShape (LayerParams& layerParams, const opencv_onnx::NodeProto& node_proto); |
|
void parseCast (LayerParams& layerParams, const opencv_onnx::NodeProto& node_proto); |
|
void parseConstantFill (LayerParams& layerParams, const opencv_onnx::NodeProto& node_proto); |
|
void parseGather (LayerParams& layerParams, const opencv_onnx::NodeProto& node_proto); |
|
void parseConcat (LayerParams& layerParams, const opencv_onnx::NodeProto& node_proto); |
|
void parseResize (LayerParams& layerParams, const opencv_onnx::NodeProto& node_proto); |
|
void parseUpsample (LayerParams& layerParams, const opencv_onnx::NodeProto& node_proto); |
|
void parseSoftMax (LayerParams& layerParams, const opencv_onnx::NodeProto& node_proto); |
|
void parseDetectionOutput (LayerParams& layerParams, const opencv_onnx::NodeProto& node_proto); |
|
void parseCumSum (LayerParams& layerParams, const opencv_onnx::NodeProto& node_proto); |
|
void parseQuantDequant (LayerParams& layerParams, const opencv_onnx::NodeProto& node_proto); |
|
void parseQConv (LayerParams& layerParams, const opencv_onnx::NodeProto& node_proto); |
|
void parseQMatMul (LayerParams& layerParams, const opencv_onnx::NodeProto& node_proto); |
|
void parseQEltwise (LayerParams& layerParams, const opencv_onnx::NodeProto& node_proto); |
|
void parseQLeakyRelu (LayerParams& layerParams, const opencv_onnx::NodeProto& node_proto); |
|
void parseQSigmoid (LayerParams& layerParams, const opencv_onnx::NodeProto& node_proto); |
|
void parseQAvgPool (LayerParams& layerParams, const opencv_onnx::NodeProto& node_proto); |
|
void parseQConcat (LayerParams& layerParams, const opencv_onnx::NodeProto& node_proto); |
|
|
|
void parseCustomLayer (LayerParams& layerParams, const opencv_onnx::NodeProto& node_proto); |
|
}; |
|
|
|
class ONNXLayerHandler : public detail::LayerHandler |
|
{ |
|
public: |
|
explicit ONNXLayerHandler(ONNXImporter* importer_); |
|
|
|
void fillRegistry(const opencv_onnx::GraphProto& net); |
|
|
|
protected: |
|
ONNXImporter* importer; |
|
}; |
|
|
|
ONNXLayerHandler::ONNXLayerHandler(ONNXImporter* importer_) : importer(importer_){} |
|
|
|
void ONNXLayerHandler::fillRegistry(const opencv_onnx::GraphProto &net) |
|
{ |
|
int layersSize = net.node_size(); |
|
for (int li = 0; li < layersSize; li++) { |
|
const opencv_onnx::NodeProto &node_proto = net.node(li); |
|
const std::string& name = node_proto.output(0); |
|
const std::string& type = node_proto.op_type(); |
|
if (importer->dispatch.find(type) == importer->dispatch.end()) |
|
{ |
|
addMissing(name, type); |
|
} |
|
} |
|
printMissing(); |
|
} |
|
|
|
ONNXImporter::ONNXImporter(Net& net, const char *onnxFile) |
|
: layerHandler(DNN_DIAGNOSTICS_RUN ? new ONNXLayerHandler(this) : nullptr), |
|
dstNet(net), dispatch(buildDispatchMap()) |
|
{ |
|
hasDynamicShapes = false; |
|
CV_Assert(onnxFile); |
|
CV_LOG_DEBUG(NULL, "DNN/ONNX: processing ONNX model from file: " << onnxFile); |
|
|
|
std::fstream input(onnxFile, std::ios::in | std::ios::binary); |
|
if (!input) |
|
{ |
|
CV_Error(Error::StsBadArg, cv::format("Can't read ONNX file: %s", onnxFile)); |
|
} |
|
|
|
if (!model_proto.ParseFromIstream(&input)) |
|
{ |
|
CV_Error(Error::StsUnsupportedFormat, cv::format("Failed to parse ONNX model: %s", onnxFile)); |
|
} |
|
|
|
populateNet(); |
|
} |
|
|
|
ONNXImporter::ONNXImporter(Net& net, const char* buffer, size_t sizeBuffer) |
|
: layerHandler(DNN_DIAGNOSTICS_RUN ? new ONNXLayerHandler(this) : nullptr), dstNet(net), dispatch(buildDispatchMap()) |
|
{ |
|
hasDynamicShapes = false; |
|
CV_LOG_DEBUG(NULL, "DNN/ONNX: processing in-memory ONNX model (" << sizeBuffer << " bytes)"); |
|
|
|
struct _Buf : public std::streambuf |
|
{ |
|
_Buf(const char* buffer, size_t sizeBuffer) |
|
{ |
|
char* p = const_cast<char*>(buffer); |
|
setg(p, p, p + sizeBuffer); |
|
} |
|
}; |
|
|
|
_Buf buf(buffer, sizeBuffer); |
|
std::istream input(&buf); |
|
|
|
if (!model_proto.ParseFromIstream(&input)) |
|
CV_Error(Error::StsUnsupportedFormat, "Failed to parse onnx model from in-memory byte array."); |
|
|
|
populateNet(); |
|
} |
|
|
|
inline void replaceLayerParam(LayerParams& layerParams, const String& oldKey, const String& newKey) |
|
{ |
|
if (layerParams.has(oldKey)) { |
|
layerParams.set(newKey, layerParams.get(oldKey)); |
|
layerParams.erase(oldKey); |
|
} |
|
} |
|
|
|
void releaseONNXTensor(opencv_onnx::TensorProto& tensor_proto) |
|
{ |
|
if (!tensor_proto.raw_data().empty()) { |
|
delete tensor_proto.release_raw_data(); |
|
} |
|
} |
|
|
|
void runLayer(LayerParams& params, const std::vector<Mat>& inputs, |
|
std::vector<Mat>& outputs) |
|
{ |
|
Ptr<Layer> layer = LayerFactory::createLayerInstance(params.type, params); |
|
CV_Assert((bool)layer); |
|
|
|
std::vector<MatShape> inpShapes(inputs.size()); |
|
int ddepth = params.get<int>("depth", CV_32F); |
|
for (size_t i = 0; i < inputs.size(); ++i) |
|
{ |
|
inpShapes[i] = shape(inputs[i]); |
|
if (i > 0 && ddepth != inputs[i].depth()) |
|
CV_Error(Error::StsNotImplemented, "Mixed input data types."); |
|
ddepth = inputs[i].depth(); |
|
} |
|
|
|
std::vector<MatShape> outShapes, internalShapes; |
|
layer->getMemoryShapes(inpShapes, 0, outShapes, internalShapes); |
|
|
|
std::vector<Mat> internals(internalShapes.size()); |
|
outputs.resize(outShapes.size()); |
|
for (size_t i = 0; i < outShapes.size(); ++i) |
|
outputs[i].create(outShapes[i], ddepth); |
|
for (size_t i = 0; i < internalShapes.size(); ++i) |
|
internals[i].create(internalShapes[i], ddepth); |
|
|
|
layer->finalize(inputs, outputs); |
|
layer->forward(inputs, outputs, internals); |
|
} |
|
|
|
std::map<std::string, Mat> ONNXImporter::getGraphTensors( |
|
const opencv_onnx::GraphProto& graph_proto) |
|
{ |
|
opencv_onnx::TensorProto tensor_proto; |
|
std::map<std::string, Mat> layers_weights; |
|
|
|
for (int i = 0; i < graph_proto.initializer_size(); i++) |
|
{ |
|
tensor_proto = graph_proto.initializer(i); |
|
Mat mat = getMatFromTensor(tensor_proto); |
|
releaseONNXTensor(tensor_proto); |
|
|
|
if (DNN_DIAGNOSTICS_RUN && mat.empty()) |
|
continue; |
|
|
|
layers_weights.insert(std::make_pair(tensor_proto.name(), mat)); |
|
} |
|
return layers_weights; |
|
} |
|
|
|
static DictValue parse(const ::google::protobuf::RepeatedField< ::google::protobuf::int64>& src) { |
|
std::vector<int32_t> dst(src.size()); |
|
convertInt64ToInt32(src, dst, src.size()); |
|
return DictValue::arrayInt(&dst[0], src.size()); |
|
} |
|
|
|
static DictValue parseStr(const ::google::protobuf::RepeatedPtrField< ::std::string>& src) { |
|
return DictValue::arrayString(src.begin(), static_cast<int>(src.size())); |
|
} |
|
|
|
LayerParams ONNXImporter::getLayerParams(const opencv_onnx::NodeProto& node_proto) |
|
{ |
|
LayerParams lp; |
|
for(int i = 0; i < node_proto.attribute_size(); i++) |
|
{ |
|
opencv_onnx::AttributeProto attribute_proto = node_proto.attribute(i); |
|
std::string attribute_name = attribute_proto.name(); |
|
|
|
try |
|
{ |
|
if(attribute_name == "kernel_shape") |
|
{ |
|
CV_Assert(attribute_proto.ints_size() == 1 || attribute_proto.ints_size() == 2 || attribute_proto.ints_size() == 3); |
|
lp.set("kernel_size", parse(attribute_proto.ints())); |
|
} |
|
else if(attribute_name == "strides") |
|
{ |
|
CV_Assert(attribute_proto.ints_size() == 1 || attribute_proto.ints_size() == 2 || attribute_proto.ints_size() == 3); |
|
lp.set("stride", parse(attribute_proto.ints())); |
|
} |
|
else if(attribute_name == "pads") |
|
{ |
|
if (node_proto.op_type() == "Pad") |
|
{ |
|
// Padding layer. |
|
// Paddings are in order begin0, begin1, .. beginN, end0, end1, ..., endN. |
|
// We need to shuffle it to begin0, end0, begin1, end1, ... |
|
CV_Assert(attribute_proto.ints_size() % 2 == 0); |
|
const int dims = attribute_proto.ints_size() / 2; |
|
std::vector<int32_t> paddings; |
|
paddings.reserve(attribute_proto.ints_size()); |
|
for (int i = 0; i < dims; ++i) |
|
{ |
|
paddings.push_back(attribute_proto.ints(i)); |
|
paddings.push_back(attribute_proto.ints(dims + i)); |
|
} |
|
lp.set("paddings", DictValue::arrayInt(&paddings[0], paddings.size())); |
|
} |
|
else |
|
{ |
|
// Convolution or pooling. |
|
CV_Assert(attribute_proto.ints_size() == 2 || attribute_proto.ints_size() == 4 || attribute_proto.ints_size() == 6); |
|
lp.set("pad", parse(attribute_proto.ints())); |
|
} |
|
} |
|
else if(attribute_name == "auto_pad") |
|
{ |
|
if (attribute_proto.s() == "SAME_UPPER" || attribute_proto.s() == "SAME_LOWER") { |
|
lp.set("pad_mode", "SAME"); |
|
} |
|
else if (attribute_proto.s() == "VALID") { |
|
lp.set("pad_mode", "VALID"); |
|
} |
|
} |
|
else if(attribute_name == "dilations") |
|
{ |
|
CV_Assert(attribute_proto.ints_size() == 1 || attribute_proto.ints_size() == 2 || attribute_proto.ints_size() == 3); |
|
lp.set("dilation", parse(attribute_proto.ints())); |
|
} |
|
else if(attribute_name == "activations" && node_proto.op_type() == "LSTM") |
|
{ |
|
lp.set(attribute_name, parseStr(attribute_proto.strings())); |
|
} |
|
else if (attribute_proto.has_i()) |
|
{ |
|
::google::protobuf::int64 src = attribute_proto.i(); |
|
if (src < std::numeric_limits<int32_t>::min() || src > std::numeric_limits<int32_t>::max()) |
|
CV_Error(Error::StsOutOfRange, "Input is out of OpenCV 32S range"); |
|
else |
|
lp.set(attribute_name, saturate_cast<int32_t>(src)); |
|
} |
|
else if (attribute_proto.has_f()) |
|
{ |
|
lp.set(attribute_name, attribute_proto.f()); |
|
} |
|
else if (attribute_proto.has_s()) |
|
{ |
|
lp.set(attribute_name, attribute_proto.s()); |
|
} |
|
else if (attribute_proto.floats_size() > 0) |
|
{ |
|
lp.set(attribute_name, DictValue::arrayReal( |
|
attribute_proto.floats().data(), attribute_proto.floats_size())); |
|
} |
|
else if (attribute_proto.ints_size() > 0) |
|
{ |
|
lp.set(attribute_name, parse(attribute_proto.ints())); |
|
} |
|
else if (attribute_proto.has_t()) |
|
{ |
|
opencv_onnx::TensorProto tensor = attribute_proto.t(); |
|
Mat blob = getMatFromTensor(tensor); |
|
lp.blobs.push_back(blob); |
|
} |
|
else if (attribute_proto.has_g()) |
|
{ |
|
CV_Error(Error::StsNotImplemented, cv::format("DNN/ONNX/Attribute[%s]: 'Graph' is not supported", attribute_name.c_str())); |
|
} |
|
else if (attribute_proto.graphs_size() > 0) |
|
{ |
|
CV_Error(Error::StsNotImplemented, |
|
cv::format("DNN/ONNX/Attribute[%s]: 'Graphs' (%d) in attributes is not supported", |
|
attribute_name.c_str(), attribute_proto.graphs_size()) |
|
); |
|
} |
|
else if (attribute_proto.strings_size() > 0) |
|
{ |
|
std::string msg = cv::format("DNN/ONNX/Attribute[%s]: 'Strings' (%d) are not supported", |
|
attribute_name.c_str(), attribute_proto.strings_size()); |
|
CV_LOG_ERROR(NULL, msg); |
|
for (int i = 0; i < attribute_proto.strings_size(); i++) |
|
{ |
|
CV_LOG_ERROR(NULL, " Attribute[" << attribute_name << "].string(" << i << ") = '" << attribute_proto.strings(i) << "'"); |
|
} |
|
CV_Error(Error::StsNotImplemented, msg); |
|
} |
|
else if (attribute_proto.tensors_size() > 0) |
|
{ |
|
CV_Error(Error::StsNotImplemented, |
|
cv::format("DNN/ONNX/Attribute[%s]: 'Tensors' (%d) in attributes are not supported", |
|
attribute_name.c_str(), attribute_proto.tensors_size()) |
|
); |
|
} |
|
else |
|
{ |
|
CV_Error(Error::StsNotImplemented, cv::format("DNN/ONNX/Attribute[%s]: unsupported attribute format", attribute_name.c_str())); |
|
} |
|
} |
|
catch (const cv::Exception& e) |
|
{ |
|
CV_UNUSED(e); |
|
if (DNN_DIAGNOSTICS_RUN) |
|
{ |
|
CV_LOG_ERROR(NULL, "DNN/ONNX: Potential problem with processing attributes for node " << node_proto.name() << " Attribute " << attribute_name.c_str() |
|
); |
|
continue; |
|
} |
|
throw; |
|
} |
|
} |
|
return lp; |
|
} |
|
|
|
Mat ONNXImporter::getBlob(const opencv_onnx::NodeProto& node_proto, int index) |
|
{ |
|
CV_Assert(index < node_proto.input_size()); |
|
const std::string& input_name = node_proto.input(index); |
|
return getBlob(input_name); |
|
} |
|
|
|
Mat ONNXImporter::getBlob(const std::string& input_name) |
|
{ |
|
std::map<std::string, Mat>::const_iterator constBlob = constBlobs.find(input_name); |
|
if (constBlob == constBlobs.end()) |
|
{ |
|
CV_Error(Error::StsBadArg, std::string("Blob ") + input_name + " not found in const blobs"); |
|
} |
|
return constBlob->second; |
|
} |
|
|
|
void ONNXImporter::addLayer(LayerParams& layerParams, |
|
const opencv_onnx::NodeProto& node_proto) |
|
{ |
|
int depth = layerParams.get<int>("depth", CV_32F); |
|
int id = dstNet.addLayer(layerParams.name, layerParams.type, depth, layerParams); |
|
for (int i = 0; i < node_proto.output_size(); ++i) |
|
{ |
|
layer_id.insert(std::make_pair(node_proto.output(i), LayerInfo(id, i))); |
|
} |
|
|
|
std::vector<MatShape> layerInpShapes, layerOutShapes, layerInternalShapes; |
|
int inpNum = 0; |
|
for (int j = 0; j < node_proto.input_size(); j++) |
|
{ |
|
const std::string& input_name = node_proto.input(j); |
|
IterLayerId_t layerId = layer_id.find(input_name); |
|
if (layerId != layer_id.end()) { |
|
dstNet.connect(layerId->second.layerId, layerId->second.outputId, id, inpNum); |
|
++inpNum; |
|
// Collect input shapes. |
|
IterShape_t shapeIt = outShapes.find(input_name); |
|
CV_Assert(shapeIt != outShapes.end()); |
|
