mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1123 lines
35 KiB
1123 lines
35 KiB
/*M/////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// |
|
// Intel License Agreement |
|
// For Open Source Computer Vision Library |
|
// |
|
// Copyright (C) 2000, Intel Corporation, all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
// |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistribution's of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistribution's in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other materials provided with the distribution. |
|
// |
|
// * The name of Intel Corporation may not be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors "as is" and |
|
// any express or implied warranties, including, but not limited to, the implied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall the Intel Corporation or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
// |
|
//M*/ |
|
|
|
#include "precomp.hpp" |
|
#include "_list.h" |
|
|
|
#define halfPi ((float)(CV_PI*0.5)) |
|
#define Pi ((float)CV_PI) |
|
#define a0 0 /*-4.172325e-7f*/ /*(-(float)0x7)/((float)0x1000000); */ |
|
#define a1 1.000025f /*((float)0x1922253)/((float)0x1000000)*2/Pi; */ |
|
#define a2 -2.652905e-4f /*(-(float)0x2ae6)/((float)0x1000000)*4/(Pi*Pi); */ |
|
#define a3 -0.165624f /*(-(float)0xa45511)/((float)0x1000000)*8/(Pi*Pi*Pi); */ |
|
#define a4 -1.964532e-3f /*(-(float)0x30fd3)/((float)0x1000000)*16/(Pi*Pi*Pi*Pi); */ |
|
#define a5 1.02575e-2f /*((float)0x191cac)/((float)0x1000000)*32/(Pi*Pi*Pi*Pi*Pi); */ |
|
#define a6 -9.580378e-4f /*(-(float)0x3af27)/((float)0x1000000)*64/(Pi*Pi*Pi*Pi*Pi*Pi); */ |
|
|
|
#define _sin(x) ((((((a6*(x) + a5)*(x) + a4)*(x) + a3)*(x) + a2)*(x) + a1)*(x) + a0) |
|
#define _cos(x) _sin(halfPi - (x)) |
|
|
|
/****************************************************************************************\ |
|
* Classical Hough Transform * |
|
\****************************************************************************************/ |
|
|
|
typedef struct CvLinePolar |
|
{ |
|
float rho; |
|
float angle; |
|
} |
|
CvLinePolar; |
|
|
|
/*=====================================================================================*/ |
|
|
|
#define hough_cmp_gt(l1,l2) (aux[l1] > aux[l2]) |
|
|
|
static CV_IMPLEMENT_QSORT_EX( icvHoughSortDescent32s, int, hough_cmp_gt, const int* ) |
|
|
|
/* |
|
Here image is an input raster; |
|
step is it's step; size characterizes it's ROI; |
|
rho and theta are discretization steps (in pixels and radians correspondingly). |
|
threshold is the minimum number of pixels in the feature for it |
|
to be a candidate for line. lines is the output |
|
array of (rho, theta) pairs. linesMax is the buffer size (number of pairs). |
|
Functions return the actual number of found lines. |
|
*/ |
|
static void |
|
icvHoughLinesStandard( const CvMat* img, float rho, float theta, |
|
int threshold, CvSeq *lines, int linesMax ) |
|
{ |
|
cv::AutoBuffer<int> _accum, _sort_buf; |
|
cv::AutoBuffer<float> _tabSin, _tabCos; |
|
|
|
const uchar* image; |
|
int step, width, height; |
|
int numangle, numrho; |
|
int total = 0; |
|
float ang; |
|
int r, n; |
|
int i, j; |
|
float irho = 1 / rho; |
|
double scale; |
|
|
|
CV_Assert( CV_IS_MAT(img) && CV_MAT_TYPE(img->type) == CV_8UC1 ); |
|
|
|
image = img->data.ptr; |
|
step = img->step; |
|
width = img->cols; |
|
height = img->rows; |
|
|
|
numangle = cvRound(CV_PI / theta); |
|
numrho = cvRound(((width + height) * 2 + 1) / rho); |
|
|
|
_accum.allocate((numangle+2) * (numrho+2)); |
|
_sort_buf.allocate(numangle * numrho); |
|
_tabSin.allocate(numangle); |
|
_tabCos.allocate(numangle); |
|
int *accum = _accum, *sort_buf = _sort_buf; |
|
