mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
328 lines
13 KiB
328 lines
13 KiB
/*M/////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// |
|
// License Agreement |
|
// For Open Source Computer Vision Library |
|
// |
|
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. |
|
// Copyright (C) 2009, Willow Garage Inc., all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
// |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistribution's of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistribution's in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other materials provided with the distribution. |
|
// |
|
// * The name of the copyright holders may not be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors "as is" and |
|
// any express or implied warranties, including, but not limited to, the implied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall the Intel Corporation or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
// |
|
//M*/ |
|
|
|
#ifndef __OPENCV_CUDASTEREO_HPP__ |
|
#define __OPENCV_CUDASTEREO_HPP__ |
|
|
|
#ifndef __cplusplus |
|
# error cudastereo.hpp header must be compiled as C++ |
|
#endif |
|
|
|
#include "opencv2/core/cuda.hpp" |
|
#include "opencv2/calib3d.hpp" |
|
|
|
/** |
|
@addtogroup cuda |
|
@{ |
|
@defgroup cudastereo Stereo Correspondence |
|
@} |
|
*/ |
|
|
|
namespace cv { namespace cuda { |
|
|
|
//! @addtogroup cudastereo |
|
//! @{ |
|
|
|
///////////////////////////////////////// |
|
// StereoBM |
|
|
|
/** @brief Class computing stereo correspondence (disparity map) using the block matching algorithm. : |
|
|
|
@sa StereoBM |
|
*/ |
|
class CV_EXPORTS StereoBM : public cv::StereoBM |
|
{ |
|
public: |
|
using cv::StereoBM::compute; |
|
|
|
virtual void compute(InputArray left, InputArray right, OutputArray disparity, Stream& stream) = 0; |
|
}; |
|
|
|
/** @brief Creates StereoBM object. |
|
|
|
@param numDisparities the disparity search range. For each pixel algorithm will find the best |
|
disparity from 0 (default minimum disparity) to numDisparities. The search range can then be |
|
shifted by changing the minimum disparity. |
|
@param blockSize the linear size of the blocks compared by the algorithm. The size should be odd |
|
(as the block is centered at the current pixel). Larger block size implies smoother, though less |
|
accurate disparity map. Smaller block size gives more detailed disparity map, but there is higher |
|
chance for algorithm to find a wrong correspondence. |
|
*/ |
|
CV_EXPORTS Ptr<cuda::StereoBM> createStereoBM(int numDisparities = 64, int blockSize = 19); |
|
|
|
///////////////////////////////////////// |
|
// StereoBeliefPropagation |
|
|
|
/** @brief Class computing stereo correspondence using the belief propagation algorithm. : |
|
|
|
The class implements algorithm described in @cite Felzenszwalb2006 . It can compute own data cost |
|
(using a truncated linear model) or use a user-provided data cost. |
|
|
|
@note |
|
StereoBeliefPropagation requires a lot of memory for message storage: |
|
|
|
\f[width \_ step \cdot height \cdot ndisp \cdot 4 \cdot (1 + 0.25)\f] |
|
|
|
and for data cost storage: |
|
|
|
\f[width\_step \cdot height \cdot ndisp \cdot (1 + 0.25 + 0.0625 + \dotsm + \frac{1}{4^{levels}})\f] |
|
|
|
width_step is the number of bytes in a line including padding. |
|
|
|
StereoBeliefPropagation uses a truncated linear model for the data cost and discontinuity terms: |
|
|
|
\f[DataCost = data \_ weight \cdot \min ( \lvert Img_Left(x,y)-Img_Right(x-d,y) \rvert , max \_ data \_ term)\f] |
|
|
|
\f[DiscTerm = \min (disc \_ single \_ jump \cdot \lvert f_1-f_2 \rvert , max \_ disc \_ term)\f] |
|
|
|
For more details, see @cite Felzenszwalb2006 . |
|
|
|
By default, StereoBeliefPropagation uses floating-point arithmetics and the CV_32FC1 type for |
|
messages. But it can also use fixed-point arithmetics and the CV_16SC1 message type for better |
|
performance. To avoid an overflow in this case, the parameters must satisfy the following |
|
requirement: |
|
|
|
\f[10 \cdot 2^{levels-1} \cdot max \_ data \_ term < SHRT \_ MAX\f] |
|
|
|
@sa StereoMatcher |
|
*/ |
|
class CV_EXPORTS StereoBeliefPropagation : public cv::StereoMatcher |