layerInpShapes.push_back(shapeIt->second); |
|
} |
|
} |
|
// Compute shape of output blob for this layer. |
|
Ptr<Layer> layer = dstNet.getLayer(id); // FIXIT: avoid instantiation of layers during the import stage |
|
layer->getMemoryShapes(layerInpShapes, 0, layerOutShapes, layerInternalShapes); |
|
for (int i = 0; i < node_proto.output_size() && i < (int)layerOutShapes.size(); ++i) |
|
{ |
|
outShapes[node_proto.output(i)] = layerOutShapes[i]; |
|
} |
|
} |
|
|
|
/** @brief Make N copies of input layer and set them as input to node_proto. |
|
* @param prefix prefix of new layers' names |
|
* @param node_proto node which will contain all copies as inputs |
|
* @param input name of the node to copy |
|
* @param n number of copies |
|
*/ |
|
void ONNXImporter::expandMid(const std::string& prefix, opencv_onnx::NodeProto& node_proto, |
|
const std::string& input, size_t n) |
|
{ |
|
std::vector<std::string> input_names; |
|
input_names.reserve(n); |
|
for (size_t j = 0; j < n; j++) |
|
{ |
|
LayerParams copyLP; |
|
copyLP.name = format("%s/copy_%zu", prefix.c_str(), j); |
|
copyLP.type = "Identity"; |
|
CV_Assert((layer_id.find(copyLP.name) == layer_id.end()) && |
|
"Couldn't copy the node: generated name already exists in the graph."); |
|
input_names.push_back(copyLP.name); |
|
|
|
node_proto.set_input(0, input); |
|
node_proto.set_output(0, copyLP.name); |
|
addLayer(copyLP, node_proto); |
|
} |
|
node_proto.clear_input(); |
|
for (size_t i = 0; i < input_names.size(); i++) |
|
{ |
|
node_proto.add_input(input_names[i]); |
|
} |
|
} |
|
|
|
/** @brief Multiply one of node_proto inputs by -1 |
|
* @param layerParams parameters of the node |
|
* @param node_proto node which input will be replaced |
|
* @param input_id id of input to be multiplied by -1 |
|
*/ |
|
void ONNXImporter::addNegation(const LayerParams& layerParams, opencv_onnx::NodeProto& node_proto, int input_id) |
|
{ |
|
LayerParams powerParams; |
|
powerParams.name = layerParams.name + "/neg"; |
|
powerParams.type = "Power"; |
|
powerParams.set("scale", -1.f); |
|
|
|
//Create Power layer |
|
int id = dstNet.addLayer(powerParams.name, powerParams.type, powerParams); |
|
//Connect to input |
|
IterLayerId_t layerId = layer_id.find(node_proto.input(input_id)); |
|
CV_Assert(layerId != layer_id.end()); |
|
dstNet.connect(layerId->second.layerId, layerId->second.outputId, id, 0); |
|
//Add shape |
|
layer_id.insert(std::make_pair(powerParams.name, LayerInfo(id, 0))); |
|
outShapes[powerParams.name] = outShapes[node_proto.input(input_id)]; |
|
|
|
//Replace input to Power |
|
node_proto.set_input(input_id, powerParams.name); |
|
} |
|
|
|
void ONNXImporter::addConstant(const std::string& name, const Mat& blob) |
|
{ |
|
constBlobs.insert(std::make_pair(name, blob)); |
|
outShapes.insert(std::make_pair(name, shape(blob))); |
|
} |
|
|
|
void ONNXImporter::handleQuantizedNode(LayerParams& layerParams, |
|
const opencv_onnx::NodeProto& node_proto) |
|
{ |
|
// Quantized nodes have output names ending with 'quantized' |
|
std::string outName = node_proto.output(0); |
|
int len = outName.length(); |
|
if (len <= 9) |
|
return; |
|
|
|
if (outName.substr(len - 9) == "quantized") |
|
{ |
|
outName = outName.substr(0, len - 9); |
|
Mat scale, zeropoint; |
|
|
|
if (constBlobs.find(outName + "scale") != constBlobs.end() && |
|
constBlobs.find(outName + "zero_point") != constBlobs.end()) |
|
{ |
|
scale = getBlob(outName + "scale"); |
|
zeropoint = getBlob(outName + "zero_point"); |
|
} |
|
else |
|
{ |
|
std::string inpName = node_proto.input(0); |
|
inpName = inpName.substr(0, inpName.length() - 9); |
|
scale = getBlob(inpName + "scale"); |
|
zeropoint = getBlob(inpName + "zero_point"); |
|
|
|
for (int i = 0; i < node_proto.output_size(); i++) |
|
{ |
|
std::string out = node_proto.output(i); |
|
out = out.substr(0, out.length() - 9); |
|
addConstant(out + "scale", scale); |
|
addConstant(out + "zero_point", zeropoint); |
|
} |
|
} |
|
|
|
if (scale.total() != 1 || zeropoint.total() != 1) |
|
CV_Error(Error::StsNotImplemented, "Per-channel scales/zeropoints are not supported"); |
|
|
|
layerParams.set("depth", CV_8S); |
|
layerParams.set("scales", DictValue::arrayReal(scale.ptr<float>(), 1)); |
|
layerParams.set("zeropoints", DictValue::arrayInt(zeropoint.ptr<int8_t>(), 1)); |
|
} |
|
} |
|
|
|
void ONNXImporter::populateNet() |
|
{ |
|
CV_Assert(model_proto.has_graph()); |
|
graph_proto = model_proto.graph(); |
|
|
|
std::string framework_version; |
|
if (model_proto.has_producer_name()) |
|
framework_name = model_proto.producer_name(); |
|
if (model_proto.has_producer_version()) |
|
framework_version = model_proto.producer_version(); |
|
|
|
CV_LOG_INFO(NULL, "DNN/ONNX: loading ONNX" |
|
<< (model_proto.has_ir_version() ? cv::format(" v%d", (int)model_proto.ir_version()) : cv::String()) |
|
<< " model produced by '" << framework_name << "'" |
|
<< (framework_version.empty() ? cv::String() : cv::format(":%s", framework_version.c_str())) |
|
<< ". Number of nodes = " << graph_proto.node_size() |
|
<< ", inputs = " << graph_proto.input_size() |
|
<< ", outputs = " << graph_proto.output_size() |
|
); |
|
|
|
simplifySubgraphs(graph_proto); |
|
|
|
const int layersSize = graph_proto.node_size(); |
|
CV_LOG_DEBUG(NULL, "DNN/ONNX: graph simplified to " << layersSize << " nodes"); |
|
|
|
constBlobs = getGraphTensors(graph_proto); |
|
// Add all the inputs shapes. It includes as constant blobs as network's inputs shapes. |
|
for (int i = 0; i < graph_proto.input_size(); ++i) |
|
{ |
|
const opencv_onnx::ValueInfoProto& valueInfoProto = graph_proto.input(i); |
|
CV_Assert(valueInfoProto.has_name()); |
|
CV_Assert(valueInfoProto.has_type()); |
|
opencv_onnx::TypeProto typeProto = valueInfoProto.type(); |
|
CV_Assert(typeProto.has_tensor_type()); |
|
opencv_onnx::TypeProto::Tensor tensor = typeProto.tensor_type(); |
|
CV_Assert(tensor.has_shape()); |
|
opencv_onnx::TensorShapeProto tensorShape = tensor.shape(); |
|
|
|
MatShape inpShape(tensorShape.dim_size()); |
|
for (int j = 0; j < inpShape.size(); ++j) |
|
{ |
|
inpShape[j] = tensorShape.dim(j).dim_value(); |
|
// NHW, NCHW(NHWC), NCDHW(NDHWC); do not set this flag if only N is dynamic |
|
if (!tensorShape.dim(j).dim_param().empty() && !(j == 0 && inpShape.size() >= 3)) |
|
hasDynamicShapes = true; |
|
} |
|
if (!inpShape.empty() && !hasDynamicShapes) |
|
{ |
|
inpShape[0] = std::max(inpShape[0], 1); // It's OK to have undetermined batch size |
|
} |
|
outShapes[valueInfoProto.name()] = inpShape; |
|
} |
|
|
|
// create map with network inputs (without const blobs) |
|
// fill map: push layer name, layer id and output id |
|
std::vector<String> netInputs; |
|
for (int j = 0; j < graph_proto.input_size(); j++) |
|
{ |
|
const std::string& name = graph_proto.input(j).name(); |
|
if (constBlobs.find(name) == constBlobs.end()) { |
|
netInputs.push_back(name); |
|
layer_id.insert(std::make_pair(name, LayerInfo(0, netInputs.size() - 1))); |
|
} |
|
} |
|
dstNet.setInputsNames(netInputs); |
|
|
|
if (DNN_DIAGNOSTICS_RUN) { |
|
CV_LOG_INFO(NULL, "DNN/ONNX: start diagnostic run!"); |
|
layerHandler->fillRegistry(graph_proto); |
|
} |
|
|
|
for(int li = 0; li < layersSize; li++) |
|
{ |
|
const opencv_onnx::NodeProto& node_proto = graph_proto.node(li); |
|
handleNode(node_proto); |
|
} |
|
|
|
CV_LOG_DEBUG(NULL, (DNN_DIAGNOSTICS_RUN ? "DNN/ONNX: diagnostic run completed!" : "DNN/ONNX: import completed!")); |
|
} |
|
|
|
void ONNXImporter::handleNode(const opencv_onnx::NodeProto& node_proto) |
|
{ |
|
CV_Assert(node_proto.output_size() >= 1); |
|
std::string name = node_proto.output(0); |
|
const std::string& layer_type = node_proto.op_type(); |
|
CV_LOG_DEBUG(NULL, "DNN/ONNX: processing node with " << node_proto.input_size() << " inputs and " << node_proto.output_size() << " outputs: " |
|
<< cv::format("[%s]:(%s)", layer_type.c_str(), name.c_str()) |
|
); |
|
LayerParams layerParams; |
|
try |
|
{ |
|
// FIXIT not all cases can be repacked into "LayerParams". Importer should handle such cases directly for each "layer_type" |
|
layerParams = getLayerParams(node_proto); |
|
|
|
layerParams.name = name; |
|
layerParams.type = layer_type; |
|
layerParams.set("has_dynamic_shapes", hasDynamicShapes); |
|
|
|
handleQuantizedNode(layerParams, node_proto); |
|
|
|
DispatchMap::const_iterator iter = dispatch.find(layer_type); |
|
if (iter != dispatch.end()) |
|
{ |
|
CALL_MEMBER_FN(*this, iter->second)(layerParams, node_proto); |
|
} |
|
else |
|
{ |
|
parseCustomLayer(layerParams, node_proto); |
|
} |
|
} |
|
catch (const cv::Exception& e) |
|
{ |
|
if (DNN_DIAGNOSTICS_RUN) |
|
{ |
|
CV_LOG_ERROR(NULL, "DNN/ONNX: Potential problem during processing node with " << node_proto.input_size() << " inputs and " << node_proto.output_size() << " outputs: " |
|
<< cv::format("[%s]:(%s)", layer_type.c_str(), name.c_str()) << "\n" << e.msg |
|
); |
|
cv::AutoLock lock(getLayerFactoryMutex()); |
|
auto registeredLayers = getLayerFactoryImpl(); |
|
if (registeredLayers.find(layerParams.type) != registeredLayers.end()) |
|
{ |
|
try |
|
{ |
|
Ptr<Layer> layer = LayerFactory::createLayerInstance(layerParams.type, layerParams); |
|
} |
|
catch (const std::exception& e) |
|
{ |
|
CV_LOG_ERROR(NULL, "DNN/ONNX: Layer of type " << layerParams.type << "(" << layer_type << ") cannot be created with parameters " << layerParams << ". Error: " << e.what() |
|
); |
|
} |
|
} |
|
} |
|
else |
|
{ |
|
CV_LOG_ERROR(NULL, "DNN/ONNX: ERROR during processing node with " << node_proto.input_size() << " inputs and " << node_proto.output_size() << " outputs: " |
|
<< cv::format("[%s]:(%s)", layer_type.c_str(), name.c_str()) |
|
); |
|
} |
|
for (int i = 0; i < node_proto.input_size(); i++) |
|
{ |
|
CV_LOG_INFO(NULL, " Input[" << i << "] = '" << node_proto.input(i) << "'"); |
|
} |
|
for (int i = 0; i < node_proto.output_size(); i++) |
|
{ |
|
CV_LOG_INFO(NULL, " Output[" << i << "] = '" << node_proto.output(i) << "'"); |
|
} |
|
if (DNN_DIAGNOSTICS_RUN) |
|
{ |
|
for (int i = 0; i < node_proto.output_size(); ++i) |
|
{ |
|
layer_id.insert(std::make_pair(node_proto.output(i), LayerInfo(0, i))); |
|
outShapes[node_proto.output(i)] = outShapes[node_proto.input(0)]; |
|
} |
|
} |
|
else |
|
CV_Error(Error::StsError, cv::format("Node [%s]:(%s) parse error: %s", layer_type.c_str(), name.c_str(), e.what())); |
|
} |
|
} |
|
|
|
void ONNXImporter::parseArg(LayerParams& layerParams, const opencv_onnx::NodeProto& node_proto) |
|
{ |
|
const std::string& layer_type = node_proto.op_type(); |
|
layerParams.type = "Arg"; |
|
layerParams.set("op", layer_type == "ArgMax" ? "max" : "min"); |
|
addLayer(layerParams, node_proto); |
|
} |
|
|
|
void setCeilMode(LayerParams& layerParams) |
|
{ |
|
// auto_pad attribute is deprecated and uses ceil |
|
if (layerParams.has("pad_mode")) |
|
{ |
|
layerParams.set("ceil_mode", true); |
|
} |
|
else if (!layerParams.has("ceil_mode")) |
|
{ |
|
layerParams.set("ceil_mode", false); |
|
} |
|
} |
|
|
|
void ONNXImporter::parseMaxUnpool(LayerParams& layerParams, const opencv_onnx::NodeProto& node_proto) |
|
{ |
|
layerParams.type = "MaxUnpool"; |
|
|
|
DictValue kernel_shape = layerParams.get("kernel_size"); |
|
CV_Assert(kernel_shape.size() == 2); |
|
layerParams.set("pool_k_w", kernel_shape.get<int>(0)); |
|
layerParams.set("pool_k_h", kernel_shape.get<int>(1)); |
|
|
|
int pool_pad_w = 0, pool_pad_h = 0; |
|
if (layerParams.has("pad")) |
|
{ |
|
DictValue pads = layerParams.get("pad"); |
|
CV_CheckEQ(pads.size(), 2, ""); |
|
pool_pad_w = pads.get<int>(0); |
|
pool_pad_h = pads.get<int>(1); |
|
} |
|
layerParams.set("pool_pad_w", pool_pad_w); |
|
layerParams.set("pool_pad_h", pool_pad_h); |
|
|
|
|
|
int pool_stride_w = 1, pool_stride_h = 1; |
|
if (layerParams.has("stride")) |
|
{ |
|
DictValue strides = layerParams.get("stride"); |
|
CV_CheckEQ(strides.size(), 2, ""); |
|
pool_stride_w = strides.get<int>(0); |
|
pool_stride_h = strides.get<int>(1); |
|
} |
|
layerParams.set("pool_stride_w", pool_stride_w); |
|
layerParams.set("pool_stride_h", pool_stride_h); |
|
|
|
addLayer(layerParams, node_proto); |
|
} |
|
|
|
void ONNXImporter::parseMaxPool(LayerParams& layerParams, const opencv_onnx::NodeProto& node_proto) |
|
{ |
|
int depth = layerParams.get<int>("depth", CV_32F); |
|
layerParams.type = (depth == CV_8S) ? "PoolingInt8" : "Pooling"; |
|
layerParams.set("pool", "MAX"); |
|
setCeilMode(layerParams); |
|
addLayer(layerParams, node_proto); |
|
} |
|
|
|
void ONNXImporter::parseAveragePool(LayerParams& layerParams, const opencv_onnx::NodeProto& node_proto) |
|
{ |
|
layerParams.type = "Pooling"; |
|
layerParams.set("pool", "AVE"); |
|
setCeilMode(layerParams); |
|
layerParams.set("ave_pool_padded_area", framework_name == "pytorch"); |
|
addLayer(layerParams, node_proto); |
|
} |
|
|
|
void ONNXImporter::parseReduce(LayerParams& layerParams, const opencv_onnx::NodeProto& node_proto_) |
|
{ |
|
opencv_onnx::NodeProto node_proto = node_proto_; |
|
const std::string& layer_type = node_proto.op_type(); |
|
|
|
CV_Assert(node_proto.input_size() == 1); |
|
layerParams.type = "Pooling"; |
|
String pool; |
|
if (layer_type == "GlobalMaxPool" || layer_type == "ReduceMax") |