float *tabSin = _tabSin, *tabCos = _tabCos; |
|
|
|
memset( accum, 0, sizeof(accum[0]) * (numangle+2) * (numrho+2) ); |
|
|
|
for( ang = 0, n = 0; n < numangle; ang += theta, n++ ) |
|
{ |
|
tabSin[n] = (float)(sin(ang) * irho); |
|
tabCos[n] = (float)(cos(ang) * irho); |
|
} |
|
|
|
// stage 1. fill accumulator |
|
for( i = 0; i < height; i++ ) |
|
for( j = 0; j < width; j++ ) |
|
{ |
|
if( image[i * step + j] != 0 ) |
|
for( n = 0; n < numangle; n++ ) |
|
{ |
|
r = cvRound( j * tabCos[n] + i * tabSin[n] ); |
|
r += (numrho - 1) / 2; |
|
accum[(n+1) * (numrho+2) + r+1]++; |
|
} |
|
} |
|
|
|
// stage 2. find local maximums |
|
for( r = 0; r < numrho; r++ ) |
|
for( n = 0; n < numangle; n++ ) |
|
{ |
|
int base = (n+1) * (numrho+2) + r+1; |
|
if( accum[base] > threshold && |
|
accum[base] > accum[base - 1] && accum[base] >= accum[base + 1] && |
|
accum[base] > accum[base - numrho - 2] && accum[base] >= accum[base + numrho + 2] ) |
|
sort_buf[total++] = base; |
|
} |
|
|
|
// stage 3. sort the detected lines by accumulator value |
|
icvHoughSortDescent32s( sort_buf, total, accum ); |
|
|
|
// stage 4. store the first min(total,linesMax) lines to the output buffer |
|
linesMax = MIN(linesMax, total); |
|
scale = 1./(numrho+2); |
|
for( i = 0; i < linesMax; i++ ) |
|
{ |
|
CvLinePolar line; |
|
int idx = sort_buf[i]; |
|
int n = cvFloor(idx*scale) - 1; |
|
int r = idx - (n+1)*(numrho+2) - 1; |
|
line.rho = (r - (numrho - 1)*0.5f) * rho; |
|
line.angle = n * theta; |
|
cvSeqPush( lines, &line ); |
|
} |
|
} |
|
|
|
|
|
/****************************************************************************************\ |
|
* Multi-Scale variant of Classical Hough Transform * |
|
\****************************************************************************************/ |
|
|
|
#if defined _MSC_VER && _MSC_VER >= 1200 |
|
#pragma warning( disable: 4714 ) |
|
#endif |
|
|
|
//DECLARE_AND_IMPLEMENT_LIST( _index, h_ ); |
|
IMPLEMENT_LIST( _index, h_ ) |
|
|
|
static void |
|
icvHoughLinesSDiv( const CvMat* img, |
|
float rho, float theta, int threshold, |
|
int srn, int stn, |
|
CvSeq* lines, int linesMax ) |
|
{ |
|
std::vector<uchar> _caccum, _buffer; |
|
std::vector<float> _sinTable; |
|
std::vector<int> _x, _y; |
|
float* sinTable; |
|
int *x, *y; |
|
uchar *caccum, *buffer; |
|
_CVLIST* list = 0; |
|
|
|
#define _POINT(row, column)\ |
|
(image_src[(row)*step+(column)]) |
|
|
|
uchar *mcaccum = 0; |
|
int rn, tn; /* number of rho and theta discrete values */ |
|
int index, i; |
|
int ri, ti, ti1, ti0; |
|
int row, col; |
|
float r, t; /* Current rho and theta */ |
|
float rv; /* Some temporary rho value */ |
|
float irho; |
|
float itheta; |
|
float srho, stheta; |
|
float isrho, istheta; |
|
|
|
const uchar* image_src; |
|
int w, h, step; |
|
int fn = 0; |
|
float xc, yc; |
|
|
|
const float d2r = (float)(Pi / 180); |
|
int sfn = srn * stn; |
|
int fi; |
|
int count; |
|
int cmax = 0; |
|
|
|
CVPOS pos; |
|
_index *pindex; |
|
_index vi; |
|
|
|
CV_Assert( CV_IS_MAT(img) && CV_MAT_TYPE(img->type) == CV_8UC1 ); |
|
CV_Assert( linesMax > 0 && rho > 0 && theta > 0 ); |
|
|
|
threshold = MIN( threshold, 255 ); |
|
|
|
image_src = img->data.ptr; |
|
step = img->step; |
|
w = img->cols; |
|
h = img->rows; |
|
|
|
irho = 1 / rho; |
|
itheta = 1 / theta; |
|
srho = rho / srn; |
|
stheta = theta / stn; |
|
isrho = 1 / srho; |
|
istheta = 1 / stheta; |
|
|
|
rn = cvFloor( sqrt( (double)w * w + (double)h * h ) * irho ); |
|
tn = cvFloor( 2 * Pi * itheta ); |
|
|
|
list = h_create_list__index( linesMax < 1000 ? linesMax : 1000 ); |
|
vi.value = threshold; |
|
vi.rho = -1; |
|
h_add_head__index( list, &vi ); |
|
|
|
/* Precalculating sin */ |
|
_sinTable.resize( 5 * tn * stn ); |
|
sinTable = &_sinTable[0]; |
