mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
940 lines
33 KiB
940 lines
33 KiB
// This file is part of OpenCV project. |
|
// It is subject to the license terms in the LICENSE file found in the top-level directory |
|
// of this distribution and at http://opencv.org/license.html. |
|
// |
|
// Copyright (C) 2017-2019, Intel Corporation, all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
|
|
// This tests doesn't require any external data. They just compare outputs of |
|
// layers using different computation backends. Input and parameters are random. |
|
|
|
#include "test_precomp.hpp" |
|
|
|
namespace opencv_test { namespace { |
|
|
|
using namespace cv; |
|
using namespace cv::dnn; |
|
using namespace testing; |
|
|
|
static void test(Mat& input, Net& net, Backend backendId, Target targetId, bool skipCheck = false, bool randInput = true, double l1 = 0.0, double lInf = 0.0) |
|
{ |
|
DNNTestLayer::checkBackend(backendId, targetId); |
|
if (randInput) |
|
randu(input, -1.0f, 1.0f); |
|
|
|
net.setInput(input); |
|
net.setPreferableBackend(DNN_BACKEND_OPENCV); |
|
Mat outputDefault = net.forward().clone(); |
|
|
|
net.setPreferableBackend(backendId); |
|
net.setPreferableTarget(targetId); |
|
Mat outputHalide = net.forward().clone(); |
|
|
|
if (skipCheck) |
|
return; |
|
|
|
double default_l1, default_lInf; |
|
DNNTestLayer::getDefaultThresholds(backendId, targetId, &default_l1, &default_lInf); |
|
if (l1 == 0.0) |
|
l1 = default_l1; |
|
if (lInf == 0.0) |
|
lInf = default_lInf; |
|
#if 0 |
|
std::cout << "l1=" << l1 << " lInf=" << lInf << std::endl; |
|
std::cout << outputDefault.reshape(1, outputDefault.total()).t() << std::endl; |
|
std::cout << outputHalide.reshape(1, outputDefault.total()).t() << std::endl; |
|
#endif |
|
normAssert(outputDefault, outputHalide, "", l1, lInf); |
|
} |
|
|
|
static void test(LayerParams& params, Mat& input, Backend backendId, Target targetId, bool skipCheck = false, double l1 = 0.0, double lInf = 0.0) |
|
{ |
|
Net net; |
|
net.addLayerToPrev(params.name, params.type, params); |
|
test(input, net, backendId, targetId, skipCheck, true, l1, lInf); |
|
} |
|
|
|
static inline testing::internal::ParamGenerator<tuple<Backend, Target> > dnnBackendsAndTargetsWithHalide() |
|
{ |
|
return dnnBackendsAndTargets(true, true, false); // OpenCV/CPU is used as reference |
|
} |
|
|
|
class Test_Halide_layers : public DNNTestLayer {}; |
|
|
|
//////////////////////////////////////////////////////////////////////////////// |
|
// Padding |
|
//////////////////////////////////////////////////////////////////////////////// |
|
TEST_P(Test_Halide_layers, Padding) |
|
{ |
|
static const int kNumRuns = 10; |
|
std::vector<int> paddings(8); |
|
cv::RNG& rng = cv::theRNG(); |
|
for (int t = 0; t < kNumRuns; ++t) |
|
{ |
|
for (int i = 0; i < paddings.size(); ++i) |
|
paddings[i] = rng(5); |
|
|
|
LayerParams lp; |
|
lp.set("paddings", DictValue::arrayInt<int*>(&paddings[0], paddings.size())); |
|
lp.type = "Padding"; |
|
lp.name = "testLayer"; |
|
|
|
int sz[] = {1 + (int)rng(10), 1 + (int)rng(10), 1 + (int)rng(10), 1 + (int)rng(10)}; |
|
Mat input(4, &sz[0], CV_32F); |
|
test(lp, input, backend, target); |
|
} |
|
} |
|
|
|
//////////////////////////////////////////////////////////////////////////////// |
|
// Convolution |
|
//////////////////////////////////////////////////////////////////////////////// |
|
typedef TestWithParam<tuple<Vec3i, Size, Size, Size, Size, Size, bool, tuple<Backend, Target> > > Convolution; |
|
TEST_P(Convolution, Accuracy) |
|
{ |
|
int inChannels = get<0>(GetParam())[0]; |
|
int outChannels = get<0>(GetParam())[1]; |
|
int group = get<0>(GetParam())[2]; |
|
Size inSize = get<1>(GetParam()); |
|
Size kernel = get<2>(GetParam()); |
|
Size stride = get<3>(GetParam()); |
|
Size pad = get<4>(GetParam()); |
|
Size dilation = get<5>(GetParam()); |
|
bool hasBias = get<6>(GetParam()); |
|
Backend backendId = get<0>(get<7>(GetParam())); |
|
Target targetId = get<1>(get<7>(GetParam())); |
|
|
|
bool skipCheck = false; |
|
|
|
int sz[] = {outChannels, inChannels / group, kernel.height, kernel.width}; |
|
Mat weights(4, &sz[0], CV_32F); |
|
randu(weights, -1.0f, 1.0f); |
|
|
|
LayerParams lp; |
|
lp.set("kernel_w", kernel.width); |
|
lp.set("kernel_h", kernel.height); |
|
lp.set("pad_w", pad.width); |