|
pool = "MAX"; |
|
else if (layer_type == "ReduceSum") |
|
pool = "SUM"; |
|
else |
|
pool = "AVE"; |
|
layerParams.set("pool", pool); |
|
layerParams.set("global_pooling", !layerParams.has("axes")); |
|
bool keepdims = layerParams.get<int>("keepdims", 1) == 1; |
|
if (layerParams.has("axes") && (layer_type == "ReduceMean" || layer_type == "ReduceSum" || layer_type == "ReduceMax")) |
|
{ |
|
MatShape inpShape = outShapes[node_proto.input(0)]; |
|
DictValue axes = layerParams.get("axes"); |
|
MatShape targetShape; |
|
std::vector<bool> shouldDelete(inpShape.size(), false); |
|
for (int i = 0; i < axes.size(); i++) { |
|
int axis = normalize_axis(axes.get<int>(i), inpShape.size()); |
|
shouldDelete[axis] = true; |
|
} |
|
for (int axis = 0; axis < inpShape.size(); ++axis){ |
|
if (!shouldDelete[axis]) |
|
targetShape.push_back(inpShape[axis]); |
|
else if (keepdims) |
|
targetShape.push_back(1); |
|
} |
|
|
|
if (inpShape.size() == 3 && axes.size() <= 2) |
|
{ |
|
int axis = normalize_axis(axes.get<int>(0), inpShape.size()); |
|
CV_CheckNE(axis, 0, ""); |
|
|
|
LayerParams reshapeLp; |
|
reshapeLp.name = layerParams.name + "/reshape"; |
|
reshapeLp.type = "Reshape"; |
|
CV_Assert(layer_id.find(reshapeLp.name) == layer_id.end()); |
|
reshapeLp.set("axis", 0); |
|
reshapeLp.set("num_axes", 1); |
|
int newShape[] = {1, -1}; |
|
reshapeLp.set("dim", DictValue::arrayInt(&newShape[0], 2)); |
|
|
|
opencv_onnx::NodeProto proto; |
|
proto.add_input(node_proto.input(0)); |
|
proto.add_output(reshapeLp.name); |
|
addLayer(reshapeLp, proto); |
|
|
|
LayerParams avgLp; |
|
avgLp.name = layerParams.name + "/avg"; |
|
avgLp.type = "Pooling"; |
|
CV_Assert(layer_id.find(avgLp.name) == layer_id.end()); |
|
avgLp.set("pool", pool); |
|
if (axes.size() == 2) |
|
{ |
|
CV_CheckEQ(normalize_axis(axes.get<int>(0), inpShape.size()), 1, "Unsupported mode"); |
|
CV_CheckEQ(normalize_axis(axes.get<int>(1), inpShape.size()), 2, "Unsupported mode"); |
|
avgLp.set("global_pooling", true); |
|
} |
|
else |
|
{ |
|
avgLp.set(axis == 2 ? "global_pooling_w" : "global_pooling_h", true); |
|
avgLp.set(axis == 2 ? "kernel_h" : "kernel_w", 1); |
|
} |
|
|
|
node_proto.set_input(0, reshapeLp.name); |
|
node_proto.set_output(0, avgLp.name); |
|
addLayer(avgLp, node_proto); |
|
} |
|
else |
|
{ |
|
if (inpShape.size() != 4 && inpShape.size() != 5) |
|
CV_Error(Error::StsNotImplemented, "Unsupported input shape of " + layer_type + " operation."); |
|
|
|
CV_Assert(axes.size() <= inpShape.size() - 2); |
|
std::vector<int> kernel_size(inpShape.size() - 2, 1); |
|
if (axes.size() == 1 && (normalize_axis(axes.get<int>(0), inpShape.size()) <= 1)) |
|
{ |
|
int axis = normalize_axis(axes.get<int>(0), inpShape.size()); |
|
MatShape newShape = inpShape; |
|
newShape[axis + 1] = total(newShape, axis + 1); |
|
newShape.resize(axis + 2); |
|
newShape.insert(newShape.begin(), 2 - axis, 1); |
|
|
|
LayerParams reshapeLp; |
|
reshapeLp.type = "Reshape"; |
|
reshapeLp.name = layerParams.name + "/reshape"; |
|
CV_Assert(layer_id.find(reshapeLp.name) == layer_id.end()); |
|
reshapeLp.set("dim", DictValue::arrayInt(&newShape[0], newShape.size())); |
|
|
|
node_proto.set_output(0, reshapeLp.name); |
|
addLayer(reshapeLp, node_proto); |
|
|
|
kernel_size.resize(2); |
|
kernel_size[0] = inpShape[axis]; |
|
node_proto.set_input(0, node_proto.output(0)); |
|
} |
|
else |
|
{ |
|
for (int i = 0; i < axes.size(); i++) { |
|
int axis = normalize_axis(axes.get<int>(i), inpShape.size()); |
|
CV_Assert_N(axis >= 2 + i, axis < inpShape.size()); |
|
kernel_size[axis - 2] = inpShape[axis]; |
|
} |
|
} |
|
|
|
LayerParams poolLp = layerParams; |
|
poolLp.name = layerParams.name + "/avg"; |
|
CV_Assert(layer_id.find(poolLp.name) == layer_id.end()); |
|
poolLp.set("kernel_size", DictValue::arrayInt(&kernel_size[0], kernel_size.size())); |
|
|
|
node_proto.set_output(0, poolLp.name); |
|
addLayer(poolLp, node_proto); |
|
} |
|
|
|
layerParams.type = "Reshape"; |
|
layerParams.set("dim", DictValue::arrayInt(&targetShape[0], targetShape.size())); |
|
|
|
node_proto.set_input(0, node_proto.output(0)); |
|
node_proto.set_output(0, layerParams.name); |
|
} |
|
else if (!layerParams.has("axes") && (layer_type == "ReduceMean" || layer_type == "ReduceSum" || layer_type == "ReduceMax")) |
|
{ |
|
IterShape_t shapeIt = outShapes.find(node_proto.input(0)); |
|
CV_Assert(shapeIt != outShapes.end()); |
|
const size_t dims = keepdims ? shapeIt->second.size() : 1; |
|
|
|
LayerParams reshapeLp; |
|
reshapeLp.name = layerParams.name + "/reshape"; |
|
reshapeLp.type = "Reshape"; |
|
CV_Assert(layer_id.find(reshapeLp.name) == layer_id.end()); |
|
int newShape[] = {1, 1, 1, -1}; |
|
reshapeLp.set("dim", DictValue::arrayInt(&newShape[0], 4)); |
|
|
|
opencv_onnx::NodeProto proto; |
|
proto.add_input(node_proto.input(0)); |
|
proto.add_output(reshapeLp.name); |
|
addLayer(reshapeLp, proto); |
|
|
|
LayerParams poolLp = layerParams; |
|
poolLp.name = layerParams.name + "/pool"; |
|
CV_Assert(layer_id.find(poolLp.name) == layer_id.end()); |
|
|
|
node_proto.set_input(0, reshapeLp.name); |
|
node_proto.set_output(0, poolLp.name); |
|
addLayer(poolLp, node_proto); |
|
|
|
layerParams.type = "Reshape"; |
|
std::vector<int> targetShape(dims, 1); |
|
layerParams.set("dim", DictValue::arrayInt(targetShape.data(), targetShape.size())); |
|
|
|
node_proto.set_input(0, node_proto.output(0)); |
|
node_proto.set_output(0, layerParams.name); |
|
} |
|
addLayer(layerParams, node_proto); |
|
} |
|
|
|
void ONNXImporter::parseSlice(LayerParams& layerParams, const opencv_onnx::NodeProto& node_proto) |
|
{ |
|
int axis = 0; |
|
std::vector<int> begin; |
|
std::vector<int> end; |
|
std::vector<int> steps; |
|
int inp_size = node_proto.input_size(); |
|
|
|
if (inp_size == 1) |
|
{ |
|
if (layerParams.has("axes")) { |
|
DictValue axes = layerParams.get("axes"); |
|
for (int i = 1; i < axes.size(); ++i) { |
|
CV_Assert(axes.get<int>(i - 1) == axes.get<int>(i) - 1); |
|
} |
|
axis = axes.get<int>(0); |
|
} |
|
|
|
DictValue starts = layerParams.get("starts"); |
|
DictValue ends = layerParams.get("ends"); |
|
CV_Assert(starts.size() == ends.size()); |
|
|
|
if (axis > 0) { |
|
begin.resize(axis, 0); |
|
end.resize(axis, -1); |
|
} |
|
for (int i = 0; i < starts.size(); ++i) |
|
{ |
|
begin.push_back(starts.get<int>(i)); |
|
int finish = ends.get<int>(i); |
|
end.push_back((finish < 0) ? --finish : finish); // numpy doesn't include last dim |
|
} |
|
} else { // inp_size > 1 |
|
CV_Assert(inp_size >= 3); |
|
for (int i = 1; i < inp_size; i++) { |
|
CV_Assert(constBlobs.find(node_proto.input(i)) != constBlobs.end()); |
|
} |
|
Mat start_blob = getBlob(node_proto, 1); |
|
Mat end_blob = getBlob(node_proto, 2); |
|
CV_Assert(start_blob.total() == end_blob.total()); |
|
|
|
if (inp_size > 3) { |
|
Mat axes_blob = getBlob(node_proto, 3); |
|
const int* axes = (int*)axes_blob.data; |
|
for (int i = 1; i < axes_blob.total(); ++i) { |
|
CV_Assert(axes[i - 1] == axes[i] - 1); |
|
} |
|
axis = axes[0]; |
|
} |
|
|
|
const int* starts = start_blob.ptr<int>(); |
|
const int* ends = end_blob.ptr<int>(); |
|
if (axis > 0) { |
|
begin.resize(axis, 0); |
|
end.resize(axis, -1); |
|
} |
|
std::copy(starts, starts + start_blob.total(), std::back_inserter(begin)); |
|
for (int i = 0; i < end_blob.total(); ++i) |
|
{ |
|
int finish = ends[i]; |
|
end.push_back((finish < 0) ? --finish : finish); // numpy doesn't include last dim |
|
} |
|
|
|
if (inp_size == 5) { |
|
CV_Assert(constBlobs.find(node_proto.input(4)) != constBlobs.end()); |
|
Mat step_blob = getBlob(node_proto, 4); |
|
const int* steps_ptr = step_blob.ptr<int>(); |
|
|
|
if (axis > 0) |
|
steps.resize(axis, 1); |
|
|
|
std::copy(steps_ptr, steps_ptr + step_blob.total(), std::back_inserter(steps)); |
|
|
|
// Very strange application for Slice op with tensor reversing. |
|
// We just workaround it for 2d constants. |
|
if (constBlobs.find(node_proto.input(0)) != constBlobs.end() && |
|
axis == 0 && |
|
start_blob.at<int>(0) == -1 && step_blob.at<int>(0) == -1 && |
|
end_blob.at<int>(0) == std::numeric_limits<int32_t>::min()) |
|
{ |
|
Mat inp = getBlob(node_proto, 0); |
|
if (inp.dims == 2) |
|
{ |
|
Mat flipped; |
|
flip(inp, flipped, 0); |
|
addConstant(layerParams.name, flipped); |
|
return; |
|
} |
|
} |
|
} |
|
} |
|
layerParams.set("begin", DictValue::arrayInt(&begin[0], begin.size())); |
|
layerParams.set("end", DictValue::arrayInt(&end[0], end.size())); |
|
layerParams.set("axis", axis); |
|
|
|
if (!steps.empty()) |
|
layerParams.set("steps", DictValue::arrayInt(&steps[0], steps.size())); |
|
|
|
if (constBlobs.find(node_proto.input(0)) != constBlobs.end()) |
|
{ |
|
Mat inp = getBlob(node_proto, 0); |
|
std::vector<Mat> inputs, sliced; |
|
inputs.push_back(inp); |
|
runLayer(layerParams, inputs, sliced); |
|
CV_Assert(sliced.size() == 1); |
|
addConstant(layerParams.name, sliced[0]); |
|
return; |
|
} |
|
addLayer(layerParams, node_proto); |
|
} |
|
|
|
void ONNXImporter::parseSplit(LayerParams& layerParams, const opencv_onnx::NodeProto& node_proto) |
|
{ |
|
if (layerParams.has("split")) |
|
{ |
|
DictValue splits = layerParams.get("split"); |
|
const int numSplits = splits.size(); |
|
CV_Assert(numSplits > 1); |
|
|
|
std::vector<int> slicePoints(numSplits - 1, splits.get<int>(0)); |
|
for (int i = 1; i < splits.size() - 1; ++i) |
|
{ |
|
slicePoints[i] = slicePoints[i - 1] + splits.get<int>(i); |
|
} |
|
layerParams.set("slice_point", DictValue::arrayInt(&slicePoints[0], slicePoints.size())); |
|
} |
|
else |
|
{ |
|
layerParams.set("num_split", node_proto.output_size()); |
|
} |
|
int depth = layerParams.get<int>("depth", CV_32F); |
|
layerParams.type = (depth == CV_8S) ? "SliceInt8" : "Slice"; |
|
layerParams.set("axis", layerParams.get<float>("axis", 0)); |
|
addLayer(layerParams, node_proto); |
|
} |
|
|
|
void ONNXImporter::parseBias(LayerParams& layerParams, const opencv_onnx::NodeProto& node_proto_) |
|
{ |
|
opencv_onnx::NodeProto node_proto = node_proto_; |
|
const std::string& layer_type = node_proto.op_type(); |
|
bool isSub = layer_type == "Sub"; |
|
|
|
if (layer_type == "Sum" && node_proto.input_size() == 1) |
|
{ |
|
layerParams.type = "Identity"; |
|
addLayer(layerParams, node_proto); |
|
return; |
|
} |
|
|
|
CV_Assert((node_proto.input_size() == 2) || (layer_type == "Sum" && node_proto.input_size() > 2)); |
|
|
|
if (layer_type == "Sum" && node_proto.input_size() > 2) |
|
{ |
|
for (int i = 0; i < node_proto.input_size(); ++i) |
|
{ |
|
if (layer_id.find(node_proto.input(i)) == layer_id.end()) |
|
{ |
|
CV_Error(Error::StsNotImplemented, "Sum of constants is not implemented for inputs > 2"); |
|
} |
|
} |
|
} |
|
|
|
bool is_const_0 = layer_id.find(node_proto.input(0)) == layer_id.end(); |
|
bool is_const_1 = layer_id.find(node_proto.input(1)) == layer_id.end(); |
|
if (is_const_0 && is_const_1) |
|
{ |
|
Mat blob_0 = getBlob(node_proto, 0); |
|
Mat blob_1 = getBlob(node_proto, 1); |
|
CV_Assert(blob_0.size == blob_1.size); |
|
Mat output = isSub ? (blob_0 - blob_1) : (blob_0 + blob_1); |
|
addConstant(layerParams.name, output); |
|
return; |
|
} |
|
else if (is_const_0 || is_const_1) |
|
{ |
|
int const_blob_id = is_const_0 ? 0 : 1; |
|
int input_id = 1 - const_blob_id; |
|
Mat blob = getBlob(node_proto, const_blob_id); |
|
int blob_total = blob.total(); |
|
|
|
const float inputScale = isSub && is_const_0 ? -1.f : 1.f; |
|
const float constScale = isSub && is_const_1 ? -1.f : 1.f; |
|
|
|
if (blob_total == 1) { |
|
layerParams.type = "Power"; |
|
layerParams.set("scale", inputScale); |
|
layerParams.set("shift", constScale * blob.ptr<float>()[0]); |
|
} |
|
else { |
|
MatShape inpShape = outShapes[node_proto.input(input_id)]; |
|
if (shape(blob) == inpShape) |
|
{ |
|
LayerParams constParams; |
|
constParams.name = layerParams.name + "/const"; |
|
constParams.type = "Const"; |
|
constParams.blobs.push_back(blob); |
|
int id = dstNet.addLayer(constParams.name, constParams.type, constParams); |
|
layer_id.insert(std::make_pair(constParams.name, LayerInfo(id, 0))); |
|
outShapes[constParams.name] = shape(blob); |
|
|
|
layerParams.type = "Eltwise"; |
|
float coeffs[] = {1., isSub ? -1.f : 1.f}; |
|
layerParams.set("coeff", DictValue::arrayReal<float*>(coeffs, 2)); |
|
node_proto.set_input(const_blob_id, constParams.name); |
|
} |
|
else |
|
{ |
|
if (inputScale < 0.f) |
|
{ |
|
addNegation(layerParams, node_proto, input_id); |
|
} |
|
|
|
layerParams.type = "Scale"; |
|
layerParams.set("bias_term", true); |
|
int axis = 1; |
|
for (int i = 0; i < graph_proto.initializer_size(); i++) |
|
{ |
|
opencv_onnx::TensorProto tensor_proto = graph_proto.initializer(i); |
|
if (tensor_proto.name() == node_proto.input(const_blob_id)) |
|
{ |
|
axis = inpShape.size() - tensor_proto.dims_size(); |
|
break; |
|
} |
|
} |
|
layerParams.set("axis", axis); |
|
blob = blob.reshape(1, 1); |
|
layerParams.blobs.push_back(constScale * blob); |
|
} |
|
} |
|
} |
|
else if (outShapes[node_proto.input(0)] == outShapes[node_proto.input(1)]) |
|
{ |
|
layerParams.type = "Eltwise"; |
|
if (isSub) |
|
{ |
|
static float subCoeffs[] = {1.f, -1.f}; |