|
|
|
for( index = 0; index < 5 * tn * stn; index++ ) |
|
sinTable[index] = (float)cos( stheta * index * 0.2f ); |
|
|
|
_caccum.resize(rn * tn); |
|
caccum = &_caccum[0]; |
|
memset( caccum, 0, rn * tn * sizeof( caccum[0] )); |
|
|
|
/* Counting all feature pixels */ |
|
for( row = 0; row < h; row++ ) |
|
for( col = 0; col < w; col++ ) |
|
fn += _POINT( row, col ) != 0; |
|
|
|
_x.resize(fn); |
|
_y.resize(fn); |
|
x = &_x[0]; |
|
y = &_y[0]; |
|
|
|
/* Full Hough Transform (it's accumulator update part) */ |
|
fi = 0; |
|
for( row = 0; row < h; row++ ) |
|
{ |
|
for( col = 0; col < w; col++ ) |
|
{ |
|
if( _POINT( row, col )) |
|
{ |
|
int halftn; |
|
float r0; |
|
float scale_factor; |
|
int iprev = -1; |
|
float phi, phi1; |
|
float theta_it; /* Value of theta for iterating */ |
|
|
|
/* Remember the feature point */ |
|
x[fi] = col; |
|
y[fi] = row; |
|
fi++; |
|
|
|
yc = (float) row + 0.5f; |
|
xc = (float) col + 0.5f; |
|
|
|
/* Update the accumulator */ |
|
t = (float) fabs( cvFastArctan( yc, xc ) * d2r ); |
|
r = (float) sqrt( (double)xc * xc + (double)yc * yc ); |
|
r0 = r * irho; |
|
ti0 = cvFloor( (t + Pi / 2) * itheta ); |
|
|
|
caccum[ti0]++; |
|
|
|
theta_it = rho / r; |
|
theta_it = theta_it < theta ? theta_it : theta; |
|
scale_factor = theta_it * itheta; |
|
halftn = cvFloor( Pi / theta_it ); |
|
for( ti1 = 1, phi = theta_it - halfPi, phi1 = (theta_it + t) * itheta; |
|
ti1 < halftn; ti1++, phi += theta_it, phi1 += scale_factor ) |
|
{ |
|
rv = r0 * _cos( phi ); |
|
i = cvFloor( rv ) * tn; |
|
i += cvFloor( phi1 ); |
|
assert( i >= 0 ); |
|
assert( i < rn * tn ); |
|
caccum[i] = (uchar) (caccum[i] + ((i ^ iprev) != 0)); |
|
iprev = i; |
|
if( cmax < caccum[i] ) |
|
cmax = caccum[i]; |
|
} |
|
} |
|
} |
|
} |
|
|
|
/* Starting additional analysis */ |
|
count = 0; |
|
for( ri = 0; ri < rn; ri++ ) |
|
{ |
|
for( ti = 0; ti < tn; ti++ ) |
|
{ |
|
if( caccum[ri * tn + ti > threshold] ) |
|
{ |
|
count++; |
|
} |
|
} |
|
} |
|
|
|
if( count * 100 > rn * tn ) |
|
{ |
|
icvHoughLinesStandard( img, rho, theta, threshold, lines, linesMax ); |
|
return; |
|
} |
|
|
|
_buffer.resize(srn * stn + 2); |
|
buffer = &_buffer[0]; |
|
mcaccum = buffer + 1; |
|
|
|
count = 0; |
|
for( ri = 0; ri < rn; ri++ ) |
|
{ |
|
for( ti = 0; ti < tn; ti++ ) |
|
{ |
|
if( caccum[ri * tn + ti] > threshold ) |
|
{ |
|
count++; |
|
memset( mcaccum, 0, sfn * sizeof( uchar )); |
|
|
|
for( index = 0; index < fn; index++ ) |
|
{ |
|
int ti2; |
|
float r0; |
|
|
|
yc = (float) y[index] + 0.5f; |
|
xc = (float) x[index] + 0.5f; |
|
|
|
/* Update the accumulator */ |
|
t = (float) fabs( cvFastArctan( yc, xc ) * d2r ); |
|
r = (float) sqrt( (double)xc * xc + (double)yc * yc ) * isrho; |
|
ti0 = cvFloor( (t + Pi * 0.5f) * istheta ); |
|
ti2 = (ti * stn - ti0) * 5; |
|
r0 = (float) ri *srn; |
|
|
|
for( ti1 = 0 /*, phi = ti*theta - Pi/2 - t */ ; ti1 < stn; ti1++, ti2 += 5 |
|
/*phi += stheta */ ) |
|
{ |
|
/*rv = r*_cos(phi) - r0; */ |
|
rv = r * sinTable[(int) (abs( ti2 ))] - r0; |
|
i = cvFloor( rv ) * stn + ti1; |
|
|
|
i = CV_IMAX( i, -1 ); |
|
i = CV_IMIN( i, sfn ); |
|
mcaccum[i]++; |
|
assert( i >= -1 ); |
|
assert( i <= sfn ); |
|
} |
|
} |
|
|
|
/* Find peaks in maccum... */ |
|
for( index = 0; index < sfn; index++ ) |
|
{ |
|
i = 0; |
|
pos = h_get_tail_pos__index( list ); |
|
if( h_get_prev__index( &pos )->value < mcaccum[index] ) |
|
{ |
|
vi.value = mcaccum[index]; |
|
vi.rho = index / stn * srho + ri * rho; |
|
vi.theta = index % stn * stheta + ti * theta - halfPi; |
|
while( h_is_pos__index( pos )) |
|
{ |
|
if( h_get__index( pos )->value > mcaccum[index] ) |
|
{ |
|
h_insert_after__index( list, pos, &vi ); |
|
if( h_get_count__index( list ) > linesMax ) |