|
lp.set("pad_h", pad.height); |
|
lp.set("stride_w", stride.width); |
|
lp.set("stride_h", stride.height); |
|
lp.set("dilation_w", dilation.width); |
|
lp.set("dilation_h", dilation.height); |
|
lp.set("num_output", outChannels); |
|
lp.set("group", group); |
|
lp.set("bias_term", hasBias); |
|
lp.type = "Convolution"; |
|
lp.name = "testLayer"; |
|
lp.blobs.push_back(weights); |
|
if (hasBias) |
|
{ |
|
Mat bias(1, outChannels, CV_32F); |
|
randu(bias, -1.0f, 1.0f); |
|
lp.blobs.push_back(bias); |
|
} |
|
int inpSz[] = {1, inChannels, inSize.height, inSize.width}; |
|
Mat input(4, &inpSz[0], CV_32F); |
|
test(lp, input, backendId, targetId, skipCheck); |
|
if (skipCheck) |
|
throw SkipTestException("Skip checks in unstable test"); |
|
} |
|
|
|
INSTANTIATE_TEST_CASE_P(Layer_Test_Halide, Convolution, Combine( |
|
/*in channels, out channels, group*/ |
|
Values(Vec3i(6, 4, 1), Vec3i(6, 9, 1), |
|
Vec3i(6, 4, 2), Vec3i(6, 9, 3)), |
|
/*in size*/ Values(Size(5, 6)), |
|
/*kernel*/ Values(Size(3, 1), Size(1, 3)), |
|
/*stride*/ Values(Size(1, 1), Size(2, 2)), |
|
/*pad*/ Values(Size(1, 0), Size(0, 1)), |
|
/*dilation*/ Values(Size(1, 1), Size(2, 2)), |
|
/*has bias*/ Bool(), |
|
dnnBackendsAndTargetsWithHalide() |
|
)); |
|
|
|
//////////////////////////////////////////////////////////////////////////////// |
|
// Deconvolution |
|
//////////////////////////////////////////////////////////////////////////////// |
|
typedef TestWithParam<tuple<Vec3i, Size, Size, Size, Size, Vec4i, bool, tuple<Backend, Target> > > Deconvolution; |
|
TEST_P(Deconvolution, Accuracy) |
|
{ |
|
int inChannels = get<0>(GetParam())[0]; |
|
int outChannels = get<0>(GetParam())[1]; |
|
int group = get<0>(GetParam())[2]; |
|
Size inSize = get<1>(GetParam()); |
|
Size kernel = get<2>(GetParam()); |
|
Size pad = get<3>(GetParam()); |
|
Size dilation = get<4>(GetParam()); |
|
Size stride = Size(get<5>(GetParam())[0], get<5>(GetParam())[1]); |
|
Size adjPad = Size(get<5>(GetParam())[2], get<5>(GetParam())[3]); |
|
bool hasBias = get<6>(GetParam()); |
|
Backend backendId = get<0>(get<7>(GetParam())); |
|
Target targetId = get<1>(get<7>(GetParam())); |
|
|
|
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_GE(2019010000) |
|
if (backendId == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && targetId == DNN_TARGET_MYRIAD |
|
&& getInferenceEngineVPUType() == CV_DNN_INFERENCE_ENGINE_VPU_TYPE_MYRIAD_X |
|
&& inChannels == 6 && outChannels == 4 && group == 1 |
|
&& kernel == Size(1, 3) && pad == Size(1, 0) |
|
&& stride == Size(1, 1) && dilation == Size(1, 1)) |
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD_X); |
|
#endif |
|
|
|
if (targetId == DNN_TARGET_CUDA_FP16) |
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_CUDA_FP16); |
|
|
|
int sz[] = {inChannels, outChannels / group, kernel.height, kernel.width}; |
|
Mat weights(4, &sz[0], CV_32F); |
|
randu(weights, -1.0f, 1.0f); |
|
|
|
LayerParams lp; |
|
lp.set("kernel_w", kernel.width); |
|
lp.set("kernel_h", kernel.height); |
|
lp.set("pad_w", pad.width); |
|
lp.set("pad_h", pad.height); |
|
lp.set("stride_w", stride.width); |
|
lp.set("stride_h", stride.height); |
|
lp.set("dilation_w", dilation.width); |
|
lp.set("dilation_h", dilation.height); |
|
lp.set("adj_w", adjPad.width); |
|
lp.set("adj_h", adjPad.height); |
|
lp.set("num_output", outChannels); |
|
lp.set("group", group); |
|
lp.set("bias_term", hasBias); |
|
lp.type = "Deconvolution"; |
|
lp.name = "testLayer"; |
|
lp.blobs.push_back(weights); |
|
if (hasBias) |
|
{ |
|
Mat bias(1, outChannels, CV_32F); |
|
randu(bias, -1.0f, 1.0f); |
|
lp.blobs.push_back(bias); |
|
} |
|
int inpSz[] = {1, inChannels, inSize.height, inSize.width}; |
|
Mat input(4, &inpSz[0], CV_32F); |
|
test(lp, input, backendId, targetId); |
|
} |
|
|
|
INSTANTIATE_TEST_CASE_P(Layer_Test_Halide, Deconvolution, Combine( |
|
/*in channels, out channels, group*/ |
|
Values(Vec3i(6, 4, 1), Vec3i(6, 9, 3)), |
|
/*in size*/ Values(Size(5, 6)), |
|
/*kernel*/ Values(Size(3, 1), Size(1, 3)), |
|
/*pad*/ Values(Size(1, 0), Size(0, 1)), |
|
/*dilation*/ Values(Size(1, 1)), |
|
/*stride, adj. pad*/ Values(Vec4i(1,1, 0,0), Vec4i(2,2, 1,0), Vec4i(1,2, 0,1)), |
|
/*has bias*/ Bool(), |
|
dnnBackendsAndTargetsWithHalide() |
|
)); |
|
|
|
//////////////////////////////////////////////////////////////////////////////// |
