Open Source Computer Vision Library https://opencv.org/
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

146 lines
5.6 KiB

# Import required modules
import cv2 as cv
import math
import argparse
############ Add argument parser for command line arguments ############
parser = argparse.ArgumentParser(description='Use this script to run TensorFlow implementation (https://github.com/argman/EAST) of EAST: An Efficient and Accurate Scene Text Detector (https://arxiv.org/abs/1704.03155v2)')
parser.add_argument('--input', help='Path to input image or video file. Skip this argument to capture frames from a camera.')
parser.add_argument('--model', required=True,
help='Path to a binary .pb file of model contains trained weights.')
parser.add_argument('--width', type=int, default=320,
help='Preprocess input image by resizing to a specific width. It should be multiple by 32.')
parser.add_argument('--height',type=int, default=320,
help='Preprocess input image by resizing to a specific height. It should be multiple by 32.')
parser.add_argument('--thr',type=float, default=0.5,
help='Confidence threshold.')
parser.add_argument('--nms',type=float, default=0.4,
help='Non-maximum suppression threshold.')
args = parser.parse_args()
############ Utility functions ############
def decode(scores, geometry, scoreThresh):
detections = []
confidences = []
############ CHECK DIMENSIONS AND SHAPES OF geometry AND scores ############
assert len(scores.shape) == 4, "Incorrect dimensions of scores"
assert len(geometry.shape) == 4, "Incorrect dimensions of geometry"
assert scores.shape[0] == 1, "Invalid dimensions of scores"
assert geometry.shape[0] == 1, "Invalid dimensions of geometry"
assert scores.shape[1] == 1, "Invalid dimensions of scores"
assert geometry.shape[1] == 5, "Invalid dimensions of geometry"
assert scores.shape[2] == geometry.shape[2], "Invalid dimensions of scores and geometry"
assert scores.shape[3] == geometry.shape[3], "Invalid dimensions of scores and geometry"
height = scores.shape[2]
width = scores.shape[3]
for y in range(0, height):
# Extract data from scores
scoresData = scores[0][0][y]
x0_data = geometry[0][0][y]
x1_data = geometry[0][1][y]
x2_data = geometry[0][2][y]
x3_data = geometry[0][3][y]
anglesData = geometry[0][4][y]
for x in range(0, width):
score = scoresData[x]
# If score is lower than threshold score, move to next x
if(score < scoreThresh):
continue
# Calculate offset
offsetX = x * 4.0
offsetY = y * 4.0
angle = anglesData[x]
# Calculate cos and sin of angle
cosA = math.cos(angle)
sinA = math.sin(angle)
h = x0_data[x] + x2_data[x]
w = x1_data[x] + x3_data[x]
# Calculate offset
offset = ([offsetX + cosA * x1_data[x] + sinA * x2_data[x], offsetY - sinA * x1_data[x] + cosA * x2_data[x]])
# Find points for rectangle
p1 = (-sinA * h + offset[0], -cosA * h + offset[1])
p3 = (-cosA * w + offset[0], sinA * w + offset[1])
center = (0.5*(p1[0]+p3[0]), 0.5*(p1[1]+p3[1]))
detections.append((center, (w,h), -1*angle * 180.0 / math.pi))
confidences.append(float(score))
# Return detections and confidences
return [detections, confidences]
def main():
# Read and store arguments
confThreshold = args.thr
nmsThreshold = args.nms
inpWidth = args.width
inpHeight = args.height
model = args.model
# Load network
net = cv.dnn.readNet(model)
# Create a new named window
kWinName = "EAST: An Efficient and Accurate Scene Text Detector"
cv.namedWindow(kWinName, cv.WINDOW_NORMAL)
outNames = []
outNames.append("feature_fusion/Conv_7/Sigmoid")
outNames.append("feature_fusion/concat_3")
# Open a video file or an image file or a camera stream
cap = cv.VideoCapture(args.input if args.input else 0)
while cv.waitKey(1) < 0:
# Read frame
hasFrame, frame = cap.read()
if not hasFrame:
cv.waitKey()
break
# Get frame height and width
height_ = frame.shape[0]
width_ = frame.shape[1]
rW = width_ / float(inpWidth)
rH = height_ / float(inpHeight)
# Create a 4D blob from frame.
blob = cv.dnn.blobFromImage(frame, 1.0, (inpWidth, inpHeight), (123.68, 116.78, 103.94), True, False)
# Run the model
net.setInput(blob)
outs = net.forward(outNames)
t, _ = net.getPerfProfile()
label = 'Inference time: %.2f ms' % (t * 1000.0 / cv.getTickFrequency())
# Get scores and geometry
scores = outs[0]
geometry = outs[1]
[boxes, confidences] = decode(scores, geometry, confThreshold)
# Apply NMS
indices = cv.dnn.NMSBoxesRotated(boxes, confidences, confThreshold,nmsThreshold)
for i in indices:
# get 4 corners of the rotated rect
vertices = cv.boxPoints(boxes[i[0]])
# scale the bounding box coordinates based on the respective ratios
for j in range(4):
vertices[j][0] *= rW
vertices[j][1] *= rH
for j in range(4):
p1 = (vertices[j][0], vertices[j][1])
p2 = (vertices[(j + 1) % 4][0], vertices[(j + 1) % 4][1])
cv.line(frame, p1, p2, (0, 255, 0), 1)
# Put efficiency information
cv.putText(frame, label, (0, 15), cv.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0))
# Display the frame
cv.imshow(kWinName,frame)
if __name__ == "__main__":
main()