|
{ |
|
h_remove_tail__index( list ); |
|
} |
|
break; |
|
} |
|
h_get_prev__index( &pos ); |
|
} |
|
if( !h_is_pos__index( pos )) |
|
{ |
|
h_add_head__index( list, &vi ); |
|
if( h_get_count__index( list ) > linesMax ) |
|
{ |
|
h_remove_tail__index( list ); |
|
} |
|
} |
|
} |
|
} |
|
} |
|
} |
|
} |
|
|
|
pos = h_get_head_pos__index( list ); |
|
if( h_get_count__index( list ) == 1 ) |
|
{ |
|
if( h_get__index( pos )->rho < 0 ) |
|
{ |
|
h_clear_list__index( list ); |
|
} |
|
} |
|
else |
|
{ |
|
while( h_is_pos__index( pos )) |
|
{ |
|
CvLinePolar line; |
|
pindex = h_get__index( pos ); |
|
if( pindex->rho < 0 ) |
|
{ |
|
/* This should be the last element... */ |
|
h_get_next__index( &pos ); |
|
assert( !h_is_pos__index( pos )); |
|
break; |
|
} |
|
line.rho = pindex->rho; |
|
line.angle = pindex->theta; |
|
cvSeqPush( lines, &line ); |
|
|
|
if( lines->total >= linesMax ) |
|
break; |
|
h_get_next__index( &pos ); |
|
} |
|
} |
|
|
|
h_destroy_list__index(list); |
|
} |
|
|
|
|
|
/****************************************************************************************\ |
|
* Probabilistic Hough Transform * |
|
\****************************************************************************************/ |
|
|
|
static void |
|
icvHoughLinesProbabalistic( CvMat* image, |
|
float rho, float theta, int threshold, |
|
int lineLength, int lineGap, |
|
CvSeq *lines, int linesMax ) |
|
{ |
|
cv::Mat accum, mask; |
|
cv::vector<float> trigtab; |
|
cv::MemStorage storage(cvCreateMemStorage(0)); |
|
|
|
CvSeq* seq; |
|
CvSeqWriter writer; |
|
int width, height; |
|
int numangle, numrho; |
|
float ang; |
|
int r, n, count; |
|
CvPoint pt; |
|
float irho = 1 / rho; |
|
CvRNG rng = cvRNG(-1); |
|
const float* ttab; |
|
uchar* mdata0; |
|
|
|
CV_Assert( CV_IS_MAT(image) && CV_MAT_TYPE(image->type) == CV_8UC1 ); |
|
|
|
width = image->cols; |
|
height = image->rows; |
|
|
|
numangle = cvRound(CV_PI / theta); |
|
numrho = cvRound(((width + height) * 2 + 1) / rho); |
|
|
|
accum.create( numangle, numrho, CV_32SC1 ); |
|
mask.create( height, width, CV_8UC1 ); |
|
trigtab.resize(numangle*2); |
|
accum = cv::Scalar(0); |
|
|
|
for( ang = 0, n = 0; n < numangle; ang += theta, n++ ) |
|
{ |
|
trigtab[n*2] = (float)(cos(ang) * irho); |
|
trigtab[n*2+1] = (float)(sin(ang) * irho); |
|
} |
|
ttab = &trigtab[0]; |
|
mdata0 = mask.data; |
|
|
|
cvStartWriteSeq( CV_32SC2, sizeof(CvSeq), sizeof(CvPoint), storage, &writer ); |
|
|
|
// stage 1. collect non-zero image points |
|
for( pt.y = 0, count = 0; pt.y < height; pt.y++ ) |
|
{ |
|
const uchar* data = image->data.ptr + pt.y*image->step; |
|
uchar* mdata = mdata0 + pt.y*width; |
|
for( pt.x = 0; pt.x < width; pt.x++ ) |
|
{ |
|
if( data[pt.x] ) |
|
{ |
|
mdata[pt.x] = (uchar)1; |
|
CV_WRITE_SEQ_ELEM( pt, writer ); |
|
} |
|
else |
|
mdata[pt.x] = 0; |
|
} |
|
} |
|
|
|
seq = cvEndWriteSeq( &writer ); |
|
count = seq->total; |
|
|
|
// stage 2. process all the points in random order |
|
for( ; count > 0; count-- ) |
|
{ |
|
// choose random point out of the remaining ones |
|
int idx = cvRandInt(&rng) % count; |
|
int max_val = threshold-1, max_n = 0; |
|
CvPoint* pt = (CvPoint*)cvGetSeqElem( seq, idx ); |
|
CvPoint line_end[2] = {{0,0}, {0,0}}; |
|
float a, b; |
|
int* adata = (int*)accum.data; |
|
int i, j, k, x0, y0, dx0, dy0, xflag; |
|
int good_line; |
|
const int shift = 16; |
|
|
|
i = pt->y; |
|
j = pt->x; |
|
|
|
// "remove" it by overriding it with the last element |
|
*pt = *(CvPoint*)cvGetSeqElem( seq, count-1 ); |
|
|
|
// check if it has been excluded already (i.e. belongs to some other line) |
|
if( !mdata0[i*width + j] ) |
|
continue; |
|
|
|
// update accumulator, find the most probable line |
|