|
// LRN |
|
//////////////////////////////////////////////////////////////////////////////// |
|
typedef TestWithParam<tuple<Vec3i, int, Vec3f, bool, std::string, tuple<Backend, Target> > > LRN; |
|
TEST_P(LRN, Accuracy) |
|
{ |
|
int inChannels = get<0>(GetParam())[0]; |
|
Size inSize = Size(get<0>(GetParam())[1], get<0>(GetParam())[2]); |
|
int localSize = get<1>(GetParam()); |
|
float alpha = get<2>(GetParam())[0]; |
|
float beta = get<2>(GetParam())[1]; |
|
float bias = get<2>(GetParam())[2]; |
|
bool normBySize = get<3>(GetParam()); |
|
std::string nrmType = get<4>(GetParam()); |
|
Backend backendId = get<0>(get<5>(GetParam())); |
|
Target targetId = get<1>(get<5>(GetParam())); |
|
|
|
if ((inSize.width == 5 || inSize.height == 5) && targetId == DNN_TARGET_MYRIAD && |
|
nrmType == "ACROSS_CHANNELS") |
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD); |
|
|
|
LayerParams lp; |
|
lp.set("norm_region", nrmType); |
|
lp.set("local_size", localSize); |
|
lp.set("alpha", alpha); |
|
lp.set("beta", beta); |
|
lp.set("bias", bias); |
|
lp.set("norm_by_size", normBySize); |
|
lp.type = "LRN"; |
|
lp.name = "testLayer"; |
|
|
|
int sz[] = {1, inChannels, inSize.height, inSize.width}; |
|
Mat input(4, &sz[0], CV_32F); |
|
test(lp, input, backendId, targetId); |
|
} |
|
|
|
INSTANTIATE_TEST_CASE_P(Layer_Test_Halide, LRN, Combine( |
|
/*input ch,w,h*/ Values(Vec3i(6, 5, 8), Vec3i(7, 11, 6)), |
|
/*local size*/ Values(3, 5), |
|
Values(Vec3f(0.9f, 1.0f, 1.1f), Vec3f(0.9f, 1.1f, 1.0f), |
|
/*alpha, beta, bias*/ Vec3f(1.0f, 0.9f, 1.1f), Vec3f(1.0f, 1.1f, 0.9f), |
|
Vec3f(1.1f, 0.9f, 1.0f), Vec3f(1.1f, 1.0f, 0.9f)), |
|
/*norm_by_size*/ Bool(), |
|
/*norm_type*/ Values("ACROSS_CHANNELS", "WITHIN_CHANNEL"), |
|
dnnBackendsAndTargetsWithHalide() |
|
)); |
|
|
|
//////////////////////////////////////////////////////////////////////////////// |
|
// Average pooling |
|
//////////////////////////////////////////////////////////////////////////////// |
|
typedef TestWithParam<tuple<int, Size, Size, Size, tuple<Backend, Target> > > AvePooling; |
|
TEST_P(AvePooling, Accuracy) |
|
{ |
|
int inChannels = get<0>(GetParam()); |
|
Size outSize = get<1>(GetParam());; // Input size will be computed from parameters. |
|
Size kernel = get<2>(GetParam()); |
|
Size stride = get<3>(GetParam()); |
|
Backend backendId = get<0>(get<4>(GetParam())); |
|
Target targetId = get<1>(get<4>(GetParam())); |
|
|
|
#if defined(INF_ENGINE_RELEASE) |
|
if (backendId == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && targetId == DNN_TARGET_MYRIAD |
|
&& getInferenceEngineVPUType() == CV_DNN_INFERENCE_ENGINE_VPU_TYPE_MYRIAD_X |
|
&& kernel == Size(1, 1) && (stride == Size(1, 1) || stride == Size(2, 2))) |
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD_X); |
|
#endif |
|
|
|
const int inWidth = (outSize.width - 1) * stride.width + kernel.width; |
|
const int inHeight = (outSize.height - 1) * stride.height + kernel.height; |
|
|
|
LayerParams lp; |
|
lp.set("pool", "ave"); |
|
lp.set("kernel_w", kernel.width); |
|
lp.set("kernel_h", kernel.height); |
|
lp.set("stride_w", stride.width); |
|
lp.set("stride_h", stride.height); |
|
lp.type = "Pooling"; |
|
lp.name = "testLayer"; |
|
|
|
int sz[] = {1, inChannels, inHeight, inWidth}; |
|
Mat input(4, &sz[0], CV_32F); |
|
test(lp, input, backendId, targetId); |
|
} |
|
|
|
INSTANTIATE_TEST_CASE_P(Layer_Test_Halide, AvePooling, Combine( |
|
/*in channels*/ Values(3, 4), |
|
/*out size*/ Values(Size(1, 1), Size(2, 2), Size(3, 2), Size(4, 7)), |
|
/*kernel*/ Values(Size(1, 1), Size(2, 2), Size(3, 3), Size(3, 2)), |
|
/*stride*/ Values(Size(1, 1), Size(2, 2), Size(3, 2)), |
|
dnnBackendsAndTargetsWithHalide() |
|
)); |
|
|
|
//////////////////////////////////////////////////////////////////////////////// |
|
// Maximum pooling |
|
//////////////////////////////////////////////////////////////////////////////// |
|
typedef TestWithParam<tuple<int, Size, Size, Size, Size, tuple<Backend, Target> > > MaxPooling; |
|
TEST_P(MaxPooling, Accuracy) |
|
{ |
|
int inChannels = get<0>(GetParam()); |
|
Size inSize = get<1>(GetParam()); |
|
Size kernel = get<2>(GetParam()); |
|
Size stride = get<3>(GetParam()); |
|
Size pad = get<4>(GetParam()); |
|
Backend backendId = get<0>(get<5>(GetParam())); |
|
