Open Source Computer Vision Library https://opencv.org/
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

467 lines
14 KiB

/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// Intel License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2008, Xavier Delacour, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of Intel Corporation may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
// 2008-05-13, Xavier Delacour <xavier.delacour@gmail.com>
#ifndef __cv_kdtree_h__
#define __cv_kdtree_h__
#include "precomp.hpp"
#include <vector>
#include <algorithm>
#include <limits>
#include <iostream>
#include "assert.h"
#include "math.h"
#if _MSC_VER >= 1400
#pragma warning(disable: 4512) // suppress "assignment operator could not be generated"
#endif
// J.S. Beis and D.G. Lowe. Shape indexing using approximate nearest-neighbor search
// in highdimensional spaces. In Proc. IEEE Conf. Comp. Vision Patt. Recog.,
// pages 1000--1006, 1997. http://citeseer.ist.psu.edu/beis97shape.html
#undef __deref
#undef __valuetype
template < class __valuetype, class __deref >
class CvKDTree {
public:
typedef __deref deref_type;
typedef typename __deref::scalar_type scalar_type;
typedef typename __deref::accum_type accum_type;
private:
struct node {
int dim; // split dimension; >=0 for nodes, -1 for leaves
__valuetype value; // if leaf, value of leaf
int left, right; // node indices of left and right branches
scalar_type boundary; // left if deref(value,dim)<=boundary, otherwise right
};
typedef std::vector < node > node_array;
__deref deref; // requires operator() (__valuetype lhs,int dim)
node_array nodes; // node storage
int point_dim; // dimension of points (the k in kd-tree)
int root_node; // index of root node, -1 if empty tree
// for given set of point indices, compute dimension of highest variance
template < class __instype, class __valuector >
int dimension_of_highest_variance(__instype * first, __instype * last,
__valuector ctor) {
assert(last - first > 0);
accum_type maxvar = -std::numeric_limits < accum_type >::max();
int maxj = -1;
for (int j = 0; j < point_dim; ++j) {
accum_type mean = 0;
for (__instype * k = first; k < last; ++k)
mean += deref(ctor(*k), j);
mean /= last - first;
accum_type var = 0;
for (__instype * k = first; k < last; ++k) {
accum_type diff = accum_type(deref(ctor(*k), j)) - mean;
var += diff * diff;
}
var /= last - first;
assert(maxj != -1 || var >= maxvar);
if (var >= maxvar) {
maxvar = var;
maxj = j;
}
}
return maxj;
}
// given point indices and dimension, find index of median; (almost) modifies [first,last)
// such that points_in[first,median]<=point[median], points_in(median,last)>point[median].
// implemented as partial quicksort; expected linear perf.
template < class __instype, class __valuector >
__instype * median_partition(__instype * first, __instype * last,
int dim, __valuector ctor) {
assert(last - first > 0);
__instype *k = first + (last - first) / 2;
median_partition(first, last, k, dim, ctor);
return k;
}
template < class __instype, class __valuector >
struct median_pr {
const __instype & pivot;
int dim;
__deref deref;
__valuector ctor;
median_pr(const __instype & _pivot, int _dim, __deref _deref, __valuector _ctor)
: pivot(_pivot), dim(_dim), deref(_deref), ctor(_ctor) {
}
bool operator() (const __instype & lhs) const {
return deref(ctor(lhs), dim) <= deref(ctor(pivot), dim);
}
};
template < class __instype, class __valuector >
void median_partition(__instype * first, __instype * last,
__instype * k, int dim, __valuector ctor) {
int pivot = (int)((last - first) / 2);
std::swap(first[pivot], last[-1]);
__instype *middle = std::partition(first, last - 1,
median_pr < __instype, __valuector >
(last[-1], dim, deref, ctor));
std::swap(*middle, last[-1]);
if (middle < k)
median_partition(middle + 1, last, k, dim, ctor);
else if (middle > k)
median_partition(first, middle, k, dim, ctor);
}
// insert given points into the tree; return created node
template < class __instype, class __valuector >
int insert(__instype * first, __instype * last, __valuector ctor) {
if (first == last)
return -1;
else {
int dim = dimension_of_highest_variance(first, last, ctor);
__instype *median = median_partition(first, last, dim, ctor);
__instype *split = median;
for (; split != last && deref(ctor(*split), dim) ==
deref(ctor(*median), dim); ++split);
if (split == last) { // leaf
int nexti = -1;
for (--split; split >= first; --split) {
int i = (int)nodes.size();
node & n = *nodes.insert(nodes.end(), node());
n.dim = -1;
n.value = ctor(*split);
n.left = -1;
n.right = nexti;
nexti = i;
}
return nexti;
} else { // node
int i = (int)nodes.size();
// note that recursive insert may invalidate this ref