for( n = 0; n < numangle; n++, adata += numrho ) |
|
{ |
|
r = cvRound( j * ttab[n*2] + i * ttab[n*2+1] ); |
|
r += (numrho - 1) / 2; |
|
int val = ++adata[r]; |
|
if( max_val < val ) |
|
{ |
|
max_val = val; |
|
max_n = n; |
|
} |
|
} |
|
|
|
// if it is too "weak" candidate, continue with another point |
|
if( max_val < threshold ) |
|
continue; |
|
|
|
// from the current point walk in each direction |
|
// along the found line and extract the line segment |
|
a = -ttab[max_n*2+1]; |
|
b = ttab[max_n*2]; |
|
x0 = j; |
|
y0 = i; |
|
if( fabs(a) > fabs(b) ) |
|
{ |
|
xflag = 1; |
|
dx0 = a > 0 ? 1 : -1; |
|
dy0 = cvRound( b*(1 << shift)/fabs(a) ); |
|
y0 = (y0 << shift) + (1 << (shift-1)); |
|
} |
|
else |
|
{ |
|
xflag = 0; |
|
dy0 = b > 0 ? 1 : -1; |
|
dx0 = cvRound( a*(1 << shift)/fabs(b) ); |
|
x0 = (x0 << shift) + (1 << (shift-1)); |
|
} |
|
|
|
for( k = 0; k < 2; k++ ) |
|
{ |
|
int gap = 0, x = x0, y = y0, dx = dx0, dy = dy0; |
|
|
|
if( k > 0 ) |
|
dx = -dx, dy = -dy; |
|
|
|
// walk along the line using fixed-point arithmetics, |
|
// stop at the image border or in case of too big gap |
|
for( ;; x += dx, y += dy ) |
|
{ |
|
uchar* mdata; |
|
int i1, j1; |
|
|
|
if( xflag ) |
|
{ |
|
j1 = x; |
|
i1 = y >> shift; |
|
} |
|
else |
|
{ |
|
j1 = x >> shift; |
|
i1 = y; |
|
} |
|
|
|
if( j1 < 0 || j1 >= width || i1 < 0 || i1 >= height ) |
|
break; |
|
|
|
mdata = mdata0 + i1*width + j1; |
|
|
|
// for each non-zero point: |
|
// update line end, |
|
// clear the mask element |
|
// reset the gap |
|
if( *mdata ) |
|
{ |
|
gap = 0; |
|
line_end[k].y = i1; |
|
line_end[k].x = j1; |
|
} |
|
else if( ++gap > lineGap ) |
|
break; |
|
} |
|
} |
|
|
|
good_line = abs(line_end[1].x - line_end[0].x) >= lineLength || |
|
abs(line_end[1].y - line_end[0].y) >= lineLength; |
|
|
|
for( k = 0; k < 2; k++ ) |
|
{ |
|
int x = x0, y = y0, dx = dx0, dy = dy0; |
|
|
|
if( k > 0 ) |
|
dx = -dx, dy = -dy; |
|
|
|
// walk along the line using fixed-point arithmetics, |
|
// stop at the image border or in case of too big gap |
|
for( ;; x += dx, y += dy ) |
|
{ |
|
uchar* mdata; |
|
int i1, j1; |
|
|
|
if( xflag ) |
|
{ |
|
j1 = x; |
|
i1 = y >> shift; |
|
} |
|
else |
|
{ |
|
j1 = x >> shift; |
|
i1 = y; |
|
} |
|
|
|
mdata = mdata0 + i1*width + j1; |
|
|
|
// for each non-zero point: |
|
// update line end, |
|
// clear the mask element |
|
// reset the gap |
|
if( *mdata ) |
|
{ |
|
if( good_line ) |
|
{ |
|
adata = (int*)accum.data; |
|
for( n = 0; n < numangle; n++, adata += numrho ) |
|
{ |
|
r = cvRound( j1 * ttab[n*2] + i1 * ttab[n*2+1] ); |
|
r += (numrho - 1) / 2; |
|
adata[r]--; |
|
} |
|
} |
|
*mdata = 0; |
|
} |
|
|
|
if( i1 == line_end[k].y && j1 == line_end[k].x ) |
|
break; |
|
} |
|
} |
|
|
|
if( good_line ) |
|
{ |
|
CvRect lr = { line_end[0].x, line_end[0].y, line_end[1].x, line_end[1].y }; |
|
cvSeqPush( lines, &lr ); |
|
if( lines->total >= linesMax ) |
|
return; |
|
} |
|
} |
|
} |
|
|
|
/* Wrapper function for standard hough transform */ |
|
CV_IMPL CvSeq* |
|
cvHoughLines2( CvArr* src_image, void* lineStorage, int method, |
|
double rho, double theta, int threshold, |
|
double param1, double param2 ) |
|
{ |
|
CvSeq* result = 0; |
|
|
|
CvMat stub, *img = (CvMat*)src_image; |
|
CvMat* mat = 0; |
|
CvSeq* lines = 0; |
|
CvSeq lines_header; |
|
CvSeqBlock lines_block; |
|
int lineType, elemSize; |
|
int linesMax = INT_MAX; |
|
int iparam1, iparam2; |
|
|
|
img = cvGetMat( img, &stub ); |
|
|
|
if( !CV_IS_MASK_ARR(img)) |
|
CV_Error( CV_StsBadArg, "The source image must be 8-bit, single-channel" ); |
|
|
|
if( !lineStorage ) |
|
CV_Error( CV_StsNullPtr, "NULL destination" ); |
|
|
|
if( rho <= 0 || theta <= 0 || threshold <= 0 ) |
|
CV_Error( CV_StsOutOfRange, "rho, theta and threshold must be positive" ); |
|
|
|
if( method != CV_HOUGH_PROBABILISTIC ) |
|
{ |
|
lineType = CV_32FC2; |
|
elemSize = sizeof(float)*2; |
|
} |
|
else |
|
{ |
|
lineType = CV_32SC4; |
|
elemSize = sizeof(int)*4; |
|
} |
|
|
|
if( CV_IS_STORAGE( lineStorage )) |
|
{ |
|
lines = cvCreateSeq( lineType, sizeof(CvSeq), elemSize, (CvMemStorage*)lineStorage ); |
|
} |
|
else if( CV_IS_MAT( lineStorage )) |
|
{ |
|
mat = (CvMat*)lineStorage; |
|
|
|
if( !CV_IS_MAT_CONT( mat->type ) || (mat->rows != 1 && mat->cols != 1) ) |
|
CV_Error( CV_StsBadArg, |
|
"The destination matrix should be continuous and have a single row or a single column" ); |
|
|
|
if( CV_MAT_TYPE( mat->type ) != lineType ) |
|
CV_Error( CV_StsBadArg, |
|
"The destination matrix data type is inappropriate, see the manual" ); |
|
|
|
lines = cvMakeSeqHeaderForArray( lineType, sizeof(CvSeq), elemSize, mat->data.ptr, |
|
mat->rows + mat->cols - 1, &lines_header, &lines_block ); |
|
linesMax = lines->total; |
|
cvClearSeq( lines ); |
|
} |
|
else |
|
CV_Error( CV_StsBadArg, "Destination is not CvMemStorage* nor CvMat*" ); |
|
|
|
iparam1 = cvRound(param1); |
|
iparam2 = cvRound(param2); |
|
|
|
switch( method ) |
|
{ |
|
case CV_HOUGH_STANDARD: |
|
icvHoughLinesStandard( img, (float)rho, |
|
(float)theta, threshold, lines, linesMax ); |
|
break; |
|
case CV_HOUGH_MULTI_SCALE: |
|
icvHoughLinesSDiv( img, (float)rho, (float)theta, |
|
threshold, iparam1, iparam2, lines, linesMax ); |
|
break; |
|
case CV_HOUGH_PROBABILISTIC: |
|
icvHoughLinesProbabalistic( img, (float)rho, (float)theta, |
|
threshold, iparam1, iparam2, lines, linesMax ); |
|
break; |
|
default: |
|
CV_Error( CV_StsBadArg, "Unrecognized method id" ); |
|
} |
|
|
|
if( mat ) |
|
{ |
|
if( mat->cols > mat->rows ) |
|
mat->cols = lines->total; |
|
else |
|
mat->rows = lines->total; |
|
} |
|
else |
|
result = lines; |
|
|
|
return result; |
|
} |
|
|
|
|
|
/****************************************************************************************\ |
|
* Circle Detection * |
|
\****************************************************************************************/ |
|
|
|
static void |
|
icvHoughCirclesGradient( CvMat* img, float dp, float min_dist, |
|
int min_radius, int max_radius, |
|
int canny_threshold, int acc_threshold, |
|
CvSeq* circles, int circles_max ) |
|
{ |
|
const int SHIFT = 10, ONE = 1 << SHIFT, R_THRESH = 30; |
|
cv::Ptr<CvMat> dx, dy; |
|
cv::Ptr<CvMat> edges, accum, dist_buf; |
|
std::vector<int> sort_buf; |
|
cv::Ptr<CvMemStorage> storage; |
|
|
|
int x, y, i, j, center_count, nz_count; |
|
int rows, cols, arows, acols; |
|
int astep, *adata; |
|
float* ddata; |
|
CvSeq *nz, *centers; |
|
float idp, dr; |
|
CvSeqReader reader; |
|
|
|
edges = cvCreateMat( img->rows, img->cols, CV_8UC1 ); |
|
cvCanny( img, edges, MAX(canny_threshold/2,1), canny_threshold, 3 ); |
|
|
|
dx = cvCreateMat( img->rows, img->cols, CV_16SC1 ); |
|
dy = cvCreateMat( img->rows, img->cols, CV_16SC1 ); |
|
cvSobel( img, dx, 1, 0, 3 ); |
|
cvSobel( img, dy, 0, 1, 3 ); |
|
|
|
if( dp < 1.f ) |
|
dp = 1.f; |
|
idp = 1.f/dp; |
|
accum = cvCreateMat( cvCeil(img->rows*idp)+2, cvCeil(img->cols*idp)+2, CV_32SC1 ); |
|
cvZero(accum); |
|
|
|
storage = cvCreateMemStorage(); |
|
nz = cvCreateSeq( CV_32SC2, sizeof(CvSeq), sizeof(CvPoint), storage ); |
|
centers = cvCreateSeq( CV_32SC1, sizeof(CvSeq), sizeof(int), storage ); |
|
|
|
rows = img->rows; |
|
cols = img->cols; |
|
arows = accum->rows - 2; |
|
acols = accum->cols - 2; |
|
adata = accum->data.i; |
|
astep = accum->step/sizeof(adata[0]); |
|
|
|
for( y = 0; y < rows; y++ ) |
|
{ |
|
const uchar* edges_row = edges->data.ptr + y*edges->step; |
|
const short* dx_row = (const short*)(dx->data.ptr + y*dx->step); |
|
const short* dy_row = (const short*)(dy->data.ptr + y*dy->step); |
|
|
|
for( x = 0; x < cols; x++ ) |
|
{ |
|
float vx, vy; |
|
int sx, sy, x0, y0, x1, y1, r, k; |
|
CvPoint pt; |
|
|
|
vx = dx_row[x]; |
|
vy = dy_row[x]; |
|
|
|
if( !edges_row[x] || (vx == 0 && vy == 0) ) |
|
continue; |
|
|
|
float mag = sqrt(vx*vx+vy*vy); |
|
assert( mag >= 1 ); |
|
sx = cvRound((vx*idp)*ONE/mag); |
|
sy = cvRound((vy*idp)*ONE/mag); |
|
|
|
x0 = cvRound((x*idp)*ONE); |
|
y0 = cvRound((y*idp)*ONE); |
|
|
|
for( k = 0; k < 2; k++ ) |
|
{ |
|
x1 = x0 + min_radius * sx; |
|
y1 = y0 + min_radius * sy; |
|
|
|
for( r = min_radius; r <= max_radius; x1 += sx, y1 += sy, r++ ) |
|
{ |
|
int x2 = x1 >> SHIFT, y2 = y1 >> SHIFT; |
|
if( (unsigned)x2 >= (unsigned)acols || |
|
(unsigned)y2 >= (unsigned)arows ) |
|
break; |
|
adata[y2*astep + x2]++; |
|
} |
|
|
|
sx = -sx; sy = -sy; |
|
} |
|
|
|
pt.x = x; pt.y = y; |
|
cvSeqPush( nz, &pt ); |
|
} |
|
} |
|
|
|
nz_count = nz->total; |
|
if( !nz_count ) |
|
return; |
|
|
|
for( y = 1; y < arows - 1; y++ ) |
|
{ |
|
for( x = 1; x < acols - 1; x++ ) |
|
{ |
|
int base = y*(acols+2) + x; |
|
if( adata[base] > acc_threshold && |
|
adata[base] > adata[base-1] && adata[base] > adata[base+1] && |
|
adata[base] > adata[base-acols-2] && adata[base] > adata[base+acols+2] ) |
|
cvSeqPush(centers, &base); |
|
} |
|
} |
|
|
|
center_count = centers->total; |
|
if( !center_count ) |
|
return; |
|
|
|
sort_buf.resize( MAX(center_count,nz_count) ); |
|
cvCvtSeqToArray( centers, &sort_buf[0] ); |
|
|
|
icvHoughSortDescent32s( &sort_buf[0], center_count, adata ); |
|
cvClearSeq( centers ); |
|
cvSeqPushMulti( centers, &sort_buf[0], center_count ); |
|
|
|
dist_buf = cvCreateMat( 1, nz_count, CV_32FC1 ); |
|
ddata = dist_buf->data.fl; |
|
|
|
dr = dp; |
|
min_dist = MAX( min_dist, dp ); |
|
min_dist *= min_dist; |
|
|
|
for( i = 0; i < centers->total; i++ ) |
|
{ |
|
int ofs = *(int*)cvGetSeqElem( centers, i ); |
|
y = ofs/(acols+2) - 1; |
|
x = ofs - (y+1)*(acols+2) - 1; |
|
float cx = (float)(x*dp), cy = (float)(y*dp); |
|
int start_idx = nz_count - 1; |
|
float start_dist, dist_sum; |
|
float r_best = 0, c[3]; |
|
int max_count = R_THRESH; |
|
|
|
for( j = 0; j < circles->total; j++ ) |
|
{ |
|
float* c = (float*)cvGetSeqElem( circles, j ); |
|
if( (c[0] - cx)*(c[0] - cx) + (c[1] - cy)*(c[1] - cy) < min_dist ) |
|
break; |
|
} |
|
|
|
if( j < circles->total ) |
|
continue; |
|
|
|
cvStartReadSeq( nz, &reader ); |
|
for( j = 0; j < nz_count; j++ ) |
|
{ |
|
CvPoint pt; |
|
float _dx, _dy; |
|
CV_READ_SEQ_ELEM( pt, reader ); |
|
_dx = cx - pt.x; _dy = cy - pt.y; |
|
ddata[j] = _dx*_dx + _dy*_dy; |
|
sort_buf[j] = j; |
|
} |
|
|
|
cvPow( dist_buf, dist_buf, 0.5 ); |
|
icvHoughSortDescent32s( &sort_buf[0], nz_count, (int*)ddata ); |
|
|
|
dist_sum = start_dist = ddata[sort_buf[nz_count-1]]; |
|
for( j = nz_count - 2; j >= 0; j-- ) |
|
{ |
|
float d = ddata[sort_buf[j]]; |
|
|
|
if( d > max_radius ) |
|
break; |
|
|
|
if( d - start_dist > dr ) |
|
{ |
|
float r_cur = ddata[sort_buf[(j + start_idx)/2]]; |
|
if( (start_idx - j)*r_best >= max_count*r_cur || |
|
(r_best < FLT_EPSILON && start_idx - j >= max_count) ) |
|
{ |
|
r_best = r_cur; |
|
max_count = start_idx - j; |
|
} |
|
start_dist = d; |
|
start_idx = j; |
|
dist_sum = 0; |
|
} |
|
dist_sum += d; |
|
} |
|
|
|
if( max_count > R_THRESH ) |
|
{ |
|
c[0] = cx; |
|
c[1] = cy; |
|
c[2] = (float)r_best; |
|
cvSeqPush( circles, c ); |
|
if( circles->total > circles_max ) |
|
return; |
|
} |
|
} |
|
} |
|
|
|
CV_IMPL CvSeq* |
|
cvHoughCircles( CvArr* src_image, void* circle_storage, |
|
int method, double dp, double min_dist, |
|
double param1, double param2, |
|
int min_radius, int max_radius ) |
|
{ |
|
CvSeq* result = 0; |
|
|
|
CvMat stub, *img = (CvMat*)src_image; |
|
CvMat* mat = 0; |
|
CvSeq* circles = 0; |
|
CvSeq circles_header; |
|
CvSeqBlock circles_block; |
|
int circles_max = INT_MAX; |
|
int canny_threshold = cvRound(param1); |
|
int acc_threshold = cvRound(param2); |
|
|
|
img = cvGetMat( img, &stub ); |
|
|
|
if( !CV_IS_MASK_ARR(img)) |
|
CV_Error( CV_StsBadArg, "The source image must be 8-bit, single-channel" ); |
|
|
|
if( !circle_storage ) |
|
CV_Error( CV_StsNullPtr, "NULL destination" ); |
|
|
|
if( dp <= 0 || min_dist <= 0 || canny_threshold <= 0 || acc_threshold <= 0 ) |
|
CV_Error( CV_StsOutOfRange, "dp, min_dist, canny_threshold and acc_threshold must be all positive numbers" ); |
|
|
|
min_radius = MAX( min_radius, 0 ); |
|
if( max_radius <= 0 ) |
|
max_radius = MAX( img->rows, img->cols ); |
|
else if( max_radius <= min_radius ) |
|
max_radius = min_radius + 2; |
|
|
|
if( CV_IS_STORAGE( circle_storage )) |
|
{ |
|
circles = cvCreateSeq( CV_32FC3, sizeof(CvSeq), |
|
sizeof(float)*3, (CvMemStorage*)circle_storage ); |
|
} |
|
else if( CV_IS_MAT( circle_storage )) |
|
{ |
|
mat = (CvMat*)circle_storage; |
|
|
|
if( !CV_IS_MAT_CONT( mat->type ) || (mat->rows != 1 && mat->cols != 1) || |
|
CV_MAT_TYPE(mat->type) != CV_32FC3 ) |
|
CV_Error( CV_StsBadArg, |
|
"The destination matrix should be continuous and have a single row or a single column" ); |
|
|
|
circles = cvMakeSeqHeaderForArray( CV_32FC3, sizeof(CvSeq), sizeof(float)*3, |
|
mat->data.ptr, mat->rows + mat->cols - 1, &circles_header, &circles_block ); |
|
circles_max = circles->total; |
|
cvClearSeq( circles ); |
|
} |
|
else |
|
CV_Error( CV_StsBadArg, "Destination is not CvMemStorage* nor CvMat*" ); |
|
|
|
switch( method ) |
|
{ |
|
case CV_HOUGH_GRADIENT: |
|
icvHoughCirclesGradient( img, (float)dp, (float)min_dist, |
|
min_radius, max_radius, canny_threshold, |
|
acc_threshold, circles, circles_max ); |
|
break; |
|
default: |
|
CV_Error( CV_StsBadArg, "Unrecognized method id" ); |
|
} |
|
|
|
if( mat ) |
|
{ |
|
if( mat->cols > mat->rows ) |
|
mat->cols = circles->total; |
|
else |
|
mat->rows = circles->total; |
|
} |
|
else |
|
result = circles; |
|
|
|
return result; |
|
} |
|
|
|
|
|
namespace cv |
|
{ |
|
|
|
const int STORAGE_SIZE = 1 << 12; |
|
|
|
void HoughLines( const Mat& image, vector<Vec2f>& lines, |
|
double rho, double theta, int threshold, |
|
double srn, double stn ) |
|
{ |
|
CvMemStorage* storage = cvCreateMemStorage(STORAGE_SIZE); |
|
CvMat _image = image; |
|
CvSeq* seq = cvHoughLines2( &_image, storage, srn == 0 && stn == 0 ? |
|
CV_HOUGH_STANDARD : CV_HOUGH_MULTI_SCALE, |
|
rho, theta, threshold, srn, stn ); |
|
Seq<Vec2f>(seq).copyTo(lines); |
|
cvReleaseMemStorage(&storage); |
|
} |
|
|
|
void HoughLinesP( Mat& image, vector<Vec4i>& lines, |
|
double rho, double theta, int threshold, |
|
double minLineLength, double maxGap ) |
|
{ |
|
CvMemStorage* storage = cvCreateMemStorage(STORAGE_SIZE); |
|
CvMat _image = image; |
|
CvSeq* seq = cvHoughLines2( &_image, storage, CV_HOUGH_PROBABILISTIC, |
|
rho, theta, threshold, minLineLength, maxGap ); |
|
Seq<Vec4i>(seq).copyTo(lines); |
|
cvReleaseMemStorage(&storage); |
|
} |
|
|
|
void HoughCircles( const Mat& image, vector<Vec3f>& circles, |
|
int method, double dp, double min_dist, |
|
double param1, double param2, |
|
int minRadius, int maxRadius ) |
|
{ |
|
CvMemStorage* storage = cvCreateMemStorage(STORAGE_SIZE); |
|
CvMat _image = image; |
|
CvSeq* seq = cvHoughCircles( &_image, storage, method, |
|
dp, min_dist, param1, param2, minRadius, maxRadius ); |
|
Seq<Vec3f>(seq).copyTo(circles); |
|
cvReleaseMemStorage(&storage); |
|
} |
|
|
|
} |
|
|
|
/* End of file. */
|
|
|