mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
285 lines
9.0 KiB
285 lines
9.0 KiB
// This file is part of OpenCV project. |
|
// It is subject to the license terms in the LICENSE file found in the top-level directory |
|
// of this distribution and at http://opencv.org/license.html. |
|
// |
|
// Copyright (C) 2020 Intel Corporation |
|
|
|
|
|
#include "../test_precomp.hpp" |
|
|
|
#include <ade/util/iota_range.hpp> |
|
|
|
#include <opencv2/gapi/s11n.hpp> |
|
|
|
namespace opencv_test |
|
{ |
|
|
|
TEST(S11N, Pipeline_Crop_Rect) |
|
{ |
|
cv::Rect rect_to{ 4,10,37,50 }; |
|
cv::Size sz_in = cv::Size(1920, 1080); |
|
cv::Size sz_out = cv::Size(37, 50); |
|
cv::Mat in_mat = cv::Mat::eye(sz_in, CV_8UC1); |
|
cv::Mat out_mat_gapi(sz_out, CV_8UC1); |
|
cv::Mat out_mat_ocv(sz_out, CV_8UC1); |
|
|
|
// G-API code ////////////////////////////////////////////////////////////// |
|
cv::GMat in; |
|
auto out = cv::gapi::crop(in, rect_to); |
|
auto p = cv::gapi::serialize(cv::GComputation(in, out)); |
|
auto c = cv::gapi::deserialize<cv::GComputation>(p); |
|
c.apply(in_mat, out_mat_gapi); |
|
|
|
// OpenCV code ///////////////////////////////////////////////////////////// |
|
{ |
|
out_mat_ocv = in_mat(rect_to); |
|
} |
|
// Comparison ////////////////////////////////////////////////////////////// |
|
{ |
|
EXPECT_EQ(0, cvtest::norm(out_mat_ocv, out_mat_gapi, NORM_INF)); |
|
} |
|
} |
|
|
|
|
|
TEST(S11N, Pipeline_Canny_Bool) |
|
{ |
|
const cv::Size sz_in(1280, 720); |
|
cv::GMat in; |
|
double thrLow = 120.0; |
|
double thrUp = 240.0; |
|
int apSize = 5; |
|
bool l2gr = true; |
|
cv::Mat in_mat = cv::Mat::eye(1280, 720, CV_8UC1); |
|
cv::Mat out_mat_gapi(sz_in, CV_8UC1); |
|
cv::Mat out_mat_ocv(sz_in, CV_8UC1); |
|
|
|
// G-API code ////////////////////////////////////////////////////////////// |
|
auto out = cv::gapi::Canny(in, thrLow, thrUp, apSize, l2gr); |
|
auto p = cv::gapi::serialize(cv::GComputation(in, out)); |
|
auto c = cv::gapi::deserialize<cv::GComputation>(p); |
|
c.apply(in_mat, out_mat_gapi); |
|
|
|
// OpenCV code ///////////////////////////////////////////////////////////// |
|
{ |
|
cv::Canny(in_mat, out_mat_ocv, thrLow, thrUp, apSize, l2gr); |
|
} |
|
// Comparison ////////////////////////////////////////////////////////////// |
|
EXPECT_EQ(0, cvtest::norm(out_mat_gapi, out_mat_ocv, NORM_INF)); |
|
} |
|
|
|
TEST(S11N, Pipeline_Not) |
|
{ |
|
cv::GMat in; |
|
auto p = cv::gapi::serialize(cv::GComputation(in, cv::gapi::bitwise_not(in))); |
|
auto c = cv::gapi::deserialize<cv::GComputation>(p); |
|
|
|
cv::Mat in_mat = cv::Mat::eye(32, 32, CV_8UC1); |
|
cv::Mat ref_mat = ~in_mat; |
|
|
|
cv::Mat out_mat; |
|
c.apply(in_mat, out_mat); |
|
EXPECT_EQ(0, cvtest::norm(out_mat, ref_mat, NORM_INF)); |
|
|
|
out_mat = cv::Mat(); |
|
auto cc = c.compile(cv::descr_of(in_mat)); |
|
cc(in_mat, out_mat); |
|
EXPECT_EQ(0, cvtest::norm(out_mat, ref_mat, NORM_INF)); |
|
} |
|
|
|
TEST(S11N, Pipeline_Sum_Scalar) |
|
{ |
|
cv::GMat in; |
|
auto p = cv::gapi::serialize(cv::GComputation(in, cv::gapi::sum(in))); |
|