|
layerParams.set("coeff", DictValue::arrayReal<float*>(subCoeffs, 2)); |
|
} |
|
} |
|
else |
|
{ |
|
if (isSub) |
|
{ |
|
addNegation(layerParams, node_proto, 1); |
|
} |
|
layerParams.type = "Scale"; |
|
layerParams.set("bias_term", true); |
|
} |
|
addLayer(layerParams, node_proto); |
|
} |
|
|
|
void ONNXImporter::parsePow(LayerParams& layerParams, const opencv_onnx::NodeProto& node_proto) |
|
{ |
|
if (layer_id.find(node_proto.input(1)) != layer_id.end()) |
|
CV_Error(Error::StsNotImplemented, "Unsupported Pow op with variable power"); |
|
|
|
Mat blob = getBlob(node_proto, 1); |
|
if (blob.total() != 1) |
|
CV_Error(Error::StsNotImplemented, "Pow op supports only scalar power"); |
|
|
|
blob.convertTo(blob, CV_32F); |
|
layerParams.type = "Power"; |
|
layerParams.set("power", blob.ptr<float>()[0]); |
|
addLayer(layerParams, node_proto); |
|
} |
|
|
|
// "Min" "Max" |
|
void ONNXImporter::parseMinMax(LayerParams& layerParams, const opencv_onnx::NodeProto& node_proto) |
|
{ |
|
const std::string& layer_type = node_proto.op_type(); |
|
layerParams.type = "Eltwise"; |
|
layerParams.set("operation", layer_type == "Max" ? "max" : "min"); |
|
addLayer(layerParams, node_proto); |
|
} |
|
|
|
void ONNXImporter::parseNeg(LayerParams& layerParams, const opencv_onnx::NodeProto& node_proto) |
|
{ |
|
layerParams.type = "Power"; |
|
layerParams.set("scale", -1); |
|
addLayer(layerParams, node_proto); |
|
} |
|
|
|
void ONNXImporter::parseConstant(LayerParams& layerParams, const opencv_onnx::NodeProto& node_proto) |
|
{ |
|
CV_Assert(node_proto.input_size() == 0); |
|
CV_Assert(layerParams.blobs.size() == 1); |
|
addConstant(layerParams.name, layerParams.blobs[0]); |
|
} |
|
|
|
void ONNXImporter::parseLSTM(LayerParams& layerParams, const opencv_onnx::NodeProto& node_proto_) |
|
{ |
|
opencv_onnx::NodeProto node_proto = node_proto_; |
|
LayerParams lstmParams = layerParams; |
|
lstmParams.name += "/lstm"; |
|
|
|
// https://pytorch.org/docs/stable/nn.html#lstm |
|
CV_Assert(node_proto.input_size() >= 7); |
|
Mat Wx = getBlob(node_proto, 1); |
|
Mat Wh = getBlob(node_proto, 2); |
|
Mat b = getBlob(node_proto, 3); |
|
|
|
const int numHidden = lstmParams.get<int>("hidden_size"); |
|
const int numDirs = Wx.size[0]; // Is 1 for forward only and 2 for bidirectional LSTM. |
|
const int numFeatures = Wx.size[2]; |
|
|
|
Mat h0, c0; |
|
if (!node_proto.input(5).empty()) { |
|
h0 = getBlob(node_proto, 5); |
|
h0 = h0.reshape(1, h0.size[0] * h0.size[1]); |
|
} else { |
|
// initial_h attribute can be empty in case of keras2onnx producer. fill it with zeros |
|
h0 = Mat::zeros(numDirs * numFeatures, numHidden, CV_32FC1); |
|
} |
|
if (!node_proto.input(6).empty()) { |
|
c0 = getBlob(node_proto, 6); |
|
c0 = c0.reshape(1, c0.size[0] * c0.size[1]); |
|
} else { |
|
// initial_c attribute can be empty in case of keras2onnx producer. fill it with zeros |
|
c0 = Mat::zeros(numDirs * numFeatures, numHidden, CV_32FC1); |
|
} |
|
|
|
b = b.reshape(1, b.size[0]); |
|
Mat bx = b.colRange(0, b.cols / 2); |
|
Mat bh = b.colRange(b.cols / 2, b.cols); |
|
b = bx + bh; |
|
|
|
// IFGO->IGFO |
|
for (int k = 0; k < numDirs; ++k) |
|
{ |
|
float* WxData = Wx.ptr<float>(k); |
|
float* WhData = Wh.ptr<float>(k); |
|
float* biasData = b.ptr<float>(k); |
|
for (int j = 0; j < numHidden; ++j) |
|
{ |
|
for (int i = 0; i < numFeatures; ++i) |
|
{ |
|
std::swap(WxData[(numHidden + j) * numFeatures + i], |
|
WxData[(numHidden * 2 + j) * numFeatures + i]); |
|
} |
|
for (int i = 0; i < numHidden; ++i) |
|
{ |
|
std::swap(WhData[(numHidden + j) * numHidden + i], |
|
WhData[(numHidden * 2 + j) * numHidden + i]); |
|
} |
|
std::swap(biasData[numHidden + j], biasData[numHidden * 2 + j]); |
|
} |
|
} |
|
Wx = Wx.reshape(1, Wx.size[0] * Wx.size[1]); |
|
Wh = Wh.reshape(1, Wh.size[0] * Wh.size[1]); |
|
|
|
|
|
lstmParams.blobs.resize(5); |
|
lstmParams.blobs[0] = Wh; |
|
lstmParams.blobs[1] = Wx; |
|
lstmParams.blobs[2] = b; |
|
lstmParams.blobs[3] = h0; |
|
lstmParams.blobs[4] = c0; |
|
|
|
// read direction attribute |
|
lstmParams.set("reverse", lstmParams.get<String>("direction", "") == "reverse"); |
|
lstmParams.set("bidirectional", lstmParams.get<String>("direction", "") == "bidirectional"); |
|
|
|
node_proto.set_output(0, lstmParams.name); // set different name so output shapes will be registered on that name |
|
addLayer(lstmParams, node_proto); |
|
|
|
MatShape lstmShape = outShapes[node_proto.output(0)]; |
|
|
|
// Add fake 1 as it is done in ONNX |
|
lstmShape.insert(lstmShape.begin() + 1, 1); |
|
|
|
layerParams.type = "Reshape"; |
|
layerParams.set("dim", DictValue::arrayInt(&lstmShape[0], lstmShape.size())); |
|
node_proto.set_input(0, lstmParams.name); // redirect input to LSTM |
|
node_proto.set_output(0, layerParams.name); // keep origin LSTM's name |
|
addLayer(layerParams, node_proto); |
|
} |
|
|
|
void ONNXImporter::parseGRU(LayerParams& layerParams, const opencv_onnx::NodeProto& node_proto_) |
|
{ |
|
opencv_onnx::NodeProto node_proto = node_proto_; |
|
LayerParams gruParams = layerParams; |
|
gruParams.name += "/gru"; |
|
|
|
// https://pytorch.org/docs/stable/generated/torch.nn.GRU.html?highlight=gru# |
|
CV_Assert(node_proto.input_size() == 6); |
|
Mat Wx = getBlob(node_proto, 1); |
|
Mat Wh = getBlob(node_proto, 2); |
|
Mat b = getBlob(node_proto, 3); |
|
Mat h0 = getBlob(node_proto, 5); |
|
|
|
Wx = Wx.reshape(1, Wx.size[0] * Wx.size[1]); |
|
Wh = Wh.reshape(1, Wh.size[0] * Wh.size[1]); |
|
h0 = h0.reshape(1, h0.size[0] * h0.size[1]); |
|
b = b.reshape(1, b.size[0]); |
|
|
|
gruParams.blobs.resize(4); |
|
gruParams.blobs[0] = Wh; |
|
gruParams.blobs[1] = Wx; |
|
gruParams.blobs[2] = b; |
|
gruParams.blobs[3] = h0; |
|
gruParams.set("bidirectional", gruParams.get<String>("direction", "") == "bidirectional"); |
|
|
|
node_proto.set_output(0, gruParams.name); // set different name so output shapes will be registered on that name |
|
addLayer(gruParams, node_proto); |
|
|
|
MatShape gruShape = outShapes[node_proto.output(0)]; |
|
|
|
// Add fake 1 as it is done in ONNX |
|
gruShape.insert(gruShape.begin() + 1, 1); |
|
|
|
layerParams.type = "Reshape"; |
|
layerParams.set("dim", DictValue::arrayInt(&gruShape[0], gruShape.size())); |
|
node_proto.set_input(0, gruParams.name); // redirect input to GRU |
|
node_proto.set_output(0, layerParams.name); // keep origin GRU's name |
|
addLayer(layerParams, node_proto); |
|
} |
|
|
|
void ONNXImporter::parseImageScaler(LayerParams& layerParams, const opencv_onnx::NodeProto& node_proto) |
|
{ |
|
const float scale = layerParams.has("scale") ? layerParams.get<float>("scale") : 1.0f; |
|
layerParams.erase("scale"); |
|
|
|
if (layerParams.has("bias")) |
|
{ |
|
layerParams.type = "Scale"; |
|
layerParams.blobs.push_back( |
|
Mat(Size(1, layerParams.get("bias").size()), CV_32FC1, scale)); |
|
|
|
layerParams.set("bias_term", true); |
|
Mat bias(1, layerParams.get("bias").size(), CV_32FC1); |
|
for (int j = 0; j < bias.total(); j++) { |
|
bias.at<float>(0, j) = layerParams.get("bias").getRealValue(j); |
|
} |
|
layerParams.blobs.push_back(bias); |
|
layerParams.erase("bias"); |
|
} |
|
else { |
|
layerParams.set("scale", scale); |
|
layerParams.type = "Power"; |
|
} |
|
addLayer(layerParams, node_proto); |
|
} |
|
|
|
void ONNXImporter::parseClip(LayerParams& layerParams, const opencv_onnx::NodeProto& node_proto) |
|
{ |
|
CV_CheckEQ(node_proto.input_size(), 1, ""); |
|
layerParams.type = "ReLU6"; |
|
layerParams.set("min_value", layerParams.get<float>("min", -FLT_MAX)); |
|
layerParams.set("max_value", layerParams.get<float>("max", FLT_MAX)); |
|
addLayer(layerParams, node_proto); |
|
} |
|
|
|
void ONNXImporter::parseLeakyRelu(LayerParams& layerParams, const opencv_onnx::NodeProto& node_proto) |
|
{ |
|
layerParams.type = "ReLU"; |
|
layerParams.set("negative_slope", layerParams.get<float>("alpha", 0.01)); |
|
addLayer(layerParams, node_proto); |
|
} |
|
|
|
void ONNXImporter::parseRelu(LayerParams& layerParams, const opencv_onnx::NodeProto& node_proto) |
|
{ |
|
layerParams.type = "ReLU"; |
|
addLayer(layerParams, node_proto); |
|
} |
|
|
|
void ONNXImporter::parseElu(LayerParams& layerParams, const opencv_onnx::NodeProto& node_proto) |
|
{ |
|
layerParams.type = "ELU"; |
|
addLayer(layerParams, node_proto); |
|
} |
|
|
|
void ONNXImporter::parseTanh(LayerParams& layerParams, const opencv_onnx::NodeProto& node_proto) |
|
{ |
|
layerParams.type = "TanH"; |
|
addLayer(layerParams, node_proto); |
|
} |
|
|
|
void ONNXImporter::parseAbs(LayerParams& layerParams, const opencv_onnx::NodeProto& node_proto) |
|
{ |
|
layerParams.type = "AbsVal"; |
|
addLayer(layerParams, node_proto); |
|
} |
|
|
|
void ONNXImporter::parseCompare(LayerParams& layerParams, const opencv_onnx::NodeProto& node_proto) |
|
{ |
|
CV_Assert(node_proto.input_size() == 2); |
|
const std::string& layer_type = node_proto.op_type(); |
|
|
|
bool is_const_0 = layer_id.find(node_proto.input(0)) == layer_id.end(); |
|
bool is_const_1 = layer_id.find(node_proto.input(1)) == layer_id.end(); |
|
|
|
if (is_const_0 || is_const_1) |
|
{ |
|
Mat blob = getBlob(node_proto, static_cast<int>(is_const_1)); |
|
blob = blob.reshape(1, 1); |
|
layerParams.blobs.push_back(blob); |
|
} |
|
|
|
layerParams.type = "Compare"; |
|
|
|
if (layer_type == "Equal") |
|
layerParams.set("mode", "equal"); |
|
else if (layer_type == "Greater") |
|
layerParams.set("mode", "greater"); |
|
else |
|
layerParams.set("mode", "less"); |
|
addLayer(layerParams, node_proto); |
|
} |
|
|
|
void ONNXImporter::parsePRelu(LayerParams& layerParams, const opencv_onnx::NodeProto& node_proto) |
|
{ |
|
layerParams.type = "PReLU"; |
|
layerParams.blobs.push_back(getBlob(node_proto, 1)); |
|
addLayer(layerParams, node_proto); |
|
} |
|
|
|
void ONNXImporter::parseLRN(LayerParams& layerParams, const opencv_onnx::NodeProto& node_proto) |
|
{ |
|
replaceLayerParam(layerParams, "size", "local_size"); |
|
addLayer(layerParams, node_proto); |
|
} |
|
|
|
void ONNXImporter::parseInstanceNormalization(LayerParams& layerParams, const opencv_onnx::NodeProto& node_proto_) |
|
{ |
|
opencv_onnx::NodeProto node_proto = node_proto_; |
|
if (node_proto.input_size() != 3) |
|
CV_Error(Error::StsNotImplemented, |
|
"Expected input, scale, bias"); |
|
|
|
layerParams.blobs.resize(4); |
|
layerParams.blobs[2] = getBlob(node_proto, 1); // weightData |
|
layerParams.blobs[3] = getBlob(node_proto, 2); // biasData |
|
layerParams.set("has_bias", true); |
|
layerParams.set("has_weight", true); |
|
|
|
// Get number of channels in input |
|
int size = layerParams.blobs[2].total(); |
|
layerParams.blobs[0] = Mat::zeros(size, 1, CV_32F); // mean |
|
layerParams.blobs[1] = Mat::ones(size, 1, CV_32F); // std |
|
|
|
LayerParams mvnParams; |
|
mvnParams.name = layerParams.name + "/MVN"; |
|
mvnParams.type = "MVN"; |
|
mvnParams.set("eps", layerParams.get<float>("epsilon")); |
|
layerParams.erase("epsilon"); |
|
|
|
//Create MVN layer |
|
int id = dstNet.addLayer(mvnParams.name, mvnParams.type, mvnParams); |
|
//Connect to input |
|
IterLayerId_t layerId = layer_id.find(node_proto.input(0)); |
|
CV_Assert(layerId != layer_id.end()); |
|
dstNet.connect(layerId->second.layerId, layerId->second.outputId, id, 0); |
|
//Add shape |
|
layer_id.insert(std::make_pair(mvnParams.name, LayerInfo(id, 0))); |
|
outShapes[mvnParams.name] = outShapes[node_proto.input(0)]; |
|
|
|
//Replace Batch Norm's input to MVN |
|
node_proto.set_input(0, mvnParams.name); |
|
layerParams.type = "BatchNorm"; |
|
addLayer(layerParams, node_proto); |
|
} |
|
|
|
void ONNXImporter::parseBatchNormalization(LayerParams& layerParams, const opencv_onnx::NodeProto& node_proto) |
|
{ |
|
if (node_proto.input_size() != 5) |
|
CV_Error(Error::StsNotImplemented, |
|
"Expected input, scale, bias, mean and var"); |
|
|
|
layerParams.type = "BatchNorm"; |
|
replaceLayerParam(layerParams, "epsilon", "eps"); |
|
replaceLayerParam(layerParams, "spatial", "use_global_stats"); |
|
|
|
Mat meanData = getBlob(node_proto, 3); |
|
Mat stdData = getBlob(node_proto, 4); |
|
|
|
layerParams.blobs.push_back(meanData); |
|
layerParams.blobs.push_back(stdData); |
|
|
|
if (!node_proto.input(1).empty()) { |
|
layerParams.set("has_weight", true); |
|
layerParams.blobs.push_back(getBlob(node_proto, 1)); // weightData |
|
} else { |
|
layerParams.set("has_weight", false); |
|
} |
|
|
|
if (!node_proto.input(2).empty()) { |
|
layerParams.set("has_bias", true); |
|
layerParams.blobs.push_back(getBlob(node_proto, 2)); // biasData |
|
} else { |
|
layerParams.set("has_bias", false); |
|
} |
|
addLayer(layerParams, node_proto); |
|
} |
|
|
|
void ONNXImporter::parseGemm(LayerParams& layerParams, const opencv_onnx::NodeProto& node_proto) |
|
{ |
|
CV_Assert(node_proto.input_size() >= 2); |
|
layerParams.type = "InnerProduct"; |
|
Mat weights = getBlob(node_proto, 1); |
|
int ind_num_out = 0; |
|
if (layerParams.has("transB") && !layerParams.get<int>("transB")) { |
|
transpose(weights, weights); |
|
ind_num_out = 1; |
|
} |
|
layerParams.blobs.push_back(weights); |
|
|
|
if (node_proto.input_size() == 3) { |
|
Mat bias = getBlob(node_proto, 2); |
|