|
{ |
|
public: |
|
using cv::StereoMatcher::compute; |
|
|
|
/** @overload */ |
|
virtual void compute(InputArray left, InputArray right, OutputArray disparity, Stream& stream) = 0; |
|
|
|
/** @brief Enables the stereo correspondence operator that finds the disparity for the specified data cost. |
|
|
|
@param data User-specified data cost, a matrix of msg_type type and |
|
Size(\<image columns\>\*ndisp, \<image rows\>) size. |
|
@param disparity Output disparity map. If disparity is empty, the output type is CV_16SC1 . |
|
Otherwise, the type is retained. |
|
@param stream Stream for the asynchronous version. |
|
*/ |
|
virtual void compute(InputArray data, OutputArray disparity, Stream& stream = Stream::Null()) = 0; |
|
|
|
//! number of BP iterations on each level |
|
virtual int getNumIters() const = 0; |
|
virtual void setNumIters(int iters) = 0; |
|
|
|
//! number of levels |
|
virtual int getNumLevels() const = 0; |
|
virtual void setNumLevels(int levels) = 0; |
|
|
|
//! truncation of data cost |
|
virtual double getMaxDataTerm() const = 0; |
|
virtual void setMaxDataTerm(double max_data_term) = 0; |
|
|
|
//! data weight |
|
virtual double getDataWeight() const = 0; |
|
virtual void setDataWeight(double data_weight) = 0; |
|
|
|
//! truncation of discontinuity cost |
|
virtual double getMaxDiscTerm() const = 0; |
|
virtual void setMaxDiscTerm(double max_disc_term) = 0; |
|
|
|
//! discontinuity single jump |
|
virtual double getDiscSingleJump() const = 0; |
|
virtual void setDiscSingleJump(double disc_single_jump) = 0; |
|
|
|
//! type for messages (CV_16SC1 or CV_32FC1) |
|
virtual int getMsgType() const = 0; |
|
virtual void setMsgType(int msg_type) = 0; |
|
|
|
/** @brief Uses a heuristic method to compute the recommended parameters ( ndisp, iters and levels ) for the |
|
specified image size ( width and height ). |
|
*/ |
|
static void estimateRecommendedParams(int width, int height, int& ndisp, int& iters, int& levels); |
|
}; |
|
|
|
/** @brief Creates StereoBeliefPropagation object. |
|
|
|
@param ndisp Number of disparities. |
|
@param iters Number of BP iterations on each level. |
|
@param levels Number of levels. |
|
@param msg_type Type for messages. CV_16SC1 and CV_32FC1 types are supported. |
|
*/ |
|
CV_EXPORTS Ptr<cuda::StereoBeliefPropagation> |
|
createStereoBeliefPropagation(int ndisp = 64, int iters = 5, int levels = 5, int msg_type = CV_32F); |
|
|
|
///////////////////////////////////////// |
|
// StereoConstantSpaceBP |
|
|
|
/** @brief Class computing stereo correspondence using the constant space belief propagation algorithm. : |
|
|
|
The class implements algorithm described in @cite Yang2010 . StereoConstantSpaceBP supports both local |
|
minimum and global minimum data cost initialization algorithms. For more details, see the paper |
|
mentioned above. By default, a local algorithm is used. To enable a global algorithm, set |
|
use_local_init_data_cost to false . |
|
|
|
StereoConstantSpaceBP uses a truncated linear model for the data cost and discontinuity terms: |
|
|
|
\f[DataCost = data \_ weight \cdot \min ( \lvert I_2-I_1 \rvert , max \_ data \_ term)\f] |
|
|
|
\f[DiscTerm = \min (disc \_ single \_ jump \cdot \lvert f_1-f_2 \rvert , max \_ disc \_ term)\f] |
|
|
|
For more details, see @cite Yang2010 . |
|
|
|
By default, StereoConstantSpaceBP uses floating-point arithmetics and the CV_32FC1 type for |
|
messages. But it can also use fixed-point arithmetics and the CV_16SC1 message type for better |
|
performance. To avoid an overflow in this case, the parameters must satisfy the following |
|
requirement: |
|
|
|
\f[10 \cdot 2^{levels-1} \cdot max \_ data \_ term < SHRT \_ MAX\f] |
|
|
|
*/ |
|
class CV_EXPORTS StereoConstantSpaceBP : public cuda::StereoBeliefPropagation |
|
{ |
|
public: |
|
//! number of active disparity on the first level |
|
virtual int getNrPlane() const = 0; |
|
virtual void setNrPlane(int nr_plane) = 0; |
|
|
|
virtual bool getUseLocalInitDataCost() const = 0; |
|
virtual void setUseLocalInitDataCost(bool use_local_init_data_cost) = 0; |
|
|
|
/** @brief Uses a heuristic method to compute parameters (ndisp, iters, levelsand nrplane) for the specified |
|
image size (widthand height). |