auto c = cv::gapi::deserialize<cv::GComputation>(p); |
|
|
|
cv::Mat in_mat = cv::Mat::eye(32, 32, CV_8UC1); |
|
cv::Scalar ref_scl = cv::sum(in_mat); |
|
|
|
cv::Scalar out_scl; |
|
c.apply(in_mat, out_scl); |
|
EXPECT_EQ(out_scl, ref_scl); |
|
|
|
out_scl = cv::Scalar(); |
|
auto cc = c.compile(cv::descr_of(in_mat)); |
|
cc(in_mat, out_scl); |
|
EXPECT_EQ(out_scl, ref_scl); |
|
} |
|
|
|
TEST(S11N, Pipeline_BinaryOp) |
|
{ |
|
cv::GMat a, b; |
|
auto p = cv::gapi::serialize(cv::GComputation(a, b, cv::gapi::add(a, b))); |
|
auto c = cv::gapi::deserialize<cv::GComputation>(p); |
|
|
|
cv::Mat in_mat = cv::Mat::eye(32, 32, CV_8UC1); |
|
cv::Mat ref_mat = (in_mat + in_mat); |
|
|
|
cv::Mat out_mat; |
|
c.apply(in_mat, in_mat, out_mat); |
|
EXPECT_EQ(0, cvtest::norm(out_mat, ref_mat, NORM_INF)); |
|
|
|
out_mat = cv::Mat(); |
|
auto cc = c.compile(cv::descr_of(in_mat), cv::descr_of(in_mat)); |
|
cc(in_mat, in_mat, out_mat); |
|
EXPECT_EQ(0, cvtest::norm(out_mat, ref_mat, NORM_INF)); |
|
} |
|
|
|
TEST(S11N, Pipeline_Binary_Sum_Scalar) |
|
{ |
|
cv::GMat a, b; |
|
auto p = cv::gapi::serialize(cv::GComputation(a, b, cv::gapi::sum(a + b))); |
|
auto c = cv::gapi::deserialize<cv::GComputation>(p); |
|
|
|
cv::Mat in_mat = cv::Mat::eye(32, 32, CV_8UC1); |
|
cv::Scalar ref_scl = cv::sum(in_mat + in_mat); |
|
cv::Scalar out_scl; |
|
c.apply(in_mat, in_mat, out_scl); |
|
EXPECT_EQ(out_scl, ref_scl); |
|
|
|
out_scl = cv::Scalar(); |
|
auto cc = c.compile(cv::descr_of(in_mat), cv::descr_of(in_mat)); |
|
cc(in_mat, in_mat, out_scl); |
|
EXPECT_EQ(out_scl, ref_scl); |
|
} |
|
|
|
TEST(S11N, Pipeline_Sharpen) |
|
{ |
|
const cv::Size sz_in (1280, 720); |
|
const cv::Size sz_out( 640, 480); |
|
cv::Mat in_mat (sz_in, CV_8UC3); |
|
in_mat = cv::Scalar(128, 33, 53); |
|
|
|
cv::Mat out_mat(sz_out, CV_8UC3); |
|
cv::Mat out_mat_y; |
|
cv::Mat out_mat_ocv(sz_out, CV_8UC3); |
|
|
|
float sharpen_coeffs[] = { |
|
0.0f, -1.f, 0.0f, |
|
-1.0f, 5.f, -1.0f, |
|
0.0f, -1.f, 0.0f |
|
}; |
|
cv::Mat sharpen_kernel(3, 3, CV_32F, sharpen_coeffs); |
|
|
|
// G-API code ////////////////////////////////////////////////////////////// |
|
cv::GMat in; |
|
auto vga = cv::gapi::resize(in, sz_out); |
|
auto yuv = cv::gapi::RGB2YUV(vga); |
|
auto yuv_p = cv::gapi::split3(yuv); |
|
auto y_sharp = cv::gapi::filter2D(std::get<0>(yuv_p), -1, sharpen_kernel); |
|
auto yuv_new = cv::gapi::merge3(y_sharp, std::get<1>(yuv_p), std::get<2>(yuv_p)); |
|
auto out = cv::gapi::YUV2RGB(yuv_new); |
|
|
|
auto p = cv::gapi::serialize(cv::GComputation(cv::GIn(in), cv::GOut(y_sharp, out))); |
|
auto c = cv::gapi::deserialize<cv::GComputation>(p); |
|
c.apply(cv::gin(in_mat), cv::gout(out_mat_y, out_mat)); |
|
|
|
// OpenCV code ///////////////////////////////////////////////////////////// |
|
{ |
|
cv::Mat smaller; |
|
cv::resize(in_mat, smaller, sz_out); |
|
|
|
cv::Mat yuv_mat; |
|
cv::cvtColor(smaller, yuv_mat, cv::COLOR_RGB2YUV); |
|
std::vector<cv::Mat> yuv_planar(3); |
|
cv::split(yuv_mat, yuv_planar); |
|
cv::filter2D(yuv_planar[0], yuv_planar[0], -1, sharpen_kernel); |
|