layerParams.blobs.push_back(bias); |
|
} |
|
if (constBlobs.find(node_proto.input(0)) != constBlobs.end()) |
|
{ |
|
Mat inputBuf = getBlob(node_proto, 0); |
|
|
|
LayerParams constParams; |
|
constParams.name = node_proto.input(0); |
|
constParams.type = "Const"; |
|
constParams.blobs.push_back(inputBuf); |
|
|
|
opencv_onnx::NodeProto proto; |
|
proto.add_output(constParams.name); |
|
addLayer(constParams, proto); |
|
} |
|
|
|
layerParams.set("num_output", layerParams.blobs[0].size[ind_num_out]); |
|
layerParams.set("bias_term", node_proto.input_size() == 3); |
|
addLayer(layerParams, node_proto); |
|
} |
|
|
|
void ONNXImporter::parseMatMul(LayerParams& layerParams, const opencv_onnx::NodeProto& node_proto) |
|
{ |
|
CV_Assert(node_proto.input_size() == 2); |
|
layerParams.type = "InnerProduct"; |
|
layerParams.set("bias_term", false); |
|
CV_Assert(constBlobs.find(node_proto.input(0)) == constBlobs.end()); |
|
int firstInpDims = outShapes[node_proto.input(0)].size(); |
|
int secondInpDims; |
|
|
|
if (constBlobs.find(node_proto.input(1)) != constBlobs.end()) |
|
{ |
|
Mat blob = getBlob(node_proto, 1); |
|
secondInpDims = blob.dims; |
|
layerParams.blobs.push_back(blob.t()); |
|
layerParams.set("num_output", layerParams.blobs[0].size[0]); |
|
} else { |
|
secondInpDims = outShapes[node_proto.input(1)].size(); |
|
} |
|
layerParams.set("axis", firstInpDims - secondInpDims + 1); |
|
addLayer(layerParams, node_proto); |
|
} |
|
|
|
void findBroadAxis(const MatShape& broadShape, const MatShape& outShape, size_t& axis, int& broadAxis) |
|
{ |
|
const size_t diff = outShape.size() - broadShape.size(); |
|
|
|
// find the first non-one element of the broadcasting shape |
|
axis = 0; |
|
for (; axis < broadShape.size() && broadShape[axis] == 1; ++axis) {} |
|
|
|
// find the last non-one element of the broadcasting shape |
|
size_t endAxis = broadShape.size(); |
|
for (; endAxis > axis && broadShape[endAxis - 1] == 1; --endAxis) {} |
|
|
|
// find one between axis and endAxis - as it needs to be broadcasted, |
|
// dimensions from the left of axis and from the right of endAxis will be handled by Scale layer |
|
broadAxis = -1; |
|
for (size_t i = axis; i < endAxis; ++i) |
|
{ |
|
size_t outAxis = i + diff; |
|
if (outShape[outAxis] == broadShape[i]) |
|
{ |
|
continue; |
|
} |
|
|
|
// ensure we need to broadcast only 1 dimension in the middle |
|
CV_Assert(broadShape[i] == 1 && broadAxis == -1); |
|
broadAxis = static_cast<int>(outAxis); |
|
} |
|
|
|
axis += diff; |
|
} |
|
|
|
// "Mul" "Div" |
|
void ONNXImporter::parseMul(LayerParams& layerParams, const opencv_onnx::NodeProto& node_proto_) |
|
{ |
|
opencv_onnx::NodeProto node_proto = node_proto_; |
|
const std::string& layer_type = node_proto.op_type(); |
|
CV_Assert(node_proto.input_size() == 2); |
|
|
|
bool isDiv = layer_type == "Div"; |
|
int constId = -1; |
|
bool haveVariables = false; |
|
for (int i = 0; i < 2; ++i) |
|
{ |
|
if (constBlobs.find(node_proto.input(i)) != constBlobs.end()) |
|
constId = i; |
|
else |
|
haveVariables = true; |
|
} |
|
if (constId != -1 && haveVariables) |
|
{ |
|
Mat blob = getBlob(node_proto, constId); |
|
blob = blob.reshape(1, 1); |
|
if (blob.total() == 1) { |
|
float blob_value = blob.ptr<float>()[0]; |
|
float coeff = isDiv ? 1.0 / blob_value : blob_value; |
|
layerParams.set("scale", coeff); |
|
layerParams.type = "Power"; |
|
} |
|
else { |
|
if (isDiv) |
|
divide(1.0, blob, blob); |
|
layerParams.blobs.push_back(blob); |
|
layerParams.type = "Scale"; |
|
} |
|
} |
|
else if (!haveVariables) |
|
{ |
|
Mat inp0 = getBlob(node_proto, 0); |
|
Mat inp1 = getBlob(node_proto, 1); |
|
|
|
if (inp0.size != inp1.size && (inp0.total() != 1 || inp1.total() != 1)) |
|
CV_Error_(Error::StsNotImplemented, ("Different shapes case is not supported with constant inputs: %s", layer_type.c_str())); |
|
|
|
if (inp0.total() == 1 && inp1.total() == 1 && inp0.dims != inp1.dims) |
|
{ |
|
if (inp0.dims < inp1.dims) |
|
{ |
|
inp0 = inp0.reshape(1, inp1.dims, inp1.size); |
|
inp0.dims = inp1.dims; |
|
} |
|
else |
|
{ |
|
inp1 = inp1.reshape(1, inp0.dims, inp0.size); |
|
inp1.dims = inp0.dims; |
|
} |
|
} |
|
|
|
Mat out; |
|
if (inp0.total() != inp1.total()) |
|
{ |
|
if (inp0.total() == 1) |
|
{ |
|
float inp0_value = inp0.ptr<float>()[0]; |
|
float coeff = isDiv ? 1.0 / inp0_value : inp0_value; |
|
multiply(inp1, coeff, out); |
|
} |
|
else |
|
{ |
|
float inp1_value = inp1.ptr<float>()[0]; |
|
float coeff = isDiv ? 1.0 / inp1_value : inp1_value; |
|
multiply(inp0, coeff, out); |
|
} |
|
|
|
} |
|
else |
|
{ |
|
out = isDiv ? inp0 / inp1 : inp0.mul(inp1); |
|
} |
|
|
|
if (inp0.dims == 1 && inp1.dims == 1) |
|
out.dims = 1; // to workaround dims == 1 |
|
addConstant(layerParams.name, out); |
|
return; |
|
} |
|
else if (outShapes[node_proto.input(0)] == outShapes[node_proto.input(1)]) |
|
{ |
|
layerParams.type = "Eltwise"; |
|
layerParams.set("operation", isDiv ? "div" : "prod"); |
|
} |
|
else |
|
{ |
|
// Scale layer allocate output with the first input shape |
|
if (total(outShapes[node_proto.input(0)]) < total(outShapes[node_proto.input(1)])) |
|
{ |
|
opencv_onnx::NodeProto proto; |
|
proto.add_input(node_proto.input(1)); |
|
proto.add_input(node_proto.input(0)); |
|
proto.add_output(layerParams.name); |
|
node_proto = proto; |
|
} |
|
|
|
if (isDiv) |
|
{ |
|
LayerParams powerParams; |
|
powerParams.name = layerParams.name + "/inv"; |
|
powerParams.type = "Power"; |
|
powerParams.set("power", -1); |
|
|
|
//Create Power layer |
|
int id = dstNet.addLayer(powerParams.name, powerParams.type, powerParams); |
|
//Connect to input |
|
IterLayerId_t layerId = layer_id.find(node_proto.input(1)); |
|
CV_Assert(layerId != layer_id.end()); |
|
dstNet.connect(layerId->second.layerId, layerId->second.outputId, id, 0); |
|
//Add shape |
|
layer_id.insert(std::make_pair(powerParams.name, LayerInfo(id, 0))); |
|
outShapes[powerParams.name] = outShapes[node_proto.input(1)]; |
|
|
|
//Replace input to Power |
|
node_proto.set_input(1, powerParams.name); |
|
} |
|
|
|
const MatShape& broadShape = outShapes[node_proto.input(1)]; |
|
const MatShape& outShape = outShapes[node_proto.input(0)]; |
|
|
|
size_t axis = 0; |
|
int broadAxis = -1; |
|
findBroadAxis(broadShape, outShape, axis, broadAxis); |
|
|
|
// if there is a one dimension in the middle that should be broadcasted, broadcast it |
|
if (broadAxis != -1) |
|
{ |
|
opencv_onnx::NodeProto concat_node_proto = node_proto; |
|
const std::string& input1 = concat_node_proto.input(1); |
|
|
|
expandMid(layerParams.name, concat_node_proto, input1, outShape[broadAxis]); |
|
|
|
LayerParams concatLP; |
|
concatLP.name = layerParams.name + "/concat"; |
|
concatLP.set("axis", broadAxis); |
|
concatLP.type = "Concat"; |
|
concat_node_proto.set_output(0, concatLP.name); |
|
|
|
addLayer(concatLP, concat_node_proto); |
|
node_proto.set_input(1, concatLP.name); |
|
} |
|
|
|
CV_Assert(axis != outShape.size()); |
|
layerParams.set("axis", static_cast<int>(axis)); |
|
layerParams.type = "Scale"; |
|
} |
|
addLayer(layerParams, node_proto); |
|
} |
|
|
|
void ONNXImporter::parseConv(LayerParams& layerParams, const opencv_onnx::NodeProto& node_proto_) |
|
{ |
|
opencv_onnx::NodeProto node_proto = node_proto_; |
|
CV_Assert(node_proto.input_size() >= 2); |
|
layerParams.type = "Convolution"; |
|
for (int j = 1; j < node_proto.input_size(); j++) { |
|
if (constBlobs.find(node_proto.input(j)) != constBlobs.end()) |
|
{ |
|
layerParams.blobs.push_back(getBlob(node_proto, j)); |
|
} |
|
} |
|
int outCn = layerParams.blobs.empty() ? outShapes[node_proto.input(1)][0] : layerParams.blobs[0].size[0]; |
|
layerParams.set("num_output", outCn); |
|
|
|
// Check for asymmetric padding in Conv2D |
|
if (layerParams.has("pad")) |
|
{ |
|
bool asymmetricPadding = false; |
|
DictValue pads = layerParams.get("pad"); |
|
const int dims = pads.size() / 2; |
|
for (int i = 0; i < dims; ++i) |
|
{ |
|
if (pads.get<int>(i) != pads.get<int>(i + dims)) |
|
{ |
|
asymmetricPadding = true; |
|
break; |
|
} |
|
} |
|
if (asymmetricPadding && pads.size() == 4) // [pad_t, pad_l, pad_b, pad_r] |
|
{ |
|
layerParams.erase("pad"); |
|
// No paddings required for N, C axis |
|
std::vector<int> paddings(4, 0); |
|
// Add paddings for H, W axis |
|
for (int i = 0; i < dims; ++i) |
|
{ |
|
paddings.push_back(pads.get<int>(i)); |
|
paddings.push_back(pads.get<int>(dims + i)); |
|
} |
|
LayerParams padLp; |
|
padLp.name = layerParams.name + "/pad"; |
|
padLp.type = "Padding"; |
|
padLp.set("paddings", DictValue::arrayInt(&paddings[0], paddings.size())); |
|
|
|
opencv_onnx::NodeProto proto; |
|
proto.add_input(node_proto.input(0)); |
|
proto.add_output(padLp.name); |
|
|
|
addLayer(padLp, proto); |
|
node_proto.set_input(0, padLp.name); |
|
} |
|
} |
|
addLayer(layerParams, node_proto); |
|
} |
|
|
|
void ONNXImporter::parseConvTranspose(LayerParams& layerParams, const opencv_onnx::NodeProto& node_proto) |
|
{ |
|
CV_Assert(node_proto.input_size() >= 2); |
|
layerParams.type = "Deconvolution"; |
|
for (int j = 1; j < node_proto.input_size(); j++) { |
|
layerParams.blobs.push_back(getBlob(node_proto, j)); |
|
} |
|
layerParams.set("num_output", layerParams.blobs[0].size[1] * layerParams.get<int>("group", 1)); |
|
layerParams.set("bias_term", node_proto.input_size() == 3); |
|
|
|
if (!layerParams.has("kernel_size")) |
|
CV_Error(Error::StsNotImplemented, |
|
"Required attribute 'kernel_size' is not present."); |
|
|
|
if (layerParams.has("output_shape")) |
|
{ |
|
const DictValue& outShape = layerParams.get("output_shape"); |
|
DictValue strides = layerParams.get("stride"); |
|
DictValue kernel = layerParams.get("kernel_size"); |
|
|
|
String padMode; |
|
std::vector<int> adjust_pads; |
|
if (layerParams.has("pad_mode")) |
|
{ |
|
padMode = toUpperCase(layerParams.get<String>("pad_mode")); |
|
if (padMode != "SAME" && padMode != "VALID") |
|
CV_Error(Error::StsError, "Unsupported padding mode " + padMode); |
|
|
|
for (int i = 0; i < strides.size(); i++) |
|
{ |
|
int sz = outShape.get<int>(2 + i); |
|
int stride = strides.get<int>(i); |
|
adjust_pads.push_back(padMode == "SAME"? (sz - 1) % stride : |
|
(sz - kernel.get<int>(i)) % stride); |
|
} |
|
layerParams.set("adj", DictValue::arrayInt(&adjust_pads[0], adjust_pads.size())); |
|
} |
|
} |
|
else if (layerParams.has("output_padding")) |
|
{ |
|
replaceLayerParam(layerParams, "output_padding", "adj"); |
|
} |
|
addLayer(layerParams, node_proto); |
|
} |
|
|
|
void ONNXImporter::parseTranspose(LayerParams& layerParams, const opencv_onnx::NodeProto& node_proto) |
|
{ |
|
int depth = layerParams.get<int>("depth", CV_32F); |
|
layerParams.type = (depth == CV_8S) ? "PermuteInt8" : "Permute"; |
|
replaceLayerParam(layerParams, "perm", "order"); |
|
if (!layerParams.has("order")) { |
|
MatShape inpShape = outShapes[node_proto.input(0)]; |
|
size_t dims = inpShape.size(); |
|
std::vector<int> perm(dims); |
|
for (size_t d = 0; d < dims; ++d) |
|
{ |
|
perm[d] = static_cast<int>(dims - 1 - d); |
|
} |
|
layerParams.set("order", DictValue::arrayInt(perm.data(), perm.size())); |
|
} |
|
|
|
CV_Assert(node_proto.input_size() == 1); |
|
if (constBlobs.find(node_proto.input(0)) != constBlobs.end()) |
|
{ |
|
std::vector<Mat> inputs(1, getBlob(node_proto, 0)), transposed; |
|
runLayer(layerParams, inputs, transposed); |
|
CV_Assert(transposed.size() == 1); |
|
addConstant(layerParams.name, transposed[0]); |
|
return; |
|
} |
|
addLayer(layerParams, node_proto); |
|
} |
|
|
|
void ONNXImporter::parseSqueeze(LayerParams& layerParams, const opencv_onnx::NodeProto& node_proto) |
|
{ |
|
CV_Assert_N(node_proto.input_size() == 1, layerParams.has("axes")); |
|
DictValue axes_dict = layerParams.get("axes"); |
|
MatShape inpShape = outShapes[node_proto.input(0)]; |
|
|
|
std::vector<bool> maskedAxes(inpShape.size(), false); |
|
for (int i = 0; i < axes_dict.size(); ++i) |
|
{ |
|
int axis = axes_dict.getIntValue(i); |
|
CV_CheckLE(axis, static_cast<int>(inpShape.size()), "Squeeze axis"); |
|
maskedAxes[axis] = inpShape[axis] == 1; |
|
} |
|
MatShape outShape; |
|
for (int i = 0; i < inpShape.size(); ++i) |
|
{ |
|
if (!maskedAxes[i]) |
|
outShape.push_back(inpShape[i]); |
|
} |
|
if (outShape.size() != inpShape.size()) |
|
{ |
|
layerParams.type = "Reshape"; |
|
layerParams.set("dim", DictValue::arrayInt(&outShape[0], outShape.size())); |
|
if (hasDynamicShapes) |
|
{ |
|
std::vector<int> dynamicAxes; |
|
std::vector<int> inputIndices; |
|
for (int index = 0; index < inpShape.size(); ++index) |
|
{ |
|
if (!maskedAxes[index]) |
|
inputIndices.push_back(index); |
|
} |
|
for (int index = 0; index < outShape.size(); ++index) |
|
dynamicAxes.push_back(index); |
|
layerParams.set("dynamic_axes", DictValue::arrayInt(dynamicAxes.data(), dynamicAxes.size())); |
|
layerParams.set("input_indices", DictValue::arrayInt(inputIndices.data(), inputIndices.size())); |
|
} |
|
} |
|
else |
|
layerParams.type = "Identity"; |
|
|
|
if (constBlobs.find(node_proto.input(0)) != constBlobs.end()) |
|
{ |
|
Mat inp = getBlob(node_proto, 0); |
|
Mat out = inp.reshape(1, outShape); |
|
out.dims = outShape.size(); // to workaround dims == 1 |
|