Target targetId = get<1>(get<5>(GetParam())); |
|
|
|
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_LE(2018050000) |
|
if (backendId == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && targetId == DNN_TARGET_MYRIAD |
|
&& inSize == Size(7, 6) && kernel == Size(3, 2) |
|
&& (stride == Size(1, 1) || stride == Size(2, 2)) |
|
&& (pad == Size(0, 1) || pad == Size(1, 1)) |
|
) |
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_VERSION); |
|
#endif |
|
|
|
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_EQ(2018050000) |
|
if (backendId == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && targetId == DNN_TARGET_MYRIAD |
|
&& (kernel == Size(2, 2) || kernel == Size(3, 2)) |
|
&& stride == Size(1, 1) && (pad == Size(0, 0) || pad == Size(0, 1)) |
|
) |
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_VERSION); |
|
#endif |
|
|
|
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_GE(2019010000) |
|
if (backendId == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && targetId == DNN_TARGET_MYRIAD |
|
&& getInferenceEngineVPUType() == CV_DNN_INFERENCE_ENGINE_VPU_TYPE_MYRIAD_X |
|
&& (stride == Size(1, 1) || stride == Size(2, 2)) |
|
&& (pad == Size(0, 1) || pad == Size(1, 1)) |
|
) |
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD_X, CV_TEST_TAG_DNN_SKIP_IE_VERSION); |
|
#endif |
|
|
|
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_GE(2020020000) |
|
if (backendId == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && targetId == DNN_TARGET_MYRIAD) |
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NGRAPH, CV_TEST_TAG_DNN_SKIP_IE_VERSION); |
|
#endif |
|
|
|
LayerParams lp; |
|
lp.set("pool", "max"); |
|
lp.set("kernel_w", kernel.width); |
|
lp.set("kernel_h", kernel.height); |
|
lp.set("stride_w", stride.width); |
|
lp.set("stride_h", stride.height); |
|
lp.set("pad_w", pad.width); |
|
lp.set("pad_h", pad.height); |
|
lp.type = "Pooling"; |
|
lp.name = "testLayer"; |
|
|
|
int sz[] = {1, inChannels, inSize.height, inSize.width}; |
|
Mat input(4, &sz[0], CV_32F); |
|
test(lp, input, backendId, targetId); |
|
} |
|
|
|
INSTANTIATE_TEST_CASE_P(Layer_Test_Halide, MaxPooling, Combine( |
|
/*in channels*/ Values(3, 4), |
|
/*in size*/ Values(Size(5, 5), Size(7, 6)), |
|
/*kernel*/ Values(Size(2, 2), Size(3, 3), Size(3, 2)), |
|
/*stride*/ Values(Size(1, 1), Size(2, 2), Size(3, 2)), |
|
/*pad*/ Values(Size(0, 0), Size(1, 1), Size(0, 1)), |
|
dnnBackendsAndTargetsWithHalide() |
|
)); |
|
|
|
//////////////////////////////////////////////////////////////////////////////// |
|
// Fully-connected |
|
//////////////////////////////////////////////////////////////////////////////// |
|
typedef TestWithParam<tuple<int, Size, int, bool, tuple<Backend, Target> > > FullyConnected; |
|
TEST_P(FullyConnected, Accuracy) |
|
{ |
|
int inChannels = get<0>(GetParam()); |
|
Size inSize = get<1>(GetParam()); |
|
int outChannels = get<2>(GetParam()); |
|
bool hasBias = get<3>(GetParam()); |
|
Backend backendId = get<0>(get<4>(GetParam())); |
|
Target targetId = get<1>(get<4>(GetParam())); |
|
if ((backendId == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 || |
|
backendId == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH) && (targetId == DNN_TARGET_OPENCL_FP16 || |
|
(targetId == DNN_TARGET_MYRIAD && getInferenceEngineVPUType() == CV_DNN_INFERENCE_ENGINE_VPU_TYPE_MYRIAD_X))) { |
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_OPENCL_FP16); |
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD_X); |
|
} |
|
|
|
Mat weights(outChannels, inChannels * inSize.height * inSize.width, CV_32F); |
|
randu(weights, -1.0f, 1.0f); |
|
|
|
Mat bias(1, outChannels, CV_32F); |
|
randu(bias, -1.0f, 1.0f); |
|
|
|
LayerParams lp; |
|
lp.set("num_output", outChannels); |
|
lp.set("bias_term", hasBias); |
|
lp.blobs.push_back(weights); |
|
lp.blobs.push_back(bias); |
|
lp.type = "InnerProduct"; |
|
lp.name = "testLayer"; |
|
|
|
int sz[] = {1, inChannels, inSize.height, inSize.width}; |
|
Mat input(4, &sz[0], CV_32F); |
|
|
|
double l1 = 0.0; |
|
if (targetId == DNN_TARGET_CUDA_FP16) |
|
l1 = 0.015; |
|
test(lp, input, backendId, targetId, false, true, l1); |
|
} |
|
|
|
INSTANTIATE_TEST_CASE_P(Layer_Test_Halide, FullyConnected, Combine( |
|
/*in channels*/ Values(3, 4), |
|
/*in size*/ Values(Size(5, 4), Size(4, 5), Size(1, 1)), |