cv::merge(yuv_planar, yuv_mat); |
|
cv::cvtColor(yuv_mat, out_mat_ocv, cv::COLOR_YUV2RGB); |
|
} |
|
|
|
// Comparison ////////////////////////////////////////////////////////////// |
|
{ |
|
cv::Mat diff = out_mat_ocv != out_mat; |
|
std::vector<cv::Mat> diffBGR(3); |
|
cv::split(diff, diffBGR); |
|
EXPECT_EQ(0, cvtest::norm(diffBGR[0], NORM_INF)); |
|
EXPECT_EQ(0, cvtest::norm(diffBGR[1], NORM_INF)); |
|
EXPECT_EQ(0, cvtest::norm(diffBGR[2], NORM_INF)); |
|
} |
|
|
|
// Metadata check ///////////////////////////////////////////////////////// |
|
{ |
|
auto cc = c.compile(cv::descr_of(in_mat)); |
|
auto metas = cc.outMetas(); |
|
ASSERT_EQ(2u, metas.size()); |
|
|
|
auto out_y_meta = cv::util::get<cv::GMatDesc>(metas[0]); |
|
auto out_meta = cv::util::get<cv::GMatDesc>(metas[1]); |
|
|
|
// Y-output |
|
EXPECT_EQ(CV_8U, out_y_meta.depth); |
|
EXPECT_EQ(1, out_y_meta.chan); |
|
EXPECT_EQ(640, out_y_meta.size.width); |
|
EXPECT_EQ(480, out_y_meta.size.height); |
|
|
|
// Final output |
|
EXPECT_EQ(CV_8U, out_meta.depth); |
|
EXPECT_EQ(3, out_meta.chan); |
|
EXPECT_EQ(640, out_meta.size.width); |
|
EXPECT_EQ(480, out_meta.size.height); |
|
} |
|
} |
|
|
|
TEST(S11N, Pipeline_CustomRGB2YUV) |
|
{ |
|
const cv::Size sz(1280, 720); |
|
const int INS = 3; |
|
std::vector<cv::Mat> in_mats(INS); |
|
for (auto i : ade::util::iota(INS)) |
|
{ |
|
in_mats[i].create(sz, CV_8U); |
|
cv::randu(in_mats[i], cv::Scalar::all(0), cv::Scalar::all(255)); |
|
} |
|
|
|
const int OUTS = 3; |
|
std::vector<cv::Mat> out_mats_cv(OUTS); |
|
std::vector<cv::Mat> out_mats_gapi(OUTS); |
|
for (auto i : ade::util::iota(OUTS)) |
|
{ |
|
out_mats_cv[i].create(sz, CV_8U); |
|
out_mats_gapi[i].create(sz, CV_8U); |
|
} |
|
|
|
// G-API code ////////////////////////////////////////////////////////////// |
|
{ |
|
cv::GMat r, g, b; |
|
cv::GMat y = 0.299f*r + 0.587f*g + 0.114f*b; |
|
cv::GMat u = 0.492f*(b - y); |
|
cv::GMat v = 0.877f*(r - y); |
|
|
|
auto p = cv::gapi::serialize(cv::GComputation({r, g, b}, {y, u, v})); |
|
auto c = cv::gapi::deserialize<cv::GComputation>(p); |
|
c.apply(in_mats, out_mats_gapi); |
|
} |
|
|
|
// OpenCV code ///////////////////////////////////////////////////////////// |
|
{ |
|
cv::Mat r = in_mats[0], g = in_mats[1], b = in_mats[2]; |
|
cv::Mat y = 0.299f*r + 0.587f*g + 0.114f*b; |
|
cv::Mat u = 0.492f*(b - y); |
|
cv::Mat v = 0.877f*(r - y); |
|
|
|
out_mats_cv[0] = y; |
|
out_mats_cv[1] = u; |
|
out_mats_cv[2] = v; |
|
} |
|
|
|
// Comparison ////////////////////////////////////////////////////////////// |
|
{ |
|
const auto diff = [](cv::Mat m1, cv::Mat m2, int t) { |
|
return cv::abs(m1 - m2) > t; |
|
}; |
|
|
|
// FIXME: Not bit-accurate even now! |
|
cv::Mat |
|
diff_y = diff(out_mats_cv[0], out_mats_gapi[0], 2), |
|
diff_u = diff(out_mats_cv[1], out_mats_gapi[1], 2), |
|
diff_v = diff(out_mats_cv[2], out_mats_gapi[2], 2); |
|
|
|
EXPECT_EQ(0, cvtest::norm(diff_y, NORM_INF)); |
|
EXPECT_EQ(0, cvtest::norm(diff_u, NORM_INF)); |
|
EXPECT_EQ(0, cvtest::norm(diff_v, NORM_INF)); |
|
} |
|
} |
|
|
|
} // namespace opencv_test
|
|
|