addConstant(layerParams.name, out); |
|
return; |
|
} |
|
int depth = layerParams.get<int>("depth", CV_32F); |
|
layerParams.type += (depth == CV_8S) ? "Int8" : ""; |
|
addLayer(layerParams, node_proto); |
|
} |
|
|
|
void ONNXImporter::parseFlatten(LayerParams& layerParams, const opencv_onnx::NodeProto& node_proto) |
|
{ |
|
CV_CheckEQ(node_proto.input_size(), 1, ""); |
|
if (constBlobs.find(node_proto.input(0)) != constBlobs.end()) |
|
{ |
|
Mat input = getBlob(node_proto, 0); |
|
int axis = normalize_axis(layerParams.get<int>("axis", 1), input.dims); |
|
|
|
std::vector<int> out_size(&input.size[0], &input.size[0] + axis); |
|
out_size.push_back(input.total(axis)); |
|
Mat output = input.reshape(1, out_size); |
|
addConstant(layerParams.name, output); |
|
return; |
|
} |
|
addLayer(layerParams, node_proto); |
|
} |
|
|
|
void ONNXImporter::parseUnsqueeze(LayerParams& layerParams, const opencv_onnx::NodeProto& node_proto) |
|
{ |
|
CV_Assert(node_proto.input_size() == 1 || node_proto.input_size() == 2); |
|
DictValue axes; |
|
if (node_proto.input_size() == 2) |
|
{ |
|
Mat blob = getBlob(node_proto, 1); |
|
axes = DictValue::arrayInt(blob.ptr<int>(), blob.total()); |
|
} |
|
else |
|
axes = layerParams.get("axes"); |
|
|
|
if (constBlobs.find(node_proto.input(0)) != constBlobs.end()) |
|
{ |
|
// Constant input. |
|
Mat input = getBlob(node_proto, 0); |
|
|
|
std::vector<int> dims; |
|
for (int j = 0; j < input.dims; j++) { |
|
dims.push_back(input.size[j]); |
|
} |
|
CV_Assert(axes.getIntValue(axes.size()-1) <= dims.size()); |
|
for (int j = 0; j < axes.size(); j++) { |
|
dims.insert(dims.begin() + axes.getIntValue(j), 1); |
|
} |
|
|
|
Mat out = input.reshape(0, dims); |
|
addConstant(layerParams.name, out); |
|
return; |
|
} |
|
|
|
// Variable input. |
|
if (axes.size() != 1) |
|
CV_Error(Error::StsNotImplemented, "Multidimensional unsqueeze"); |
|
|
|
int depth = layerParams.get<int>("depth", CV_32F); |
|
|
|
MatShape inpShape = outShapes[node_proto.input(0)]; |
|
int axis = axes.getIntValue(0); |
|
CV_Assert(0 <= axis && axis <= inpShape.size()); |
|
std::vector<int> outShape = inpShape; |
|
outShape.insert(outShape.begin() + axis, 1); |
|
layerParams.type = (depth == CV_8S) ? "ReshapeInt8" : "Reshape"; |
|
layerParams.set("dim", DictValue::arrayInt(&outShape[0], outShape.size())); |
|
if (hasDynamicShapes) |
|
{ |
|
std::vector<int> dynamicAxes; |
|
std::vector<int> inputIndices; |
|
for (int index = 0; index < outShape.size(); ++index) { |
|
if (index != axis) |
|
dynamicAxes.push_back(index); |
|
} |
|
for (int index = 0; index < inpShape.size(); ++index) |
|
inputIndices.push_back(index); |
|
layerParams.set("dynamic_axes", DictValue::arrayInt(dynamicAxes.data(), dynamicAxes.size())); |
|
layerParams.set("input_indices", DictValue::arrayInt(inputIndices.data(), inputIndices.size())); |
|
} |
|
addLayer(layerParams, node_proto); |
|
} |
|
|
|
void ONNXImporter::parseExpand(LayerParams& layerParams, const opencv_onnx::NodeProto& node_proto_) |
|
{ |
|
opencv_onnx::NodeProto node_proto = node_proto_; |
|
CV_CheckEQ(node_proto.input_size(), 2, ""); |
|
const std::string& input0 = node_proto.input(0); |
|
const std::string& input1 = node_proto.input(1); |
|
Mat newShapeMat = getBlob(input1); |
|
MatShape targetShape(newShapeMat.ptr<int>(), newShapeMat.ptr<int>() + newShapeMat.total()); |
|
|
|
MatShape inpShape; |
|
bool haveVariables = constBlobs.find(input0) == constBlobs.end(); |
|
if (haveVariables) |
|
{ |
|
IterShape_t shapeIt = outShapes.find(input0); |
|
CV_Assert(shapeIt != outShapes.end()); |
|
inpShape = shapeIt->second; |
|
} |
|
else |
|
{ |
|
inpShape = shape(getBlob(input0)); |
|
} |
|
|
|
String srcName = input0; |
|
// Unsqueeze and repeat along new axis |
|
if (targetShape.size() == inpShape.size() + 1) |
|
{ |
|
inpShape.insert(inpShape.begin(), targetShape.size() - inpShape.size(), 1); |
|
for (int i = 0; i < targetShape.size(); i++) |
|
{ |
|
if (abs(targetShape[i]) == 1) |
|
targetShape[i] = inpShape[i]; |
|
} |
|
if (haveVariables) |
|
{ |
|
LayerParams reshapeLp; |
|
reshapeLp.name = layerParams.name + "/reshape"; |
|
reshapeLp.type = "Reshape"; |
|
CV_Assert(layer_id.find(reshapeLp.name) == layer_id.end()); |
|
reshapeLp.set("dim", DictValue::arrayInt(&inpShape[0], inpShape.size())); |
|
|
|
opencv_onnx::NodeProto proto; |
|
proto.add_input(node_proto.input(0)); |
|
proto.add_output(reshapeLp.name); |
|
addLayer(reshapeLp, proto); |
|
srcName = reshapeLp.name; |
|
} |
|
} |
|
CV_CheckEQ(inpShape.size(), targetShape.size(), "Unsupported Expand op with different dims"); |
|
|
|
std::vector<int> broadcast_axes; |
|
// shapes aren't right-aligned here because targetShape.size() == inpShape.size() |
|
for (int i = 0; i < targetShape.size(); i++) |
|
{ |
|
if (targetShape[i] != inpShape[i]) |
|
{ |
|
if (inpShape[i] == 1) |
|
{ |
|
broadcast_axes.push_back(i); |
|
} |
|
else if (targetShape[i] != 1) |
|
{ |
|
CV_Error(Error::StsError, format("Could not be broadcast by axis: %d", i)); |
|
} |
|
} |
|
} |
|
|
|
if (!haveVariables) |
|
{ |
|
if (broadcast_axes.size() != 1) |
|
CV_Error(Error::StsNotImplemented, "Expand op doesn't support multiple axes for constant input"); |
|
|
|
Mat input = getBlob(node_proto, 0); |
|
input = input.reshape(0, total(inpShape, 0, broadcast_axes[0])); |
|
Mat output = cv::repeat(input, 1, targetShape[broadcast_axes[0]]); |
|
output = output.reshape(0, targetShape); |
|
addConstant(layerParams.name, output); |
|
return; |
|
} |
|
|
|
if (broadcast_axes.size() == 2 && |
|
broadcast_axes[0] == broadcast_axes[1] - 1 && broadcast_axes[1] == inpShape.size() - 1) |
|
{ |
|
LayerParams constParams; |
|
constParams.name = layerParams.name + "/const"; |
|
CV_Assert(layer_id.find(constParams.name) == layer_id.end()); |
|
constParams.type = "Const"; |
|
|
|
Mat inp = Mat::ones(newShapeMat.total(), newShapeMat.ptr<int>(), CV_32F); |
|
constParams.blobs.push_back(inp); |
|
|
|
opencv_onnx::NodeProto proto; |
|
proto.add_output(constParams.name); |
|
addLayer(constParams, proto); |
|
|
|
layerParams.type = "Scale"; |
|
layerParams.set("bias_term", false); |
|
node_proto.set_input(0, constParams.name); |
|
node_proto.set_input(1, srcName); |
|
} |
|
else if (broadcast_axes.size() == 1 && broadcast_axes[0] <= 1) |
|
{ |
|
expandMid(layerParams.name, node_proto, srcName, targetShape[broadcast_axes[0]]); |
|
|
|
layerParams.set("axis", broadcast_axes[0]); |
|
layerParams.type = "Concat"; |
|
node_proto.set_output(0, layerParams.name); |
|
} |
|
else if (broadcast_axes.empty()) |
|
{ |
|
layerParams.type = "Identity"; |
|
} |
|
else |
|
CV_Error(Error::StsNotImplemented, "Unsupported Expand op"); |
|
addLayer(layerParams, node_proto); |
|
} |
|
|
|
void ONNXImporter::parseReshape(LayerParams& layerParams, const opencv_onnx::NodeProto& node_proto) |
|
{ |
|
CV_Assert(node_proto.input_size() == 2 || layerParams.has("shape")); |
|
int depth = layerParams.get<int>("depth", CV_32F); |
|
layerParams.type += (depth == CV_8S) ? "Int8" : ""; |
|
|
|
if (node_proto.input_size() == 2) { |
|
Mat blob = getBlob(node_proto, 1); |
|
CV_Assert(blob.type() == CV_32SC1); |
|
|
|
layerParams.set("dim", DictValue::arrayInt<int*>(blob.ptr<int>(), blob.total())); |
|
|
|
if (layer_id.find(node_proto.input(0)) == layer_id.end()) { |
|
std::vector<Mat> inputs(1, getBlob(node_proto, 0)), outputs; |
|
runLayer(layerParams, inputs, outputs); |
|
addConstant(layerParams.name, outputs[0]); |
|
return; |
|
} |
|
} |
|
else { |
|
DictValue shape = layerParams.get("shape"); |
|
std::vector<int> dim; |
|
for (int j = 0; j < shape.size(); j++) { |
|
dim.push_back(shape.getIntValue(j)); |
|
} |
|
|
|
if (layer_id.find(node_proto.input(0)) == layer_id.end()) { |
|
Mat input = getBlob(node_proto, 0); |
|
Mat out = input.reshape(0, dim); |
|
addConstant(layerParams.name, out); |
|
return; |
|
} |
|
replaceLayerParam(layerParams, "shape", "dim"); |
|
} |
|
addLayer(layerParams, node_proto); |
|
} |
|
|
|
void ONNXImporter::parsePad(LayerParams& layerParams, const opencv_onnx::NodeProto& node_proto) |
|
{ |
|
int depth = layerParams.get<int>("depth", CV_32F); |
|
layerParams.type = (depth == CV_8S) ? "PaddingInt8" : "Padding"; |
|
replaceLayerParam(layerParams, "mode", "type"); |
|
if (node_proto.input_size() == 3 || node_proto.input_size() == 2) |
|
{ |
|
// Paddings are in order begin0, begin1, .. beginN, end0, end1, ..., endN. |
|
// We need to shuffle it to begin0, end0, begin1, end1, ... |
|
Mat paddings = getBlob(node_proto, 1).reshape(1, 2); |
|
paddings = paddings.t(); |
|
layerParams.set("paddings", DictValue::arrayInt(paddings.ptr<int>(), paddings.total())); |
|
|
|
if (node_proto.input_size() == 3) |
|
{ |
|
Mat value = getBlob(node_proto, 2); |
|
float padValue = (depth == CV_8S) ? (float)value.ptr<int8_t>()[0] : value.ptr<float>()[0]; |
|
layerParams.set("value", padValue); |
|
} |
|
} |
|
addLayer(layerParams, node_proto); |
|
} |
|
|
|
void ONNXImporter::parseShape(LayerParams& layerParams, const opencv_onnx::NodeProto& node_proto) |
|
{ |
|
CV_Assert(node_proto.input_size() == 1); |
|
IterShape_t shapeIt = outShapes.find(node_proto.input(0)); |
|
CV_Assert(shapeIt != outShapes.end()); |
|
const MatShape& inpShape = shapeIt->second; |
|
|
|
Mat shapeMat(inpShape.size(), 1, CV_32S); |
|
for (int j = 0; j < inpShape.size(); ++j) |
|
shapeMat.at<int>(j) = inpShape[j]; |
|
shapeMat.dims = 1; |
|
|
|
addConstant(layerParams.name, shapeMat); |
|
} |
|
|
|
void ONNXImporter::parseCast(LayerParams& layerParams, const opencv_onnx::NodeProto& node_proto) |
|
{ |
|
if (constBlobs.find(node_proto.input(0)) != constBlobs.end()) |
|
{ |
|
Mat blob = getBlob(node_proto, 0); |
|
int type; |
|
switch (layerParams.get<int>("to")) |
|
{ |
|
case opencv_onnx::TensorProto_DataType_FLOAT: type = CV_32F; break; |
|
case opencv_onnx::TensorProto_DataType_UINT8: type = CV_8U; break; |
|
case opencv_onnx::TensorProto_DataType_UINT16: type = CV_16U; break; |
|
case opencv_onnx::TensorProto_DataType_FLOAT16: type = CV_16S; break; |
|
case opencv_onnx::TensorProto_DataType_INT8: |
|
case opencv_onnx::TensorProto_DataType_INT16: |
|
case opencv_onnx::TensorProto_DataType_INT32: |
|
case opencv_onnx::TensorProto_DataType_INT64: type = CV_32S; break; |
|
default: type = blob.type(); |
|
} |
|
Mat dst; |
|
blob.convertTo(dst, type); |
|
dst.dims = blob.dims; |
|
addConstant(layerParams.name, dst); |
|
return; |
|
} |
|
else |
|
layerParams.type = "Identity"; |
|
addLayer(layerParams, node_proto); |
|
} |
|
|
|
void ONNXImporter::parseConstantFill(LayerParams& layerParams, const opencv_onnx::NodeProto& node_proto) |
|
{ |
|
int depth = CV_32F; |
|
float fill_value; |
|
if (!layerParams.blobs.empty()) |
|
{ |
|
CV_Assert(!layerParams.has("value")); |
|
depth = layerParams.blobs[0].depth(); |
|
Mat floats; |
|
layerParams.blobs[0].convertTo(floats, CV_32F); |
|
fill_value = floats.at<float>(0, 0); |
|
} |
|
else |
|
fill_value = layerParams.get("value", 0); |
|
|
|
MatShape inpShape = getBlob(node_proto, 0); |
|
for (int i = 0; i < inpShape.size(); i++) |
|
CV_CheckGT(inpShape[i], 0, ""); |
|
Mat tensor(inpShape.size(), &inpShape[0], depth, Scalar(fill_value)); |
|
addConstant(layerParams.name, tensor); |
|
} |
|
|
|
void ONNXImporter::parseGather(LayerParams& layerParams, const opencv_onnx::NodeProto& node_proto_) |
|
{ |
|
opencv_onnx::NodeProto node_proto = node_proto_; |
|
CV_Assert(node_proto.input_size() == 2); |
|
Mat indexMat = getBlob(node_proto, 1); |
|
CV_Assert_N(indexMat.type() == CV_32S, indexMat.total() == 1); |
|
int index = indexMat.at<int>(0); |
|
int axis = layerParams.get<int>("axis", 0); |
|
|
|
if ((constBlobs.find(node_proto.input(0)) != constBlobs.end())) |
|
{ |
|
Mat input = getBlob(node_proto, 0); |
|
Mat out; |
|
std::vector<cv::Range> ranges(input.dims, Range::all()); |
|
ranges[axis] = Range(index, index + 1); |
|
|
|
out = input(ranges); |
|
MatShape outShape = shape(out); |
|
if (outShape.size() > 1) |
|
{ |
|
outShape.erase(outShape.begin() + axis); |
|
out.reshape(0, outShape); |
|
} else { |
|
out.dims = 1; |
|
} |
|
addConstant(layerParams.name, out); |
|
return; |
|
} |
|
else |
|
{ |
|
IterShape_t shapeIt = outShapes.find(node_proto.input(0)); |
|
CV_Assert(shapeIt != outShapes.end()); |
|
MatShape inpShape = shapeIt->second; |
|
|
|
LayerParams sliceLp; |
|
sliceLp.type = "Slice"; |
|
sliceLp.name = inpShape.size() > 1 ? layerParams.name + "/slice" : layerParams.name; |
|
std::vector<int> begin(inpShape.size(), 0); |
|
std::vector<int> end(inpShape.size(), -1); |
|
begin[axis] = index; |
|
end[axis] = index + 1; |
|
|
|
cv::dnn::DictValue paramBegin = cv::dnn::DictValue::arrayInt(begin.data(), begin.size()); |
|
cv::dnn::DictValue paramEnd = cv::dnn::DictValue::arrayInt(end.data(), end.size()); |
|
sliceLp.set("begin", paramBegin); |
|
sliceLp.set("end", paramEnd); |
|
sliceLp.set("has_dynamic_shapes", hasDynamicShapes); |
|
|
|
if (inpShape.size() > 1) |
|
{ |
|
opencv_onnx::NodeProto proto; |
|
proto.add_input(node_proto.input(0)); |
|
proto.add_output(sliceLp.name); |
|
addLayer(sliceLp, proto); |
|
|
|
inpShape.erase(inpShape.begin() + axis); |
|
layerParams.type = "Reshape"; |
|
layerParams.set("axis", 0); |
|
layerParams.set("dim", DictValue::arrayInt(&inpShape[0], inpShape.size())); |
|
if (hasDynamicShapes) |
|
{ |
|
std::vector<int> dynamicAxes; |
|
std::vector<int> inputIndices; |
|
for (int index = 0; index < inpShape.size(); ++index) |
|
dynamicAxes.push_back(index); |
|
for (int index = 0; index < inpShape.size(); ++index) |
|
inputIndices.push_back(index); |
|
layerParams.set("dynamic_axes", DictValue::arrayInt(dynamicAxes.data(), dynamicAxes.size())); |
|
layerParams.set("input_indices", DictValue::arrayInt(inputIndices.data(), inputIndices.size())); |
|
} |
|
node_proto.set_input(0, sliceLp.name); |
|
} |
|
else |
|
{ |
|
layerParams = sliceLp; |
|
} |
|
} |
|
addLayer(layerParams, node_proto); |
|
} |
|
|
|
void ONNXImporter::parseConcat(LayerParams& layerParams, const opencv_onnx::NodeProto& node_proto) |
|
{ |
|
bool hasVariableInps = false; |
|
for (int i = 0; i < node_proto.input_size(); ++i) |
|
{ |
|
if (layer_id.find(node_proto.input(i)) != layer_id.end()) |
|
{ |
|
hasVariableInps = true; |
|
break; |
|
} |
|
} |
|
|
|
if (!hasVariableInps) |
|
{ |
|
std::vector<Mat> inputs(node_proto.input_size()), concatenated; |
|
// Due constant folding we can get inputs with different number of dimensions |
|
// Insert the missing dimension to inputs |
|
MatShape inputShape; |
|
for (size_t i = 0; i < inputs.size(); ++i) |
|
{ |
|
inputs[i] = getBlob(node_proto, i); |
|
if (inputs[i].size.dims() > inputShape.size()) |
|
{ |
|
inputShape = shape(inputs[i]); |
|
} |
|
} |
|
|
|
// Concat-1 has default value for axis is 1: https://github.com/onnx/onnx/blob/master/docs/Changelog.md#Concat-1 |
|
int axis = layerParams.get<int>("axis", 1); |
|
for (size_t i = 0; i < inputs.size(); ++i) |
|
{ |
|
MatShape targetShape = inputShape; |
|
targetShape[axis] = shape(inputs[i])[axis]; |
|
CV_CheckEQ(total(targetShape), total(shape(inputs[i])), ""); |
|
inputs[i] = inputs[i].reshape(0, targetShape); |
|
} |
|
runLayer(layerParams, inputs, concatenated); |
|
|
|
CV_Assert(concatenated.size() == 1); |
|
addConstant(layerParams.name, concatenated[0]); |
|
return; |
|
} |
|
else |
|
{ |
|
for (int i = 0; i < node_proto.input_size(); ++i) |
|
{ |
|
if (constBlobs.find(node_proto.input(i)) != constBlobs.end()) |
|
{ |
|
LayerParams constParams; |
|
constParams.name = node_proto.input(i); |
|
constParams.type = "Const"; |
|
constParams.blobs.push_back(getBlob(node_proto, i)); |
|
|
|
opencv_onnx::NodeProto proto; |
|
proto.add_output(constParams.name); |
|
addLayer(constParams, proto); |
|
} |
|
} |
|
} |
|
addLayer(layerParams, node_proto); |
|
} |
|
|
|
void ONNXImporter::parseResize(LayerParams& layerParams, const opencv_onnx::NodeProto& node_proto) |
|
{ |
|
for (int i = 1; i < node_proto.input_size(); i++) |
|
CV_Assert(layer_id.find(node_proto.input(i)) == layer_id.end()); |
|
|
|
int depth = layerParams.get<int>("depth", CV_32F); |
|
layerParams.type += (depth == CV_8S) ? "Int8" : ""; |
|
|
|
if (layerParams.has("coordinate_transformation_mode")) |
|
{ |
|
String interp_mode = layerParams.get<String>("coordinate_transformation_mode"); |
|
CV_Assert_N(interp_mode != "tf_crop_and_resize", interp_mode != "tf_half_pixel_for_nn"); |
|
|
|
layerParams.set("align_corners", interp_mode == "align_corners"); |
|
if (layerParams.get<String>("mode") == "linear") |
|
{ |
|
layerParams.set("mode", interp_mode == "pytorch_half_pixel" || interp_mode == "half_pixel" ? |
|
"opencv_linear" : "bilinear"); |
|
} |
|
} |
|
if (layerParams.get<String>("mode") == "linear" && framework_name == "pytorch") |
|
layerParams.set("mode", "opencv_linear"); |
|
|
|
// input = [X, scales], [X, roi, scales] or [x, roi, scales, sizes] |
|
int foundScaleId = hasDynamicShapes ? node_proto.input_size() - 1 |
|
: node_proto.input_size() > 2 ? 2 : 1; |
|
|
|
Mat scales = getBlob(node_proto, foundScaleId); |
|
if (scales.total() == 4) |
|
{ |
|
layerParams.set("zoom_factor_y", scales.at<float>(2)); |
|
layerParams.set("zoom_factor_x", scales.at<float>(3)); |
|
} |
|
else |
|
{ |
|
const std::string& inputLast = node_proto.input(node_proto.input_size() - 1); |
|
if (constBlobs.find(inputLast) != constBlobs.end()) |
|
{ |
|
Mat shapes = getBlob(inputLast); |
|
CV_CheckEQ(shapes.size[0], 4, ""); |
|
CV_CheckEQ(shapes.size[1], 1, ""); |
|
CV_CheckDepth(shapes.depth(), shapes.depth() == CV_32S || shapes.depth() == CV_32F, ""); |
|
if (shapes.depth() == CV_32F) |
|
shapes.convertTo(shapes, CV_32S); |
|
layerParams.set("width", shapes.at<int>(3)); |
|
layerParams.set("height", shapes.at<int>(2)); |
|
} |
|
} |
|
replaceLayerParam(layerParams, "mode", "interpolation"); |
|
addLayer(layerParams, node_proto); |
|
} |
|
|
|
void ONNXImporter::parseUpsample(LayerParams& layerParams, const opencv_onnx::NodeProto& node_proto) |
|
{ |
|
//fused from Resize Subgraph |
|
if (layerParams.has("coordinate_transformation_mode")) |
|
{ |
|
String interp_mode = layerParams.get<String>("coordinate_transformation_mode"); |
|
CV_Assert_N(interp_mode != "tf_crop_and_resize", interp_mode != "tf_half_pixel_for_nn"); |
|
|
|
layerParams.set("align_corners", interp_mode == "align_corners"); |
|
if (layerParams.get<String>("mode") == "linear") |
|
{ |
|
layerParams.set("mode", interp_mode == "pytorch_half_pixel" ? |
|
"opencv_linear" : "bilinear"); |
|
} |
|
} |
|
if (layerParams.get<String>("mode") == "linear" && framework_name == "pytorch") |
|
layerParams.set("mode", "opencv_linear"); |
|
|
|
layerParams.type = "Resize"; |
|
if (layerParams.has("scales")) |
|
{ |
|
// Pytorch layer |
|
DictValue scales = layerParams.get("scales"); |
|
CV_Assert(scales.size() == 4); |
|
layerParams.set("zoom_factor_y", scales.getIntValue(2)); |
|
layerParams.set("zoom_factor_x", scales.getIntValue(3)); |
|
} |
|
else if (layerParams.has("height_scale") && layerParams.has("width_scale")) |
|
{ |
|
// Caffe2 layer |
|
replaceLayerParam(layerParams, "height_scale", "zoom_factor_y"); |
|
replaceLayerParam(layerParams, "width_scale", "zoom_factor_x"); |
|
} |
|
else |
|
{ |
|
// scales as input |
|
const std::string& input1 = node_proto.input(1); |
|
if (constBlobs.find(input1) != constBlobs.end()) |
|
{ |
|
Mat scales = getBlob(input1); |
|
CV_Assert(scales.total() == 4); |
|
layerParams.set("zoom_factor_y", scales.at<float>(2)); |
|
layerParams.set("zoom_factor_x", scales.at<float>(3)); |
|
} |
|
} |
|
replaceLayerParam(layerParams, "mode", "interpolation"); |
|
addLayer(layerParams, node_proto); |
|
} |
|
|
|
void ONNXImporter::parseSoftMax(LayerParams& layerParams, const opencv_onnx::NodeProto& node_proto) |
|
{ |
|
const std::string& layer_type = node_proto.op_type(); |
|
layerParams.type = "Softmax"; |
|
layerParams.set("log_softmax", layer_type == "LogSoftmax"); |
|
addLayer(layerParams, node_proto); |
|
} |
|
|
|
void ONNXImporter::parseDetectionOutput(LayerParams& layerParams, const opencv_onnx::NodeProto& node_proto_) |
|
{ |
|
opencv_onnx::NodeProto node_proto = node_proto_; |
|
CV_CheckEQ(node_proto.input_size(), 3, ""); |
|
if (constBlobs.find(node_proto.input(2)) != constBlobs.end()) |
|
{ |
|
Mat priors = getBlob(node_proto, 2); |
|
|
|
LayerParams constParams; |
|
constParams.name = layerParams.name + "/priors"; |
|
constParams.type = "Const"; |
|
constParams.blobs.push_back(priors); |
|
|
|
opencv_onnx::NodeProto priorsProto; |
|
priorsProto.add_output(constParams.name); |
|
addLayer(constParams, priorsProto); |
|
|
|
node_proto.set_input(2, constParams.name); |
|
} |
|
addLayer(layerParams, node_proto); |
|
} |
|
|
|
void ONNXImporter::parseCumSum(LayerParams& layerParams, const opencv_onnx::NodeProto& node_proto) |
|
{ |
|
layerParams.type = "CumSum"; |
|
|
|
// Get axis. |
|
const std::string& input1 = node_proto.input(1); |
|
|
|
if (constBlobs.find(input1) != constBlobs.end()) |
|
{ |
|
Mat axis_blob = getBlob(input1); |
|
CV_Assert(axis_blob.total() == 1u); |
|
layerParams.set("axis", axis_blob.at<int>(0)); |
|
} |
|
|
|
addLayer(layerParams, node_proto); |
|
} |
|
|
|
void ONNXImporter::parseCustomLayer(LayerParams& layerParams, const opencv_onnx::NodeProto& node_proto) |
|
{ |
|
for (int j = 0; j < node_proto.input_size(); j++) { |
|
if (layer_id.find(node_proto.input(j)) == layer_id.end()) |
|
layerParams.blobs.push_back(getBlob(node_proto, j)); |
|
} |
|
addLayer(layerParams, node_proto); |
|
} |
|
|
|
void ONNXImporter::parseQuantDequant(LayerParams& layerParams, const opencv_onnx::NodeProto& node_proto) |
|
{ |
|
CV_Assert(node_proto.input_size() == 3); |
|
layerParams.type = (node_proto.op_type() == "QuantizeLinear") ? "Quantize" : "Dequantize"; |
|
|
|
if (node_proto.op_type() == "DequantizeLinear") |
|
{ |
|
Mat scale = getBlob(node_proto, 1); |
|
Mat zeropoint = getBlob(node_proto, 2); |
|
|
|
layerParams.set("scales", DictValue::arrayReal(scale.ptr<float>(), 1)); |
|
layerParams.set("zeropoints", DictValue::arrayInt(zeropoint.ptr<int8_t>(), 1)); |
|
} |
|
addLayer(layerParams, node_proto); |
|
} |
|
|
|
void ONNXImporter::parseQConv(LayerParams& layerParams, const opencv_onnx::NodeProto& node_proto) |
|
{ |
|
int ninputs = node_proto.input_size(); |
|
CV_Assert(ninputs == 8 || ninputs == 9); |
|
|
|
Mat inp_sc = getBlob(node_proto, 1); |
|
Mat inp_zp = getBlob(node_proto, 2); |
|
|
|
Mat weights = getBlob(node_proto, 3); |
|
int outCn = weights.size[0]; |
|
Mat w_scale = getBlob(node_proto, 4); |
|
CV_Assert(w_scale.total() == 1 || w_scale.total() == outCn); |
|
Mat wt_sc = (w_scale.total() == outCn) ? w_scale : Mat(1, outCn, CV_32F, Scalar(w_scale.at<float>(0))); |
|
|
|
Mat out_sc = getBlob(node_proto, 6); |
|
Mat bias = (ninputs == 9) ? getBlob(node_proto, 8) : Mat::zeros(1, outCn, CV_32S); |
|
|
|
Mat weights_2d = weights.reshape(1, outCn); |
|
Mat biasFused(1, outCn, CV_32S); |
|
Mat outputMultiplier(1, outCn, CV_32F); |
|
for (int i = 0; i < outCn; i++) |
|
{ |
|
biasFused.at<int>(i) = bias.at<int>(i) - inp_zp.at<int8_t>(0)*(cv::sum(weights_2d.row(i))[0]); |
|
outputMultiplier.at<float>(i) = (inp_sc.at<float>(0) * wt_sc.at<float>(i)) / out_sc.at<float>(0); |
|
} |
|
|
|
layerParams.type = "ConvolutionInt8"; |
|
layerParams.set("num_output", outCn); |
|
layerParams.set("input_zeropoint", inp_zp.at<int8_t>(0)); |
|
layerParams.blobs.push_back(weights); |
|
layerParams.blobs.push_back(biasFused); |
|
layerParams.blobs.push_back(outputMultiplier); |
|
addLayer(layerParams, node_proto); |
|
} |
|
|
|
void ONNXImporter::parseQMatMul(LayerParams& layerParams, const opencv_onnx::NodeProto& node_proto) |
|
{ |
|
int ninputs = node_proto.input_size(); |
|
CV_Assert(ninputs == 8); |
|
|
|
if (constBlobs.find(node_proto.input(3)) == constBlobs.end()) |
|
CV_Error(Error::StsNotImplemented, "Variable weights is not supported"); |
|
|
|
int firstInpDims = outShapes[node_proto.input(0)].size(); |
|
|
|
Mat inp_sc = getBlob(node_proto, 1); |
|
Mat inp_zp = getBlob(node_proto, 2); |
|
|
|
Mat weights = getBlob(node_proto, 3).t(); |
|
int outCn = weights.size[0]; |
|
int secondInpDims = weights.dims; |
|
|
|
Mat w_scale = getBlob(node_proto, 4); |
|
CV_Assert(w_scale.total() == 1 || w_scale.total() == outCn); |
|
Mat wt_sc = (w_scale.total() == outCn) ? w_scale : Mat(1, outCn, CV_32F, Scalar(w_scale.at<float>(0))); |
|
Mat out_sc = getBlob(node_proto, 6); |
|
|
|
Mat bias(1, outCn, CV_32S); |
|
Mat outputMultiplier(1, outCn, CV_32F); |
|
for (int i = 0; i < outCn; i++) |
|
{ |
|
bias.at<int>(i) = -inp_zp.at<int8_t>(0)*(cv::sum(weights.row(i))[0]); |
|
outputMultiplier.at<float>(i) = (inp_sc.at<float>(0) * wt_sc.at<float>(i)) / out_sc.at<float>(0); |
|
} |
|
|
|
layerParams.type = "InnerProductInt8"; |
|
layerParams.set("num_output", outCn); |
|
layerParams.set("axis", firstInpDims - secondInpDims + 1); |
|
layerParams.blobs.push_back(weights); |
|
layerParams.blobs.push_back(bias); |
|
layerParams.blobs.push_back(outputMultiplier); |
|
addLayer(layerParams, node_proto); |
|
} |
|
|
|
void ONNXImporter::parseQEltwise(LayerParams& layerParams, const opencv_onnx::NodeProto& node_proto_) |
|
{ |
|
opencv_onnx::NodeProto node_proto = node_proto_; |
|
CV_Assert(node_proto.input_size() == 8); |
|
std::string op = (node_proto.op_type() == "QLinearAdd") ? "sum" : "prod"; |
|
int constId = -1; |
|
for (int i = 0; i < 4; i += 3) |
|
{ |
|
if (constBlobs.find(node_proto.input(i)) != constBlobs.end()) |
|
constId = i; |
|
} |
|
|
|
Mat inp_0_sc = getBlob(node_proto, 1); |
|
Mat inp_0_zp = getBlob(node_proto, 2); |
|
|
|
Mat inp_1_sc = getBlob(node_proto, 4); |
|
Mat inp_1_zp = getBlob(node_proto, 5); |
|
|
|
// Set 2nd input as the const input |
|
if (constId == 0) |
|
{ |
|
cv::swap(inp_0_sc, inp_1_sc); |
|
cv::swap(inp_0_zp, inp_1_zp); |
|
} |
|
|
|
float out_sc = getBlob(node_proto, 6).at<float>(0); |
|
int8_t out_zp = getBlob(node_proto, 7).at<int8_t>(0); |
|
|
|
std::vector<float> inp_scales = {inp_0_sc.at<float>(0), inp_1_sc.at<float>(0)}; |
|
std::vector<int8_t> inp_zps = {inp_0_zp.at<int8_t>(0), inp_1_zp.at<int8_t>(0)}; |
|
|
|
std::vector<float> coeffs; |
|
float offset; |
|
if (op == "sum") |
|
{ |
|
coeffs = {inp_scales[0]/out_sc, inp_scales[1]/out_sc}; |
|
offset = out_zp - coeffs[0]*inp_zps[0] - coeffs[1]*inp_zps[1]; |
|
} |
|
else |
|
{ |
|
coeffs = {inp_scales[0]/out_sc, inp_scales[1]}; |
|
offset = out_zp; |
|
} |
|
|
|
if (constId != -1) |
|
{ |
|
Mat blob = getBlob(node_proto, constId); |
|
if (blob.total() == 1) |
|
{ |
|
float val = inp_scales[1] * (blob.at<int8_t>(0) - inp_zps[1]); |
|
float scale = inp_scales[0] / out_sc; |
|
if (op == "prod") |
|
scale *= val; |
|
|
|
float shift = out_zp - scale*inp_zps[0]; |
|
if (op == "sum") |
|
shift += (val/out_sc); |
|
|
|
LayerParams rescaleParams; |
|
rescaleParams.name = layerParams.name; |
|
rescaleParams.type = "Requantize"; |
|
rescaleParams.set("depth", CV_8S); |
|
rescaleParams.set("scale", scale); |
|
rescaleParams.set("shift", shift); |
|
addLayer(rescaleParams, node_proto); |
|
return; |
|
} |
|
else |
|
{ |
|
MatShape inpShape = outShapes[node_proto.input(3 - constId)]; |
|
if (blob.dims == 2) |
|
blob = blob.t(); |
|
|
|
if (shape(blob) == inpShape) |
|
{ |
|
LayerParams constParams; |
|
constParams.name = layerParams.name + "/const"; |
|
constParams.type = "ConstInt8"; |
|
constParams.set("depth", CV_8S); |
|
constParams.set("scales", DictValue::arrayReal(inp_1_sc.ptr<float>(), 1)); |
|
constParams.set("zeropoints", DictValue::arrayInt(inp_1_zp.ptr<int8_t>(), 1)); |
|
constParams.blobs.push_back(blob); |
|
|
|
int id = dstNet.addLayer(constParams.name, constParams.type, CV_8S, constParams); |
|
layer_id.insert(std::make_pair(constParams.name, LayerInfo(id, 0))); |
|
outShapes[constParams.name] = shape(blob); |
|
node_proto.set_input(constId, constParams.name); |
|
|
|
layerParams.type = "EltwiseInt8"; |
|
layerParams.set("operation", op); |
|
layerParams.set("coeff", DictValue::arrayReal(coeffs.data(), coeffs.size())); |
|
layerParams.set("offset", offset); |
|
} |
|
else |
|
{ |
|
layerParams.type = "ScaleInt8"; |
|
layerParams.set("bias_term", op == "sum"); |
|
int axis = 1; |
|
for (int i = 0; i < graph_proto.initializer_size(); i++) |
|
{ |
|
opencv_onnx::TensorProto tensor_proto = graph_proto.initializer(i); |
|
if (tensor_proto.name() == node_proto.input(constId)) |
|
{ |
|
axis = inpShape.size() - tensor_proto.dims_size(); |
|
break; |
|
} |
|
} |
|
layerParams.set("axis", axis); |
|
blob = blob.reshape(1, 1); |
|
Mat blob_dequantized; |
|
blob.convertTo(blob_dequantized, CV_32F, inp_scales[1], -(inp_scales[1] * inp_zps[1])); |
|
layerParams.blobs.push_back(blob_dequantized); |
|
layerParams.set("input_scales", DictValue::arrayReal(inp_scales.data(), inp_scales.size())); |
|
} |
|
} |
|
} |
|
else if (outShapes[node_proto.input(0)] == outShapes[node_proto.input(3)]) |
|
{ |
|
layerParams.type = "EltwiseInt8"; |
|
layerParams.set("operation", op); |
|
layerParams.set("coeff", DictValue::arrayReal(coeffs.data(), coeffs.size())); |
|
layerParams.set("offset", offset); |
|
} |
|
else |
|
{ |
|
layerParams.type = "ScaleInt8"; |
|
layerParams.set("bias_term", op == "sum"); |
|
layerParams.set("input_scales", DictValue::arrayReal(inp_scales.data(), inp_scales.size())); |
|
} |
|
|
|
layerParams.set("input_zeropoints", DictValue::arrayInt(inp_zps.data(), inp_zps.size())); |
|
addLayer(layerParams, node_proto); |
|
} |
|
|
|
void ONNXImporter::parseQLeakyRelu(LayerParams& layerParams, const opencv_onnx::NodeProto& node_proto) |
|
{ |
|
CV_Assert(node_proto.input_size() == 5); |
|
|
|
float slope = layerParams.get<float>("alpha"); |
|
float inp_sc = getBlob(node_proto, 1).at<float>(0); |
|
int8_t inp_zp = getBlob(node_proto, 2).at<int8_t>(0); |
|
float out_sc = getBlob(node_proto, 3).at<float>(0); |
|
int8_t out_zp = getBlob(node_proto, 4).at<int8_t>(0); |
|
|
|
Mat lookUpTable(1, 256, CV_8S); |
|
int8_t* table = lookUpTable.ptr<int8_t>(); |
|
for (int i = -128; i < 128; i++) |
|
{ |
|
float x = inp_sc*(i - inp_zp); |
|
float y = x >= 0.f ? x : slope*x; |
|
int quantized = out_zp + cvRound(y/out_sc); |
|
table[i+128] = saturate_cast<int8_t>(quantized); |
|
} |
|
|
|
layerParams.type = "ReLUInt8"; |
|
layerParams.blobs.push_back(lookUpTable); |
|
addLayer(layerParams, node_proto); |
|
} |
|
|
|
void ONNXImporter::parseQSigmoid(LayerParams& layerParams, const opencv_onnx::NodeProto& node_proto) |
|
{ |
|
CV_Assert(node_proto.input_size() == 5); |
|
|
|
float inp_sc = getBlob(node_proto, 1).at<float>(0); |
|
int8_t inp_zp = getBlob(node_proto, 2).at<int8_t>(0); |
|
float out_sc = getBlob(node_proto, 3).at<float>(0); |
|
int8_t out_zp = getBlob(node_proto, 4).at<int8_t>(0); |
|
|
|
Mat lookUpTable(1, 256, CV_8S); |
|
int8_t* table = lookUpTable.ptr<int8_t>(); |
|
for (int i = -128; i < 128; i++) |
|
{ |
|
float x = inp_sc*(i - inp_zp); |
|
float y = 1.f/(1.f + std::exp(-x)); |
|
int quantized = out_zp + cvRound(y/out_sc); |
|
table[i+128] = saturate_cast<int8_t>(quantized); |
|
} |
|
|
|
layerParams.type = "SigmoidInt8"; |
|
layerParams.blobs.push_back(lookUpTable); |
|
addLayer(layerParams, node_proto); |
|
} |
|
|
|
void ONNXImporter::parseQAvgPool(LayerParams& layerParams, const opencv_onnx::NodeProto& node_proto) |
|
{ |
|
CV_Assert(node_proto.input_size() == 5); |
|
float inp_sc = getBlob(node_proto, 1).at<float>(0); |
|
int8_t inp_zp = getBlob(node_proto, 2).at<int8_t>(0); |
|
float out_sc = getBlob(node_proto, 3).at<float>(0); |
|
|
|
layerParams.type = "PoolingInt8"; |
|
layerParams.set("pool", "ave"); |
|
layerParams.set("global_pooling", node_proto.op_type() == "QLinearGlobalAveragePool"); |
|
layerParams.set("multiplier", inp_sc/out_sc); |
|
layerParams.set("input_zeropoint", inp_zp); |
|
addLayer(layerParams, node_proto); |
|
} |
|
|
|
void ONNXImporter::parseQConcat(LayerParams& layerParams, const opencv_onnx::NodeProto& node_proto_) |
|
{ |
|
opencv_onnx::NodeProto node_proto = node_proto_; |
|
layerParams.type = "ConcatInt8"; |
|
int num_inputs = node_proto.input_size(); |
|
|
|
float out_scale = getBlob(node_proto, 0).at<float>(0); |
|
int out_zp = getBlob(node_proto, 1).at<int8_t>(0); |
|
|
|
for (int i = 2; i < num_inputs; i += 3) |
|
{ |
|
float inp_scale = getBlob(node_proto, i + 1).at<float>(0); |
|
int inp_zp = getBlob(node_proto, i + 2).at<int8_t>(0); |
|
|
|
if (inp_scale != out_scale || inp_zp != out_zp) |
|
{ |
|
float scale = inp_scale/out_scale; |
|
float shift = out_zp - scale*inp_zp; |
|
|
|
if (constBlobs.find(node_proto.input(i)) != constBlobs.end()) |
|
{ |
|
Mat blob = getBlob(node_proto, i); |
|
Mat blob_rescaled; |
|
blob.convertTo(blob_rescaled, CV_8S, scale, shift); |
|
constBlobs[node_proto.input(i)] = blob_rescaled; |
|
} |
|
else |
|
{ |
|
LayerParams rescaleParams; |
|
rescaleParams.name = node_proto.input(i) + "/rescale"; |
|
rescaleParams.type = "Requantize"; |
|
rescaleParams.set("depth", CV_8S); |
|
rescaleParams.set("scale", scale); |
|
rescaleParams.set("shift", shift); |
|
|
|
opencv_onnx::NodeProto proto; |
|
proto.add_input(node_proto.input(i)); |
|
proto.add_output(rescaleParams.name); |
|
addLayer(rescaleParams, proto); |
|
node_proto.set_input(i, rescaleParams.name); |
|
} |
|
} |
|
} |
|
|
|
bool hasVariableInps = false; |
|
for (int i = 2; i < num_inputs; i += 3) |
|
{ |
|
if (layer_id.find(node_proto.input(i)) != layer_id.end()) |
|
{ |
|
hasVariableInps = true; |
|
break; |
|
} |
|
} |
|
|
|
if (!hasVariableInps) |
|
{ |
|
std::vector<Mat> inputs, concatenated; |
|
MatShape inputShape; |
|
for (size_t i = 2; i < num_inputs; i += 3) |
|
{ |
|
Mat blob = getBlob(node_proto, i); |
|
if (blob.size.dims() > inputShape.size()) |
|
{ |
|
inputShape = shape(blob); |
|
} |
|
inputs.push_back(blob); |
|
} |
|
|
|
int axis = layerParams.get<int>("axis", 1); |
|
for (size_t i = 0; i < inputs.size(); ++i) |
|
{ |
|
MatShape targetShape = inputShape; |
|
targetShape[axis] = shape(inputs[i])[axis]; |
|
CV_CheckEQ(total(targetShape), total(shape(inputs[i])), ""); |
|
inputs[i] = inputs[i].reshape(0, targetShape); |
|
} |
|
runLayer(layerParams, inputs, concatenated); |
|
CV_Assert(concatenated.size() == 1); |
|
addConstant(layerParams.name, concatenated[0]); |
|
return; |
|
} |
|
else |
|
{ |
|
for (int i = 2; i < num_inputs; i += 3) |
|
{ |
|
if (constBlobs.find(node_proto.input(i)) != constBlobs.end()) |
|
{ |
|
LayerParams constParams; |
|
constParams.name = node_proto.input(i); |
|
constParams.type = "ConstInt8"; |
|
constParams.blobs.push_back(getBlob(node_proto, i)); |
|
constParams.set("depth", CV_8S); |
|
|
|
opencv_onnx::NodeProto proto; |
|
proto.add_output(constParams.name); |
|
addLayer(constParams, proto); |
|
} |
|
} |
|
} |
|
addLayer(layerParams, node_proto); |
|
} |
|
|
|
const ONNXImporter::DispatchMap ONNXImporter::buildDispatchMap() |
|
{ |
|
DispatchMap dispatch; |
|
|
|
dispatch["ArgMax"] = dispatch["ArgMin"] = &ONNXImporter::parseArg; |
|
dispatch["MaxUnpool"] = &ONNXImporter::parseMaxUnpool; |
|
dispatch["MaxPool"] = &ONNXImporter::parseMaxPool; |
|
dispatch["AveragePool"] = &ONNXImporter::parseAveragePool; |
|
dispatch["GlobalAveragePool"] = dispatch["GlobalMaxPool"] = dispatch["ReduceMean"] = dispatch["ReduceSum"] = |
|
dispatch["ReduceMax"] = &ONNXImporter::parseReduce; |
|
dispatch["Slice"] = &ONNXImporter::parseSlice; |
|
dispatch["Split"] = &ONNXImporter::parseSplit; |
|
dispatch["Add"] = dispatch["Sum"] = dispatch["Sub"] = &ONNXImporter::parseBias; |
|
dispatch["Pow"] = &ONNXImporter::parsePow; |
|
dispatch["Min"] = dispatch["Max"] = &ONNXImporter::parseMinMax; |
|
dispatch["Neg"] = &ONNXImporter::parseNeg; |
|
dispatch["Constant"] = &ONNXImporter::parseConstant; |
|
dispatch["LSTM"] = &ONNXImporter::parseLSTM; |
|
dispatch["GRU"] = &ONNXImporter::parseGRU; |
|
dispatch["ImageScaler"] = &ONNXImporter::parseImageScaler; |
|
dispatch["Clip"] = &ONNXImporter::parseClip; |
|
dispatch["LeakyRelu"] = &ONNXImporter::parseLeakyRelu; |
|
dispatch["Relu"] = &ONNXImporter::parseRelu; |
|
dispatch["Elu"] = &ONNXImporter::parseElu; |
|
dispatch["Tanh"] = &ONNXImporter::parseTanh; |
|
dispatch["Abs"] = &ONNXImporter::parseAbs; |
|
dispatch["Equal"] = dispatch["Greater"] = dispatch["Less"] = &ONNXImporter::parseCompare; |
|
dispatch["PRelu"] = &ONNXImporter::parsePRelu; |
|
dispatch["LRN"] = &ONNXImporter::parseLRN; |
|
dispatch["InstanceNormalization"] = &ONNXImporter::parseInstanceNormalization; |
|
dispatch["BatchNormalization"] = &ONNXImporter::parseBatchNormalization; |
|
dispatch["Gemm"] = &ONNXImporter::parseGemm; |
|
dispatch["MatMul"] = &ONNXImporter::parseMatMul; |
|
dispatch["Mul"] = dispatch["Div"] = &ONNXImporter::parseMul; |
|
dispatch["Conv"] = &ONNXImporter::parseConv; |
|
dispatch["ConvTranspose"] = &ONNXImporter::parseConvTranspose; |
|
dispatch["Transpose"] = &ONNXImporter::parseTranspose; |
|
dispatch["Squeeze"] = &ONNXImporter::parseSqueeze; |
|
dispatch["Flatten"] = &ONNXImporter::parseFlatten; |
|
dispatch["Unsqueeze"] = &ONNXImporter::parseUnsqueeze; |
|
dispatch["Expand"] = &ONNXImporter::parseExpand; |
|
dispatch["Reshape"] = &ONNXImporter::parseReshape; |
|
dispatch["Pad"] = &ONNXImporter::parsePad; |
|
dispatch["Shape"] = &ONNXImporter::parseShape; |
|
dispatch["Cast"] = &ONNXImporter::parseCast; |
|
dispatch["ConstantFill"] = dispatch["ConstantOfShape"] = &ONNXImporter::parseConstantFill; |
|
dispatch["Gather"] = &ONNXImporter::parseGather; |
|
dispatch["Concat"] = &ONNXImporter::parseConcat; |
|
dispatch["Resize"] = &ONNXImporter::parseResize; |
|
dispatch["Upsample"] = &ONNXImporter::parseUpsample; |
|
dispatch["SoftMax"] = dispatch["LogSoftmax"] = &ONNXImporter::parseSoftMax; |
|
dispatch["DetectionOutput"] = &ONNXImporter::parseDetectionOutput; |
|
dispatch["CumSum"] = &ONNXImporter::parseCumSum; |
|
dispatch["QuantizeLinear"] = dispatch["DequantizeLinear"] = &ONNXImporter::parseQuantDequant; |
|
dispatch["QLinearConv"] = &ONNXImporter::parseQConv; |
|
dispatch["QLinearMatMul"] = &ONNXImporter::parseQMatMul; |
|
dispatch["QLinearAdd"] = dispatch["QLinearMul"] = &ONNXImporter::parseQEltwise; |
|
dispatch["QLinearLeakyRelu"] = &ONNXImporter::parseQLeakyRelu; |
|
dispatch["QLinearSigmoid"] = &ONNXImporter::parseQSigmoid; |
|
dispatch["QLinearAveragePool"] = dispatch["QLinearGlobalAveragePool"] = &ONNXImporter::parseQAvgPool; |
|
dispatch["QLinearConcat"] = &ONNXImporter::parseQConcat; |
|
|
|
return dispatch; |
|
} |
|
|
|
Net readNetFromONNX(const String& onnxFile) |
|
{ |
|
return detail::readNetDiagnostic<ONNXImporter>(onnxFile.c_str()); |
|
} |
|
|
|
Net readNetFromONNX(const char* buffer, size_t sizeBuffer) |
|
{ |
|
return detail::readNetDiagnostic<ONNXImporter>(buffer, sizeBuffer); |
|
} |
|
|
|
Net readNetFromONNX(const std::vector<uchar>& buffer) |
|
{ |
|
return readNetFromONNX(reinterpret_cast<const char*>(buffer.data()), buffer.size()); |
|
} |
|
|
|
Mat readTensorFromONNX(const String& path) |
|
{ |
|
std::fstream input(path.c_str(), std::ios::in | std::ios::binary); |
|
if (!input) |
|
{ |
|
CV_Error(Error::StsBadArg, cv::format("Can't read ONNX file: %s", path.c_str())); |
|
} |
|
|
|
opencv_onnx::TensorProto tensor_proto = opencv_onnx::TensorProto(); |
|
if (!tensor_proto.ParseFromIstream(&input)) |
|
{ |
|
CV_Error(Error::StsUnsupportedFormat, cv::format("Failed to parse ONNX data: %s", path.c_str())); |
|
} |
|
Mat mat = getMatFromTensor(tensor_proto); |
|
releaseONNXTensor(tensor_proto); |
|
return mat; |
|
} |
|
|
|
CV__DNN_INLINE_NS_END |
|
}} // namespace |
|
|
|
#endif
|
|
|