|
*/ |
|
static void estimateRecommendedParams(int width, int height, int& ndisp, int& iters, int& levels, int& nr_plane); |
|
}; |
|
|
|
/** @brief Creates StereoConstantSpaceBP object. |
|
|
|
@param ndisp Number of disparities. |
|
@param iters Number of BP iterations on each level. |
|
@param levels Number of levels. |
|
@param nr_plane Number of disparity levels on the first level. |
|
@param msg_type Type for messages. CV_16SC1 and CV_32FC1 types are supported. |
|
*/ |
|
CV_EXPORTS Ptr<cuda::StereoConstantSpaceBP> |
|
createStereoConstantSpaceBP(int ndisp = 128, int iters = 8, int levels = 4, int nr_plane = 4, int msg_type = CV_32F); |
|
|
|
///////////////////////////////////////// |
|
// DisparityBilateralFilter |
|
|
|
/** @brief Class refining a disparity map using joint bilateral filtering. : |
|
|
|
The class implements @cite Yang2010 algorithm. |
|
*/ |
|
class CV_EXPORTS DisparityBilateralFilter : public cv::Algorithm |
|
{ |
|
public: |
|
/** @brief Refines a disparity map using joint bilateral filtering. |
|
|
|
@param disparity Input disparity map. CV_8UC1 and CV_16SC1 types are supported. |
|
@param image Input image. CV_8UC1 and CV_8UC3 types are supported. |
|
@param dst Destination disparity map. It has the same size and type as disparity . |
|
@param stream Stream for the asynchronous version. |
|
*/ |
|
virtual void apply(InputArray disparity, InputArray image, OutputArray dst, Stream& stream = Stream::Null()) = 0; |
|
|
|
virtual int getNumDisparities() const = 0; |
|
virtual void setNumDisparities(int numDisparities) = 0; |
|
|
|
virtual int getRadius() const = 0; |
|
virtual void setRadius(int radius) = 0; |
|
|
|
virtual int getNumIters() const = 0; |
|
virtual void setNumIters(int iters) = 0; |
|
|
|
//! truncation of data continuity |
|
virtual double getEdgeThreshold() const = 0; |
|
virtual void setEdgeThreshold(double edge_threshold) = 0; |
|
|
|
//! truncation of disparity continuity |
|
virtual double getMaxDiscThreshold() const = 0; |
|
virtual void setMaxDiscThreshold(double max_disc_threshold) = 0; |
|
|
|
//! filter range sigma |
|
virtual double getSigmaRange() const = 0; |
|
virtual void setSigmaRange(double sigma_range) = 0; |
|
}; |
|
|
|
/** @brief Creates DisparityBilateralFilter object. |
|
|
|
@param ndisp Number of disparities. |
|
@param radius Filter radius. |
|
@param iters Number of iterations. |
|
*/ |
|
CV_EXPORTS Ptr<cuda::DisparityBilateralFilter> |
|
createDisparityBilateralFilter(int ndisp = 64, int radius = 3, int iters = 1); |
|
|
|
///////////////////////////////////////// |
|
// Utility |
|
|
|
/** @brief Reprojects a disparity image to 3D space. |
|
|
|
@param disp Input disparity image. CV_8U and CV_16S types are supported. |
|
@param xyzw Output 3- or 4-channel floating-point image of the same size as disp . Each element of |
|
xyzw(x,y) contains 3D coordinates (x,y,z) or (x,y,z,1) of the point (x,y) , computed from the |
|
disparity map. |
|
@param Q \f$4 \times 4\f$ perspective transformation matrix that can be obtained via stereoRectify . |
|
@param dst_cn The number of channels for output image. Can be 3 or 4. |
|
@param stream Stream for the asynchronous version. |
|
|
|
@sa reprojectImageTo3D |
|
*/ |
|
CV_EXPORTS void reprojectImageTo3D(InputArray disp, OutputArray xyzw, InputArray Q, int dst_cn = 4, Stream& stream = Stream::Null()); |
|
|
|
/** @brief Colors a disparity image. |
|
|
|
@param src_disp Source disparity image. CV_8UC1 and CV_16SC1 types are supported. |
|
@param dst_disp Output disparity image. It has the same size as src_disp . The type is CV_8UC4 |
|
in BGRA format (alpha = 255). |
|
@param ndisp Number of disparities. |
|
@param stream Stream for the asynchronous version. |
|
|
|
This function draws a colored disparity map by converting disparity values from [0..ndisp) interval |
|
first to HSV color space (where different disparity values correspond to different hues) and then |
|
converting the pixels to RGB for visualization. |
|
*/ |
|
CV_EXPORTS void drawColorDisp(InputArray src_disp, OutputArray dst_disp, int ndisp, Stream& stream = Stream::Null()); |
|
|
|
//! @} |
|
|
|
}} // namespace cv { namespace cuda { |
|
|
|
#endif /* __OPENCV_CUDASTEREO_HPP__ */
|
|
|