node & n = *nodes.insert(nodes.end(), node());
n.dim = dim;
n.boundary = deref(ctor(*median), dim);
int left = insert(first, split, ctor);
nodes[i].left = left;
int right = insert(split, last, ctor);
nodes[i].right = right;
return i;
}
}
}
// run to leaf; linear search for p;
// if found, remove paths to empty leaves on unwind
bool remove(int *i, const __valuetype & p) {
if (*i == -1)
return false;
node & n = nodes[*i];
bool r;
if (n.dim >= 0) { // node
if (deref(p, n.dim) <= n.boundary) // left
r = remove(&n.left, p);
else // right
r = remove(&n.right, p);
// if terminal, remove this node
if (n.left == -1 && n.right == -1)
*i = -1;
return r;
} else { // leaf
if (n.value == p) {
*i = n.right;
return true;
} else
return remove(&n.right, p);
}
}
public:
struct identity_ctor {
const __valuetype & operator() (const __valuetype & rhs) const {
return rhs;
}
};
// initialize an empty tree
CvKDTree(__deref _deref = __deref())
: deref(_deref), root_node(-1) {
}
// given points, initialize a balanced tree
CvKDTree(__valuetype * first, __valuetype * last, int _point_dim,
__deref _deref = __deref())
: deref(_deref) {
set_data(first, last, _point_dim, identity_ctor());
}
// given points, initialize a balanced tree
template < class __instype, class __valuector >
CvKDTree(__instype * first, __instype * last, int _point_dim,
__valuector ctor, __deref _deref = __deref())
: deref(_deref) {
set_data(first, last, _point_dim, ctor);
}
void set_deref(__deref _deref) {
deref = _deref;
}
void set_data(__valuetype * first, __valuetype * last, int _point_dim) {
set_data(first, last, _point_dim, identity_ctor());
}
template < class __instype, class __valuector >
void set_data(__instype * first, __instype * last, int _point_dim,
__valuector ctor) {
point_dim = _point_dim;
nodes.clear();
nodes.reserve(last - first);
root_node = insert(first, last, ctor);
}
int dims() const {
return point_dim;
}
// remove the given point
bool remove(const __valuetype & p) {
return remove(&root_node, p);
}
void print() const {
print(root_node);
}
void print(int i, int indent = 0) const {
if (i == -1)
return;
for (int j = 0; j < indent; ++j)
std::cout << " ";
const node & n = nodes[i];
if (n.dim >= 0) {
std::cout << "node " << i << ", left " << nodes[i].left << ", right " <<
nodes[i].right << ", dim " << nodes[i].dim << ", boundary " <<
nodes[i].boundary << std::endl;
print(n.left, indent + 3);
print(n.right, indent + 3);
} else
std::cout << "leaf " << i << ", value = " << nodes[i].value << std::endl;
}
////////////////////////////////////////////////////////////////////////////////////////
// bbf search
public:
struct bbf_nn { // info on found neighbors (approx k nearest)
const __valuetype *p; // nearest neighbor
accum_type dist; // distance from d to query point
bbf_nn(const __valuetype & _p, accum_type _dist)
: p(&_p), dist(_dist) {
}
bool operator<(const bbf_nn & rhs) const {
return dist < rhs.dist;
}
};
typedef std::vector < bbf_nn > bbf_nn_pqueue;
private:
struct bbf_node { // info on branches not taken
int node; // corresponding node
accum_type dist; // minimum distance from bounds to query point
bbf_node(int _node, accum_type _dist)
: node(_node), dist(_dist) {
}
bool operator<(const bbf_node & rhs) const {
return dist > rhs.dist;
}
};
typedef std::vector < bbf_node > bbf_pqueue;
mutable bbf_pqueue tmp_pq;
// called for branches not taken, as bbf walks to leaf;
// construct bbf_node given minimum distance to bounds of alternate branch
void pq_alternate(int alt_n, bbf_pqueue & pq, scalar_type dist) const {
if (alt_n == -1)
return;
// add bbf_node for alternate branch in priority queue
pq.push_back(bbf_node(alt_n, dist));
std::push_heap(pq.begin(), pq.end());
}
// called by bbf to walk to leaf;
// takes one step down the tree towards query point d
template < class __desctype >
int bbf_branch(int i, const __desctype * d, bbf_pqueue & pq) const {
const node & n = nodes[i];
// push bbf_node with bounds of alternate branch, then branch
if (d[n.dim] <= n.boundary) { // left
pq_alternate(n.right, pq, n.boundary - d[n.dim]);
return n.left;
} else { // right
pq_alternate(n.left, pq, d[n.dim] - n.boundary);
return n.right;
}
}
// compute euclidean distance between two points
template < class __desctype >
accum_type distance(const __desctype * d, const __valuetype & p) const {
accum_type dist = 0;
for (int j = 0; j < point_dim; ++j) {
accum_type diff = accum_type(d[j]) - accum_type(deref(p, j));
dist += diff * diff;
} return (accum_type) sqrt(dist);
}
// called per candidate nearest neighbor; constructs new bbf_nn for
// candidate and adds it to priority queue of all candidates; if
// queue len exceeds k, drops the point furthest from query point d.