|
/*out channels*/ Values(3, 4), |
|
/*has bias*/ Bool(), |
|
dnnBackendsAndTargetsWithHalide() |
|
)); |
|
|
|
//////////////////////////////////////////////////////////////////////////////// |
|
// SoftMax |
|
//////////////////////////////////////////////////////////////////////////////// |
|
typedef TestWithParam<tuple<int, tuple<Backend, Target> > > SoftMax; |
|
TEST_P(SoftMax, Accuracy) |
|
{ |
|
int inChannels = get<0>(GetParam()); |
|
Backend backendId = get<0>(get<1>(GetParam())); |
|
Target targetId = get<1>(get<1>(GetParam())); |
|
LayerParams lp; |
|
lp.type = "Softmax"; |
|
lp.name = "testLayer"; |
|
|
|
int sz[] = {1, inChannels, 1, 1}; |
|
Mat input(4, &sz[0], CV_32F); |
|
test(lp, input, backendId, targetId); |
|
} |
|
|
|
INSTANTIATE_TEST_CASE_P(Layer_Test_Halide, SoftMax, Combine( |
|
Values(3, 4, 5, 1024), |
|
dnnBackendsAndTargetsWithHalide() |
|
)); |
|
|
|
////////////////////////////////////////////////////////////////////////////// |
|
// Max pooling - unpooling |
|
////////////////////////////////////////////////////////////////////////////// |
|
TEST_P(Test_Halide_layers, MaxPoolUnpool) |
|
{ |
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019) |
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER); |
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH) |
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_NGRAPH); |
|
|
|
LayerParams pool; |
|
pool.set("pool", "max"); |
|
pool.set("kernel_w", 2); |
|
pool.set("kernel_h", 2); |
|
pool.set("stride_w", 2); |
|
pool.set("stride_h", 2); |
|
pool.set("pad_w", 0); |
|
pool.set("pad_h", 0); |
|
pool.type = "Pooling"; |
|
pool.name = "testPool"; |
|
|
|
LayerParams unpool; |
|
unpool.set("pool_k_w", 2); |
|
unpool.set("pool_k_h", 2); |
|
unpool.set("pool_stride_w", 2); |
|
unpool.set("pool_stride_h", 2); |
|
unpool.set("pool_pad_w", 0); |
|
unpool.set("pool_pad_h", 0); |
|
unpool.type = "MaxUnpool"; |
|
unpool.name = "testUnpool"; |
|
|
|
Net net; |
|
int poolId = net.addLayer(pool.name, pool.type, pool); |
|
net.connect(0, 0, poolId, 0); |
|
|
|
int unpoolId = net.addLayer(unpool.name, unpool.type, unpool); |
|
net.connect(poolId, 0, unpoolId, 0); |
|
net.connect(poolId, 1, unpoolId, 1); |
|
|
|
int sz[] = {1, 1, 4, 4}; |
|
Mat input(4, &sz[0], CV_32F); |
|
test(input, net, backend, target); |
|
} |
|
|
|
//////////////////////////////////////////////////////////////////////////////// |
|
// AvePooling + in-place layers |
|
//////////////////////////////////////////////////////////////////////////////// |
|
static const int kNumChannels = 3; |
|
|
|
void testInPlaceActivation(LayerParams& lp, Backend backendId, Target targetId, double l1 = 0.0, double lInf = 0.0) |
|
{ |
|
EXPECT_FALSE(lp.name.empty()); |
|
|
|
LayerParams pool; |
|
pool.set("pool", "ave"); |
|
pool.set("kernel_w", 2); |
|
pool.set("kernel_h", 2); |
|
pool.set("stride_w", 2); |
|
pool.set("stride_h", 2); |
|
pool.type = "Pooling"; |
|
pool.name = "ave_pool"; |
|
|
|
Net net; |
|
int poolId = net.addLayer(pool.name, pool.type, pool); |
|
net.connect(0, 0, poolId, 0); |
|
net.addLayerToPrev(lp.name, lp.type, lp); |
|
|
|
int sz[] = {1, kNumChannels, 10, 10}; |
|
Mat input(4, &sz[0], CV_32F); |
|
test(input, net, backendId, targetId, false, true, l1, lInf); |
|
} |
|
|
|
typedef TestWithParam<tuple<bool, bool, float, tuple<Backend, Target> > > BatchNorm; |
|
TEST_P(BatchNorm, Accuracy) |
|
{ |
|
bool hasWeights = get<0>(GetParam()); |
|
bool hasBias = get<1>(GetParam()); |
|
float epsilon = get<2>(GetParam()); |
|
Backend backendId = get<0>(get<3>(GetParam())); |
|
Target targetId = get<1>(get<3>(GetParam())); |
|
|
|
LayerParams lp; |
|
lp.set("has_weight", hasWeights); |
|
lp.set("has_bias", hasBias); |
|
lp.set("eps", epsilon); |
|
lp.type = "BatchNorm"; |
|
lp.name = "testLayer"; |
|
|
|
lp.blobs.reserve(4); |
|
for (int i = 0; i < 3; ++i) |
|
lp.blobs.push_back(Mat(1, kNumChannels, CV_32F)); |
|
if (hasBias || hasWeights) |
|
lp.blobs.push_back(Mat(1, kNumChannels, CV_32F)); |
|
|
|
for (int i = 0; i < lp.blobs.size(); ++i) |
|
randu(lp.blobs[i], 0.0f, 1.0f); |
|
|
|
testInPlaceActivation(lp, backendId, targetId); |
|
} |
|
|
|
INSTANTIATE_TEST_CASE_P(Layer_Test_Halide, BatchNorm, Combine( |
|
/*has weights*/ Bool(), |
|
/*has bias*/ Bool(), |
|
/*epsilon*/ Values(1e-3f, 1e-5f), |
|
dnnBackendsAndTargetsWithHalide() |
|
)); |
|
|
|
typedef TestWithParam<tuple<float, tuple<Backend, Target> > > ReLU; |
|
TEST_P(ReLU, Accuracy) |
|
{ |
|
float negativeSlope = get<0>(GetParam()); |
|
Backend backendId = get<0>(get<1>(GetParam())); |
|
Target targetId = get<1>(get<1>(GetParam())); |
|
|
|
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_GE(2019020000) |
|
if (backendId == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && targetId == DNN_TARGET_MYRIAD && negativeSlope < 0) |
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER, CV_TEST_TAG_DNN_SKIP_IE_VERSION); |
|
#endif |
|
|
|
LayerParams lp; |
|
lp.set("negative_slope", negativeSlope); |
|
lp.type = "ReLU"; |
|
lp.name = "testLayer"; |
|
testInPlaceActivation(lp, backendId, targetId); |
|
} |
|
|
|
INSTANTIATE_TEST_CASE_P(Layer_Test_Halide, ReLU, Combine( |
|
/*negative slope*/ Values(2.0f, 0.3f, -0.1f, 0.0f), |
|
dnnBackendsAndTargetsWithHalide() |
|
)); |
|
|
|
typedef TestWithParam<tuple<std::string, tuple<Backend, Target> > > NoParamActivation; |
|
TEST_P(NoParamActivation, Accuracy) |
|
{ |
|
Backend backendId = get<0>(get<1>(GetParam())); |
|
Target targetId = get<1>(get<1>(GetParam())); |
|
|
|
LayerParams lp; |
|
lp.type = get<0>(GetParam()); |
|
lp.name = "testLayer"; |
|
testInPlaceActivation(lp, backendId, targetId); |
|
} |
|
INSTANTIATE_TEST_CASE_P(Layer_Test_Halide, NoParamActivation, Combine( |
|
/*type*/ Values("TanH", "Sigmoid", "AbsVal", "BNLL", "Swish", "Mish"), |
|
dnnBackendsAndTargetsWithHalide() |
|
)); |
|
|
|
typedef TestWithParam<tuple<Vec3f, tuple<Backend, Target> > > Power; |
|
TEST_P(Power, Accuracy) |
|
{ |
|
float power = get<0>(GetParam())[0]; |
|
float scale = get<0>(GetParam())[1]; |
|
float shift = get<0>(GetParam())[2]; |
|
Backend backendId = get<0>(get<1>(GetParam())); |
|
Target targetId = get<1>(get<1>(GetParam())); |
|
|
|
LayerParams lp; |
|
lp.set("power", power); |
|
lp.set("scale", scale); |
|
lp.set("shift", shift); |
|
lp.type = "Power"; |
|
lp.name = "testLayer"; |
|
testInPlaceActivation(lp, backendId, targetId); |
|
} |
|
|
|
INSTANTIATE_TEST_CASE_P(Layer_Test_Halide, Power, Combine( |
|
/*power, scale, shift*/ Values(Vec3f(0.9f, 1.0f, 1.1f), Vec3f(0.9f, 1.1f, 1.0f), |
|
Vec3f(1.0f, 0.9f, 1.1f), Vec3f(1.0f, 1.1f, 0.9f), |
|
Vec3f(1.1f, 0.9f, 1.0f), Vec3f(1.1f, 1.0f, 0.9f)), |
|
dnnBackendsAndTargetsWithHalide() |
|
)); |
|
|
|
typedef TestWithParam<tuple<Vec3f, tuple<Backend, Target> > > Exp; |
|
TEST_P(Exp, Accuracy) |
|
{ |
|
float base = get<0>(GetParam())[0]; |
|
float scale = get<0>(GetParam())[1]; |
|
float shift = get<0>(GetParam())[2]; |
|
Backend backendId = get<0>(get<1>(GetParam())); |
|
Target targetId = get<1>(get<1>(GetParam())); |
|
|
|
LayerParams lp; |
|
lp.set("base", base); |
|
lp.set("scale", scale); |
|
lp.set("shift", shift); |
|
lp.type = "Exp"; |
|
lp.name = "testLayer"; |
|
testInPlaceActivation(lp, backendId, targetId); |
|
} |
|
|
|
INSTANTIATE_TEST_CASE_P(Layer_Test_Halide, Exp, Combine( |
|
/*base, scale, shift*/ Values(Vec3f(0.9f, -1.0f, 1.1f), Vec3f(0.9f, 1.1f, -1.0f), |
|
Vec3f(-1.0f, 0.9f, 1.1f), Vec3f(-1.0f, 1.1f, 0.9f), |
|
Vec3f(1.1f, 0.9f, -1.0f), Vec3f(1.1f, -1.0f, 0.9f)), |
|
dnnBackendsAndTargetsWithHalide() |
|
)); |
|
|
|
TEST_P(Test_Halide_layers, ChannelsPReLU) |
|
{ |
|
LayerParams lp; |
|
lp.type = "ChannelsPReLU"; |
|
lp.name = "testLayer"; |
|
lp.blobs.push_back(Mat(1, kNumChannels, CV_32F)); |
|
randu(lp.blobs[0], -1.0f, 1.0f); |
|
|
|
testInPlaceActivation(lp, backend, target); |
|
} |
|
|
|
typedef TestWithParam<tuple<bool, tuple<Backend, Target> > > Scale; |
|
TEST_P(Scale, Accuracy) |
|
{ |
|
bool hasBias = get<0>(GetParam()); |
|
Backend backendId = get<0>(get<1>(GetParam())); |
|
Target targetId = get<1>(get<1>(GetParam())); |
|
|
|
LayerParams lp; |
|
lp.set("bias_term", hasBias); |
|
lp.type = "Scale"; |
|
lp.name = "testLayer"; |
|
lp.blobs.push_back(Mat(1, kNumChannels, CV_32F)); |
|
randu(lp.blobs[0], -1.0f, 1.0f); |
|
if (hasBias) |
|
{ |
|
lp.blobs.push_back(Mat(1, kNumChannels, CV_32F)); |
|
randu(lp.blobs[1], -1.0f, 1.0f); |
|
} |
|
testInPlaceActivation(lp, backendId, targetId); |
|
} |
|
|
|
INSTANTIATE_TEST_CASE_P(Layer_Test_Halide, Scale, Combine( |
|
Bool(), |
|
dnnBackendsAndTargetsWithHalide() |
|
)); |
|
|
|
//////////////////////////////////////////////////////////////////////////////// |
|
// Concat layer |
|
//////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// input --- conv --- concat --- output |
|
// `--- conv ----^ ^ ^ |
|
// `---- ... ------' ' |
|
// `-----------------' |
|
typedef TestWithParam<tuple<Vec3i, Vec3i, tuple<Backend, Target> > > Concat; |
|
TEST_P(Concat, Accuracy) |
|
{ |
|
Vec3i inSize = get<0>(GetParam()); |
|
Vec3i numChannels = get<1>(GetParam()); |
|
Backend backendId = get<0>(get<2>(GetParam())); |
|
Target targetId = get<1>(get<2>(GetParam())); |
|
|
|
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_LE(2018050000) |
|
if (backendId == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && targetId == DNN_TARGET_MYRIAD |
|
&& inSize == Vec3i(1, 4, 5) && numChannels == Vec3i(1, 6, 2) |
|
) |
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER, CV_TEST_TAG_DNN_SKIP_IE_VERSION); // crash |
|
#endif |
|
|
|
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_GE(2019010000) |
|
if (backendId == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && targetId == DNN_TARGET_CPU |
|
&& inSize == Vec3i(1, 4, 5) && numChannels == Vec3i(1, 6, 2) |
|
) |
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER, CV_TEST_TAG_DNN_SKIP_IE_VERSION); // TODO: IE_CPU |
|
#endif |
|
|
|
Net net; |
|
|
|
std::vector<int> convLayerIds; |
|
convLayerIds.reserve(numChannels.channels); |
|
for (int i = 0, n = numChannels.channels; i < n; ++i) |
|
{ |
|
if (!numChannels[i]) |
|
break; |
|
|
|
int sz[] = {numChannels[i], inSize[0], 1, 1}; |
|
Mat weights(4, &sz[0], CV_32F); |
|
randu(weights, -1.0f, 1.0f); |
|
|
|
LayerParams convParam; |
|
convParam.set("kernel_w", 1); |
|
convParam.set("kernel_h", 1); |
|
convParam.set("num_output", numChannels[i]); |
|
convParam.set("bias_term", false); |
|
convParam.type = "Convolution"; |
|
std::ostringstream ss; |
|
ss << "convLayer" << i; |
|
convParam.name = ss.str(); |
|
convParam.blobs.push_back(weights); |
|
|
|
int layerId = net.addLayer(convParam.name, convParam.type, convParam); |
|
convLayerIds.push_back(layerId); |
|
net.connect(0, 0, layerId, 0); |
|
} |
|
|
|
LayerParams concatParam; |
|
concatParam.type = "Concat"; |
|
concatParam.name = "testLayer"; |
|
int concatId = net.addLayer(concatParam.name, concatParam.type, concatParam); |
|
net.connect(0, 0, concatId, 0); |
|
for (int i = 0; i < convLayerIds.size(); ++i) |
|
{ |
|
net.connect(convLayerIds[i], 0, concatId, i + 1); |
|
} |
|
|
|
int sz[] = {1, inSize[0], inSize[1], inSize[2]}; |
|
Mat input(4, &sz[0], CV_32F); |
|
test(input, net, backendId, targetId); |
|
} |
|
|
|
INSTANTIATE_TEST_CASE_P(Layer_Test_Halide, Concat, Combine( |
|
/*input size*/ Values(Vec3i(1, 4, 5), Vec3i(2, 8, 6)), |
|
/*channels*/ Values(Vec3i(2, 0, 0), Vec3i(3, 4, 0), Vec3i(1, 6, 2)), |
|
dnnBackendsAndTargetsWithHalide() |
|
)); |
|
|
|
//////////////////////////////////////////////////////////////////////////////// |
|
// Element-wise layers |
|
//////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// input --- conv --- eltwise --- output |
|
// `--- conv ----^ ^ ^ |
|
// `---- ... ------' ' |
|
// `-----------------' |
|
typedef TestWithParam<tuple<Vec3i, std::string, int, bool, tuple<Backend, Target> > > Eltwise; |
|
TEST_P(Eltwise, Accuracy) |
|
{ |
|
Vec3i inSize = get<0>(GetParam()); |
|
std::string op = get<1>(GetParam()); |
|
int numConv = get<2>(GetParam()); |
|
bool weighted = get<3>(GetParam()); |
|
Backend backendId = get<0>(get<4>(GetParam())); |
|
Target targetId = get<1>(get<4>(GetParam())); |
|
|
|
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_LE(2018050000) |
|
if (backendId == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && targetId == DNN_TARGET_MYRIAD && |
|
inSize == Vec3i(1, 4, 5)) |
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER, CV_TEST_TAG_DNN_SKIP_IE_VERSION); |
|
#endif |
|
|
|
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_GE(2019010000) |
|
if (backendId == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && numConv > 1) |
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER, CV_TEST_TAG_DNN_SKIP_IE_VERSION); |
|
#endif |
|
|
|
#if defined(INF_ENGINE_RELEASE) |
|
if (backendId == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && targetId == DNN_TARGET_OPENCL && |
|
op == "sum" && numConv == 1 && !weighted) |
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_OPENCL, CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER); |
|
#endif |
|
|
|
#if defined(INF_ENGINE_RELEASE) |
|
if (backendId == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && numConv > 1) |
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_NGRAPH, CV_TEST_TAG_DNN_SKIP_IE_VERSION); |
|
#endif |
|
|
|
bool convInputShift = 1; |
|
int numEltwiseInputs = numConv; |
|
if (op == "div") |
|
{ |
|
numConv = 1; |
|
convInputShift = 0; // first input is convolution |
|
} |
|
|
|
Net net; |
|
|
|
std::vector<int> convLayerIds(numConv); |
|
for (int i = 0; i < numConv; ++i) |
|
{ |
|
int sz[] = {inSize[0], inSize[0], 1, 1}; |
|
Mat weights(4, &sz[0], CV_32F); |
|
randu(weights, -1.0f, 1.0f); |
|
|
|
LayerParams convParam; |
|
convParam.set("kernel_w", 1); |
|
convParam.set("kernel_h", 1); |
|
convParam.set("num_output", inSize[0]); |
|
convParam.set("bias_term", false); |
|
convParam.type = "Convolution"; |
|
std::ostringstream ss; |
|
ss << "convLayer" << i; |
|
convParam.name = ss.str(); |
|
convParam.blobs.push_back(weights); |
|
|
|
convLayerIds[i] = net.addLayer(convParam.name, convParam.type, convParam); |
|
net.connect(0, 0, convLayerIds[i], 0); |
|
} |
|
|
|
LayerParams eltwiseParam; |
|
eltwiseParam.set("operation", op); |
|
if (op == "sum" && weighted) |
|
{ |
|
RNG& rng = cv::theRNG(); |
|
std::vector<float> coeff(1 + numConv); |
|
for (int i = 0; i < coeff.size(); ++i) |
|
{ |
|
coeff[i] = rng.uniform(-2.0f, 2.0f); |
|
} |
|
eltwiseParam.set("coeff", DictValue::arrayReal<float*>(&coeff[0], coeff.size())); |
|
} |
|
eltwiseParam.type = "Eltwise"; |
|
eltwiseParam.name = "testLayer"; |
|
int eltwiseId = net.addLayer(eltwiseParam.name, eltwiseParam.type, eltwiseParam); |
|
if (convInputShift == 1) |
|
net.connect(0, 0, eltwiseId, 0); |
|
for (int i = 0; i < numConv; ++i) |
|
{ |
|
net.connect(convLayerIds[i], 0, eltwiseId, i + convInputShift); |
|
} |
|
if (convInputShift == 0) |
|
net.connect(0, 0, eltwiseId, numConv); |
|
for (int i = numConv; i < numEltwiseInputs; ++i) |
|
{ |
|
net.connect(0, 0, eltwiseId, i + 1); |
|
} |
|
|
|
int sz[] = {1, inSize[0], inSize[1], inSize[2]}; |
|
Mat input(4, &sz[0], CV_32F); |
|
if (op == "div") |
|
randu(input, 1.0f, 1.0f); // ensure no divisor value has absouluate value of less than 0.5 |
|
test(input, net, backendId, targetId, /*skipCheck*/false, (op == "div") ? false : true); |
|
} |
|
|
|
INSTANTIATE_TEST_CASE_P(Layer_Test_Halide, Eltwise, Combine( |
|
/*input size*/ Values(Vec3i(1, 4, 5), Vec3i(2, 8, 6)), |
|
/*operation*/ Values("prod", "sum", "div", "max"), |
|
/*num convs*/ Values(1, 2, 3), |
|
/*weighted(for sum only)*/ Bool(), |
|
dnnBackendsAndTargetsWithHalide() |
|
)); |
|
|
|
//////////////////////////////////////////////////////////////////////////// |
|
// Mixed backends |
|
//////////////////////////////////////////////////////////////////////////// |
|
#ifdef HAVE_HALIDE |
|
TEST(MixedBackends_Halide_Default_Halide, Accuracy) |
|
{ |
|
// Just a layer that supports Halide backend. |
|
LayerParams lrn; |
|
lrn.type = "LRN"; |
|
lrn.name = "testLRN"; |
|
|
|
// Some of layers that doesn't supports Halide backend yet. |
|
LayerParams mvn; |
|
mvn.type = "MVN"; |
|
mvn.name = "testMVN"; |
|
|
|
// Halide layer again. |
|
LayerParams lrn2; |
|
lrn2.type = "LRN"; |
|
lrn2.name = "testLRN2"; |
|
|
|
Net net; |
|
int lrnId = net.addLayer(lrn.name, lrn.type, lrn); |
|
net.connect(0, 0, lrnId, 0); |
|
net.addLayerToPrev(mvn.name, mvn.type, mvn); |
|
net.addLayerToPrev(lrn2.name, lrn2.type, lrn2); |
|
|
|
int sz[] = {4, 3, 5, 6}; |
|
Mat input(4, &sz[0], CV_32F); |
|
randu(input, -1.0f, 1.0f); |
|
net.setInput(input); |
|
net.setPreferableBackend(DNN_BACKEND_OPENCV); |
|
Mat outputDefault = net.forward().clone(); |
|
|
|
net.setPreferableBackend(DNN_BACKEND_HALIDE); |
|
net.setInput(input); |
|
Mat outputHalide = net.forward().clone(); |
|
normAssert(outputDefault, outputHalide); |
|
|
|
net.setPreferableTarget(DNN_TARGET_OPENCL); |
|
net.setInput(input); |
|
outputHalide = net.forward().clone(); |
|
normAssert(outputDefault, outputHalide); |
|
} |
|
#endif // HAVE_HALIDE |
|
|
|
INSTANTIATE_TEST_CASE_P(/*nothing*/, Test_Halide_layers, dnnBackendsAndTargetsWithHalide()); |
|
|
|
}} // namespace
|
|
|