template < class __desctype >
void bbf_new_nn(bbf_nn_pqueue & nn_pq, int k,
const __desctype * d, const __valuetype & p) const {
bbf_nn nn(p, distance(d, p));
if ((int) nn_pq.size() < k) {
nn_pq.push_back(nn);
std::push_heap(nn_pq.begin(), nn_pq.end());
} else if (nn_pq[0].dist > nn.dist) {
std::pop_heap(nn_pq.begin(), nn_pq.end());
nn_pq.end()[-1] = nn;
std::push_heap(nn_pq.begin(), nn_pq.end());
}
assert(nn_pq.size() < 2 || nn_pq[0].dist >= nn_pq[1].dist);
}
public:
// finds (with high probability) the k nearest neighbors of d,
// searching at most emax leaves/bins.
// ret_nn_pq is an array containing the (at most) k nearest neighbors
// (see bbf_nn structure def above).
template < class __desctype >
int find_nn_bbf(const __desctype * d,
int k, int emax,
bbf_nn_pqueue & ret_nn_pq) const {
assert(k > 0);
ret_nn_pq.clear();
if (root_node == -1)
return 0;
// add root_node to bbf_node priority queue;
// iterate while queue non-empty and emax>0
tmp_pq.clear();
tmp_pq.push_back(bbf_node(root_node, 0));
while (tmp_pq.size() && emax > 0) {
// from node nearest query point d, run to leaf
std::pop_heap(tmp_pq.begin(), tmp_pq.end());
bbf_node bbf(tmp_pq.end()[-1]);
tmp_pq.erase(tmp_pq.end() - 1);
int i;
for (i = bbf.node;
i != -1 && nodes[i].dim >= 0;
i = bbf_branch(i, d, tmp_pq));
if (i != -1) {
// add points in leaf/bin to ret_nn_pq
do {
bbf_new_nn(ret_nn_pq, k, d, nodes[i].value);
} while (-1 != (i = nodes[i].right));
--emax;
}
}
tmp_pq.clear();
return (int)ret_nn_pq.size();
}
////////////////////////////////////////////////////////////////////////////////////////
// orthogonal range search
private:
void find_ortho_range(int i, scalar_type * bounds_min,
scalar_type * bounds_max,
std::vector < __valuetype > &inbounds) const {
if (i == -1)
return;
const node & n = nodes[i];
if (n.dim >= 0) { // node
if (bounds_min[n.dim] <= n.boundary)
find_ortho_range(n.left, bounds_min, bounds_max, inbounds);
if (bounds_max[n.dim] > n.boundary)
find_ortho_range(n.right, bounds_min, bounds_max, inbounds);
} else { // leaf
do {
inbounds.push_back(nodes[i].value);
} while (-1 != (i = nodes[i].right));
}
}
public:
// return all points that lie within the given bounds; inbounds is cleared
int find_ortho_range(scalar_type * bounds_min,
scalar_type * bounds_max,
std::vector < __valuetype > &inbounds) const {
inbounds.clear();
find_ortho_range(root_node, bounds_min, bounds_max, inbounds);
return (int)inbounds.size();
}
};
#endif // __cv_kdtree_h__
// Local Variables:
// mode:C++
// End: