mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1686 lines
42 KiB
1686 lines
42 KiB
/*M/////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// |
|
// Intel License Agreement |
|
// For Open Source Computer Vision Library |
|
// |
|
// Copyright (C) 2000, Intel Corporation, all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
// |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistribution's of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistribution's in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other materials provided with the distribution. |
|
// |
|
// * The name of Intel Corporation may not be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors "as is" and |
|
// any express or implied warranties, including, but not limited to, the implied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall the Intel Corporation or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
// |
|
//M*/ |
|
#include "precomp.hpp" |
|
#include "_vm.h" |
|
#include <stdlib.h> |
|
|
|
#define Sgn(x) ( (x)<0 ? -1:1 ) /* Sgn(0) = 1 ! */ |
|
/*===========================================================================*/ |
|
CvStatus |
|
icvLMedS( int *points1, int *points2, int numPoints, CvMatrix3 * fundamentalMatrix ) |
|
{ |
|
int sample, j, amount_samples, done; |
|
int amount_solutions; |
|
int ml7[21], mr7[21]; |
|
|
|
double F_try[9 * 3]; |
|
double F[9]; |
|
double Mj, Mj_new; |
|
|
|
int i, num; |
|
|
|
int *ml; |
|
int *mr; |
|
int *new_ml; |
|
int *new_mr; |
|
int new_num; |
|
CvStatus error; |
|
|
|
error = CV_NO_ERR; |
|
|
|
if( fundamentalMatrix == 0 ) |
|
return CV_BADFACTOR_ERR; |
|
|
|
num = numPoints; |
|
|
|
if( num < 6 ) |
|
{ |
|
return CV_BADFACTOR_ERR; |
|
} /* if */ |
|
|
|
ml = (int *) cvAlloc( sizeof( int ) * num * 3 ); |
|
mr = (int *) cvAlloc( sizeof( int ) * num * 3 ); |
|
|
|
for( i = 0; i < num; i++ ) |
|
{ |
|
|
|
ml[i * 3] = points1[i * 2]; |
|
ml[i * 3 + 1] = points1[i * 2 + 1]; |
|
|
|
ml[i * 3 + 2] = 1; |
|
|
|
mr[i * 3] = points2[i * 2]; |
|
mr[i * 3 + 1] = points2[i * 2 + 1]; |
|
|
|
mr[i * 3 + 2] = 1; |
|
} /* for */ |
|
|
|
if( num > 7 ) |
|
{ |
|
|
|
Mj = -1; |
|
amount_samples = 1000; /* ------- Must be changed ! --------- */ |
|
|
|
for( sample = 0; sample < amount_samples; sample++ ) |
|
{ |
|
|
|
icvChoose7( ml, mr, num, ml7, mr7 ); |
|
icvPoint7( ml7, mr7, F_try, &amount_solutions ); |
|
|
|
for( i = 0; i < amount_solutions / 9; i++ ) |
|
{ |
|
|
|
Mj_new = icvMedian( ml, mr, num, F_try + i * 9 ); |
|
|
|
if( Mj_new >= 0 && (Mj == -1 || Mj_new < Mj) ) |
|
{ |
|
|
|
for( j = 0; j < 9; j++ ) |
|
{ |
|
|
|
F[j] = F_try[i * 9 + j]; |
|
} /* for */ |
|
|
|
Mj = Mj_new; |
|
} /* if */ |
|
} /* for */ |
|
} /* for */ |
|
|
|
if( Mj == -1 ) |
|
return CV_BADFACTOR_ERR; |
|
|
|
done = icvBoltingPoints( ml, mr, num, F, Mj, &new_ml, &new_mr, &new_num ); |
|
|
|
if( done == -1 ) |
|
{ |
|
|
|
cvFree( &mr ); |
|
cvFree( &ml ); |
|
return CV_OUTOFMEM_ERR; |
|
} /* if */ |
|
|
|
if( done > 7 ) |
|
error = icvPoints8( new_ml, new_mr, new_num, F ); |
|
|
|
cvFree( &new_mr ); |
|
cvFree( &new_ml ); |
|
|
|
} |
|
else |
|
{ |
|
error = icvPoint7( ml, mr, F, &i ); |
|
} /* if */ |
|
|
|
if( error == CV_NO_ERR ) |
|
error = icvRank2Constraint( F ); |
|
|
|
for( i = 0; i < 3; i++ ) |
|
for( j = 0; j < 3; j++ ) |
|
fundamentalMatrix->m[i][j] = (float) F[i * 3 + j]; |
|
|
|
return error; |
|
|
|
} /* icvLMedS */ |
|
|
|
/*===========================================================================*/ |
|
/*===========================================================================*/ |
|
void |
|
icvChoose7( int *ml, int *mr, int num, int *ml7, int *mr7 ) |
|
{ |
|
int indexes[7], i, j; |
|
|
|
if( !ml || !mr || num < 7 || !ml7 || !mr7 ) |
|
return; |
|
|
|
for( i = 0; i < 7; i++ ) |
|
{ |
|
|
|
indexes[i] = (int) ((double) rand() / RAND_MAX * num); |
|
|
|
for( j = 0; j < i; j++ ) |
|
{ |
|
|
|
if( indexes[i] == indexes[j] ) |
|
i--; |
|
} /* for */ |
|
} /* for */ |
|
|
|
for( i = 0; i < 21; i++ ) |
|
{ |
|
|
|
ml7[i] = ml[3 * indexes[i / 3] + i % 3]; |
|
mr7[i] = mr[3 * indexes[i / 3] + i % 3]; |
|
} /* for */ |
|
} /* cs_Choose7 */ |
|
|
|
/*===========================================================================*/ |
|
/*===========================================================================*/ |
|
CvStatus |
|
icvCubic( double a2, double a1, double a0, double *squares ) |
|
{ |
|
double p, q, D, c1, c2, b1, b2, ro1, ro2, fi1, fi2, tt; |
|
double x[6][3]; |
|
int i, j, t; |
|
|
|
if( !squares ) |
|
return CV_BADFACTOR_ERR; |
|
|
|
p = a1 - a2 * a2 / 3; |
|
q = (9 * a1 * a2 - 27 * a0 - 2 * a2 * a2 * a2) / 27; |
|
D = q * q / 4 + p * p * p / 27; |
|
|
|
if( D < 0 ) |
|
{ |
|
|
|
c1 = q / 2; |
|
c2 = c1; |
|
b1 = sqrt( -D ); |
|
b2 = -b1; |
|
|
|
ro1 = sqrt( c1 * c1 - D ); |
|
ro2 = ro1; |
|
|
|
fi1 = atan2( b1, c1 ); |
|
fi2 = -fi1; |
|
} |
|
else |
|
{ |
|
|
|
c1 = q / 2 + sqrt( D ); |
|
c2 = q / 2 - sqrt( D ); |
|
b1 = 0; |
|
b2 = 0; |
|
|
|
ro1 = fabs( c1 ); |
|
ro2 = fabs( c2 ); |
|
fi1 = CV_PI * (1 - SIGN( c1 )) / 2; |
|
fi2 = CV_PI * (1 - SIGN( c2 )) / 2; |
|
} /* if */ |
|
|
|
for( i = 0; i < 6; i++ ) |
|
{ |
|
|
|
x[i][0] = -a2 / 3; |
|
x[i][1] = 0; |
|
x[i][2] = 0; |
|
|
|
squares[i] = x[i][i % 2]; |
|
} /* for */ |
|
|
|
if( !REAL_ZERO( ro1 )) |
|
{ |
|
tt = SIGN( ro1 ) * pow( fabs( ro1 ), 0.333333333333 ); |
|
c1 = tt - p / (3. * tt); |
|
c2 = tt + p / (3. * tt); |
|
} /* if */ |
|
|
|
if( !REAL_ZERO( ro2 )) |
|
{ |
|
tt = SIGN( ro2 ) * pow( fabs( ro2 ), 0.333333333333 ); |
|
b1 = tt - p / (3. * tt); |
|
b2 = tt + p / (3. * tt); |
|
} /* if */ |
|
|
|
for( i = 0; i < 6; i++ ) |
|
{ |
|
|
|
if( i < 3 ) |
|
{ |
|
|
|
if( !REAL_ZERO( ro1 )) |
|
{ |
|
|
|
x[i][0] = cos( fi1 / 3. + 2 * CV_PI * (i % 3) / 3. ) * c1 - a2 / 3; |
|
x[i][1] = sin( fi1 / 3. + 2 * CV_PI * (i % 3) / 3. ) * c2; |
|
} |
|
else |
|
{ |
|
|
|
x[i][2] = 1; |
|
} /* if */ |
|
} |
|
else |
|
{ |
|
|
|
if( !REAL_ZERO( ro2 )) |
|
{ |
|
|
|
x[i][0] = cos( fi2 / 3. + 2 * CV_PI * (i % 3) / 3. ) * b1 - a2 / 3; |
|
x[i][1] = sin( fi2 / 3. + 2 * CV_PI * (i % 3) / 3. ) * b2; |
|
} |
|
else |
|
{ |
|
|
|
x[i][2] = 1; |
|
} /* if */ |
|
} /* if */ |
|
} /* for */ |
|
|
|
t = 0; |
|
|
|
for( i = 0; i < 6; i++ ) |
|
{ |
|
|
|
if( !x[i][2] ) |
|
{ |
|
|
|
squares[t++] = x[i][0]; |
|
squares[t++] = x[i][1]; |
|
x[i][2] = 1; |
|
|
|
for( j = i + 1; j < 6; j++ ) |
|
{ |
|
|
|
if( !x[j][2] && REAL_ZERO( x[i][0] - x[j][0] ) |
|
&& REAL_ZERO( x[i][1] - x[j][1] )) |
|
{ |
|
|
|
x[j][2] = 1; |
|
break; |
|
} /* if */ |
|
} /* for */ |
|
} /* if */ |
|
} /* for */ |
|
return CV_NO_ERR; |
|
} /* icvCubic */ |
|
|
|
/*======================================================================================*/ |
|
double |
|
icvDet( double *M ) |
|
{ |
|
double value; |
|
|
|
if( !M ) |
|
return 0; |
|
|
|
value = M[0] * M[4] * M[8] + M[2] * M[3] * M[7] + M[1] * M[5] * M[6] - |
|
M[2] * M[4] * M[6] - M[0] * M[5] * M[7] - M[1] * M[3] * M[8]; |
|
|
|
return value; |
|
|
|
} /* icvDet */ |
|
|
|
/*===============================================================================*/ |
|
double |
|
icvMinor( double *M, int x, int y ) |
|
{ |
|
int row1, row2, col1, col2; |
|
double value; |
|
|
|
if( !M || x < 0 || x > 2 || y < 0 || y > 2 ) |
|
return 0; |
|
|
|
row1 = (y == 0 ? 1 : 0); |
|
row2 = (y == 2 ? 1 : 2); |
|
col1 = (x == 0 ? 1 : 0); |
|
col2 = (x == 2 ? 1 : 2); |
|
|
|
value = M[row1 * 3 + col1] * M[row2 * 3 + col2] - M[row2 * 3 + col1] * M[row1 * 3 + col2]; |
|
|
|
value *= 1 - (x + y) % 2 * 2; |
|
|
|
return value; |
|
|
|
} /* icvMinor */ |
|
|
|
/*======================================================================================*/ |
|
CvStatus |
|
icvGetCoef( double *f1, double *f2, double *a2, double *a1, double *a0 ) |
|
{ |
|
double G[9], a3; |
|
int i; |
|
|
|
if( !f1 || !f2 || !a0 || !a1 || !a2 ) |
|
return CV_BADFACTOR_ERR; |
|
|
|
for( i = 0; i < 9; i++ ) |
|
{ |
|
|
|
G[i] = f1[i] - f2[i]; |
|
} /* for */ |
|
|
|
a3 = icvDet( G ); |
|
|
|
if( REAL_ZERO( a3 )) |
|
return CV_BADFACTOR_ERR; |
|
|
|
*a2 = 0; |
|
*a1 = 0; |
|
*a0 = icvDet( f2 ); |
|
|
|
for( i = 0; i < 9; i++ ) |
|
{ |
|
|
|
*a2 += f2[i] * icvMinor( G, (int) (i % 3), (int) (i / 3) ); |
|
*a1 += G[i] * icvMinor( f2, (int) (i % 3), (int) (i / 3) ); |
|
} /* for */ |
|
|
|
*a0 /= a3; |
|
*a1 /= a3; |
|
*a2 /= a3; |
|
|
|
return CV_NO_ERR; |
|
|
|
} /* icvGetCoef */ |
|
|
|
/*===========================================================================*/ |
|
double |
|
icvMedian( int *ml, int *mr, int num, double *F ) |
|
{ |
|
double l1, l2, l3, d1, d2, value; |
|
double *deviation; |
|
int i, i3; |
|
|
|
if( !ml || !mr || !F ) |
|
return -1; |
|
|
|
deviation = (double *) cvAlloc( (num) * sizeof( double )); |
|
|
|
if( !deviation ) |
|
return -1; |
|
|
|
for( i = 0, i3 = 0; i < num; i++, i3 += 3 ) |
|
{ |
|
|
|
l1 = F[0] * mr[i3] + F[1] * mr[i3 + 1] + F[2]; |
|
l2 = F[3] * mr[i3] + F[4] * mr[i3 + 1] + F[5]; |
|
l3 = F[6] * mr[i3] + F[7] * mr[i3 + 1] + F[8]; |
|
|
|
d1 = (l1 * ml[i3] + l2 * ml[i3 + 1] + l3) / sqrt( l1 * l1 + l2 * l2 ); |
|
|
|
l1 = F[0] * ml[i3] + F[3] * ml[i3 + 1] + F[6]; |
|
l2 = F[1] * ml[i3] + F[4] * ml[i3 + 1] + F[7]; |
|
l3 = F[2] * ml[i3] + F[5] * ml[i3 + 1] + F[8]; |
|
|
|
d2 = (l1 * mr[i3] + l2 * mr[i3 + 1] + l3) / sqrt( l1 * l1 + l2 * l2 ); |
|
|
|
deviation[i] = (double) (d1 * d1 + d2 * d2); |
|
} /* for */ |
|
|
|
if( icvSort( deviation, num ) != CV_NO_ERR ) |
|
{ |
|
|
|
cvFree( &deviation ); |
|
return -1; |
|
} /* if */ |
|
|
|
value = deviation[num / 2]; |
|
cvFree( &deviation ); |
|
return value; |
|
|
|
} /* cs_Median */ |
|
|
|
/*===========================================================================*/ |
|
CvStatus |
|
icvSort( double *array, int length ) |
|
{ |
|
int i, j, index; |
|
double swapd; |
|
|
|
if( !array || length < 1 ) |
|
return CV_BADFACTOR_ERR; |
|
|
|
for( i = 0; i < length - 1; i++ ) |
|
{ |
|
|
|
index = i; |
|
|
|
for( j = i + 1; j < length; j++ ) |
|
{ |
|
|
|
if( array[j] < array[index] ) |
|
index = j; |
|
} /* for */ |
|
|
|
if( index - i ) |
|
{ |
|
|
|
swapd = array[i]; |
|
array[i] = array[index]; |
|
array[index] = swapd; |
|
} /* if */ |
|
} /* for */ |
|
|
|
return CV_NO_ERR; |
|
|
|
} /* cs_Sort */ |
|
|
|
/*===========================================================================*/ |
|
int |
|
icvBoltingPoints( int *ml, int *mr, |
|
int num, double *F, double Mj, int **new_ml, int **new_mr, int *new_num ) |
|
{ |
|
double l1, l2, l3, d1, d2, sigma; |
|
int i, j, length; |
|
int *index; |
|
|
|
if( !ml || !mr || num < 1 || !F || Mj < 0 ) |
|
return -1; |
|
|
|
index = (int *) cvAlloc( (num) * sizeof( int )); |
|
|
|
if( !index ) |
|
return -1; |
|
|
|
length = 0; |
|
sigma = (double) (2.5 * 1.4826 * (1 + 5. / (num - 7)) * sqrt( Mj )); |
|
|
|
for( i = 0; i < num * 3; i += 3 ) |
|
{ |
|
|
|
l1 = F[0] * mr[i] + F[1] * mr[i + 1] + F[2]; |
|
l2 = F[3] * mr[i] + F[4] * mr[i + 1] + F[5]; |
|
l3 = F[6] * mr[i] + F[7] * mr[i + 1] + F[8]; |
|
|
|
d1 = (l1 * ml[i] + l2 * ml[i + 1] + l3) / sqrt( l1 * l1 + l2 * l2 ); |
|
|
|
l1 = F[0] * ml[i] + F[3] * ml[i + 1] + F[6]; |
|
l2 = F[1] * ml[i] + F[4] * ml[i + 1] + F[7]; |
|
l3 = F[2] * ml[i] + F[5] * ml[i + 1] + F[8]; |
|
|
|
d2 = (l1 * mr[i] + l2 * mr[i + 1] + l3) / sqrt( l1 * l1 + l2 * l2 ); |
|
|
|
if( d1 * d1 + d2 * d2 <= sigma * sigma ) |
|
{ |
|
|
|
index[i / 3] = 1; |
|
length++; |
|
} |
|
else |
|
{ |
|
|
|
index[i / 3] = 0; |
|
} /* if */ |
|
} /* for */ |
|
|
|
*new_num = length; |
|
|
|
*new_ml = (int *) cvAlloc( (length * 3) * sizeof( int )); |
|
|
|
if( !new_ml ) |
|
{ |
|
|
|
cvFree( &index ); |
|
return -1; |
|
} /* if */ |
|
|
|
*new_mr = (int *) cvAlloc( (length * 3) * sizeof( int )); |
|
|
|
if( !new_mr ) |
|
{ |
|
|
|
cvFree( &new_ml ); |
|
cvFree( &index ); |
|
return -1; |
|
} /* if */ |
|
|
|
j = 0; |
|
|
|
for( i = 0; i < num * 3; ) |
|
{ |
|
|
|
if( index[i / 3] ) |
|
{ |
|
|
|
(*new_ml)[j] = ml[i]; |
|
(*new_mr)[j++] = mr[i++]; |
|
(*new_ml)[j] = ml[i]; |
|
(*new_mr)[j++] = mr[i++]; |
|
(*new_ml)[j] = ml[i]; |
|
(*new_mr)[j++] = mr[i++]; |
|
} |
|
else |
|
i += 3; |
|
} /* for */ |
|
|
|
cvFree( &index ); |
|
return length; |
|
|
|
} /* cs_BoltingPoints */ |
|
|
|
/*===========================================================================*/ |
|
CvStatus |
|
icvPoints8( int *ml, int *mr, int num, double *F ) |
|
{ |
|
double *U; |
|
double l1, l2, w, old_norm = -1, new_norm = -2, summ; |
|
int i3, i9, j, num3, its = 0, a, t; |
|
|
|
if( !ml || !mr || num < 8 || !F ) |
|
return CV_BADFACTOR_ERR; |
|
|
|
U = (double *) cvAlloc( (num * 9) * sizeof( double )); |
|
|
|
if( !U ) |
|
return CV_OUTOFMEM_ERR; |
|
|
|
num3 = num * 3; |
|
|
|
while( !REAL_ZERO( new_norm - old_norm )) |
|
{ |
|
|
|
if( its++ > 1e+2 ) |
|
{ |
|
|
|
cvFree( &U ); |
|
return CV_BADFACTOR_ERR; |
|
} /* if */ |
|
|
|
old_norm = new_norm; |
|
|
|
for( i3 = 0, i9 = 0; i3 < num3; i3 += 3, i9 += 9 ) |
|
{ |
|
|
|
l1 = F[0] * mr[i3] + F[1] * mr[i3 + 1] + F[2]; |
|
l2 = F[3] * mr[i3] + F[4] * mr[i3 + 1] + F[5]; |
|
|
|
if( REAL_ZERO( l1 ) && REAL_ZERO( l2 )) |
|
{ |
|
|
|
cvFree( &U ); |
|
return CV_BADFACTOR_ERR; |
|
} /* if */ |
|
|
|
w = 1 / (l1 * l1 + l2 * l2); |
|
|
|
l1 = F[0] * ml[i3] + F[3] * ml[i3 + 1] + F[6]; |
|
l2 = F[1] * ml[i3] + F[4] * ml[i3 + 1] + F[7]; |
|
|
|
if( REAL_ZERO( l1 ) && REAL_ZERO( l2 )) |
|
{ |
|
|
|
cvFree( &U ); |
|
return CV_BADFACTOR_ERR; |
|
} /* if */ |
|
|
|
w += 1 / (l1 * l1 + l2 * l2); |
|
w = sqrt( w ); |
|
|
|
for( j = 0; j < 9; j++ ) |
|
{ |
|
|
|
U[i9 + j] = w * (double) ml[i3 + j / 3] * (double) mr[i3 + j % 3]; |
|
} /* for */ |
|
} /* for */ |
|
|
|
new_norm = 0; |
|
|
|
for( a = 0; a < num; a++ ) |
|
{ /* row */ |
|
|
|
summ = 0; |
|
|
|
for( t = 0; t < 9; t++ ) |
|
{ |
|
|
|
summ += U[a * 9 + t] * F[t]; |
|
} /* for */ |
|
|
|
new_norm += summ * summ; |
|
} /* for */ |
|
|
|
new_norm = sqrt( new_norm ); |
|
|
|
icvAnalyticPoints8( U, num, F ); |
|
} /* while */ |
|
|
|
cvFree( &U ); |
|
return CV_NO_ERR; |
|
|
|
} /* cs_Points8 */ |
|
|
|
/*===========================================================================*/ |
|
double |
|
icvAnalyticPoints8( double *A, int num, double *F ) |
|
{ |
|
double *U; |
|
double V[8 * 8]; |
|
double W[8]; |
|
double *f; |
|
double solution[9]; |
|
double temp1[8 * 8]; |
|
double *temp2; |
|
double *A_short; |
|
double norm, summ, best_norm; |
|
int num8 = num * 8, num9 = num * 9; |
|
int i, j, j8, j9, value, a, a8, a9, a_num, b, b8, t; |
|
|
|
/* --------- Initialization data ------------------ */ |
|
|
|
if( !A || num < 8 || !F ) |
|
return -1; |
|
|
|
best_norm = -1; |
|
U = (double *) cvAlloc( (num8) * sizeof( double )); |
|
|
|
if( !U ) |
|
return -1; |
|
|
|
f = (double *) cvAlloc( (num) * sizeof( double )); |
|
|
|
if( !f ) |
|
{ |
|
cvFree( &U ); |
|
return -1; |
|
} /* if */ |
|
|
|
temp2 = (double *) cvAlloc( (num8) * sizeof( double )); |
|
|
|
if( !temp2 ) |
|
{ |
|
cvFree( &f ); |
|
cvFree( &U ); |
|
return -1; |
|
} /* if */ |
|
|
|
A_short = (double *) cvAlloc( (num8) * sizeof( double )); |
|
|
|
if( !A_short ) |
|
{ |
|
cvFree( &temp2 ); |
|
cvFree( &f ); |
|
cvFree( &U ); |
|
return -1; |
|
} /* if */ |
|
|
|
for( i = 0; i < 8; i++ ) |
|
{ |
|
for( j8 = 0, j9 = 0; j9 < num9; j8 += 8, j9 += 9 ) |
|
{ |
|
A_short[j8 + i] = A[j9 + i + 1]; |
|
} /* for */ |
|
} /* for */ |
|
|
|
for( i = 0; i < 9; i++ ) |
|
{ |
|
|
|
for( j = 0, j8 = 0, j9 = 0; j < num; j++, j8 += 8, j9 += 9 ) |
|
{ |
|
|
|
f[j] = -A[j9 + i]; |
|
|
|
if( i ) |
|
A_short[j8 + i - 1] = A[j9 + i - 1]; |
|
} /* for */ |
|
|
|
value = icvSingularValueDecomposition( num, 8, A_short, W, 1, U, 1, V ); |
|
|
|
if( !value ) |
|
{ /* ----------- computing the solution ----------- */ |
|
|
|
/* ----------- W = W(-1) ----------- */ |
|
for( j = 0; j < 8; j++ ) |
|
{ |
|
if( !REAL_ZERO( W[j] )) |
|
W[j] = 1 / W[j]; |
|
} /* for */ |
|
|
|
/* ----------- temp1 = V * W(-1) ----------- */ |
|
for( a8 = 0; a8 < 64; a8 += 8 ) |
|
{ /* row */ |
|
for( b = 0; b < 8; b++ ) |
|
{ /* column */ |
|
temp1[a8 + b] = V[a8 + b] * W[b]; |
|
} /* for */ |
|
} /* for */ |
|
|
|
/* ----------- temp2 = V * W(-1) * U(T) ----------- */ |
|
for( a8 = 0, a_num = 0; a8 < 64; a8 += 8, a_num += num ) |
|
{ /* row */ |
|
for( b = 0, b8 = 0; b < num; b++, b8 += 8 ) |
|
{ /* column */ |
|
|
|
temp2[a_num + b] = 0; |
|
|
|
for( t = 0; t < 8; t++ ) |
|
{ |
|
|
|
temp2[a_num + b] += temp1[a8 + t] * U[b8 + t]; |
|
} /* for */ |
|
} /* for */ |
|
} /* for */ |
|
|
|
/* ----------- solution = V * W(-1) * U(T) * f ----------- */ |
|
for( a = 0, a_num = 0; a < 8; a++, a_num += num ) |
|
{ /* row */ |
|
for( b = 0; b < num; b++ ) |
|
{ /* column */ |
|
|
|
solution[a] = 0; |
|
|
|
for( t = 0; t < num && W[a]; t++ ) |
|
{ |
|
solution[a] += temp2[a_num + t] * f[t]; |
|
} /* for */ |
|
} /* for */ |
|
} /* for */ |
|
|
|
for( a = 8; a > 0; a-- ) |
|
{ |
|
|
|
if( a == i ) |
|
break; |
|
solution[a] = solution[a - 1]; |
|
} /* for */ |
|
|
|
solution[a] = 1; |
|
|
|
norm = 0; |
|
|
|
for( a9 = 0; a9 < num9; a9 += 9 ) |
|
{ /* row */ |
|
|
|
summ = 0; |
|
|
|
for( t = 0; t < 9; t++ ) |
|
{ |
|
|
|
summ += A[a9 + t] * solution[t]; |
|
} /* for */ |
|
|
|
norm += summ * summ; |
|
} /* for */ |
|
|
|
norm = sqrt( norm ); |
|
|
|
if( best_norm == -1 || norm < best_norm ) |
|
{ |
|
|
|
for( j = 0; j < 9; j++ ) |
|
F[j] = solution[j]; |
|
|
|
best_norm = norm; |
|
} /* if */ |
|
} /* if */ |
|
} /* for */ |
|
|
|
cvFree( &A_short ); |
|
cvFree( &temp2 ); |
|
cvFree( &f ); |
|
cvFree( &U ); |
|
|
|
return best_norm; |
|
|
|
} /* cs_AnalyticPoints8 */ |
|
|
|
/*===========================================================================*/ |
|
CvStatus |
|
icvRank2Constraint( double *F ) |
|
{ |
|
double U[9], V[9], W[3]; |
|
double aW[3]; |
|
int i, i3, j, j3, t; |
|
|
|
if( F == 0 ) |
|
return CV_BADFACTOR_ERR; |
|
|
|
if( icvSingularValueDecomposition( 3, 3, F, W, 1, U, 1, V )) |
|
return CV_BADFACTOR_ERR; |
|
|
|
aW[0] = fabs(W[0]); |
|
aW[1] = fabs(W[1]); |
|
aW[2] = fabs(W[2]); |
|
|
|
if( aW[0] < aW[1] ) |
|
{ |
|
if( aW[0] < aW[2] ) |
|
{ |
|
|
|
if( REAL_ZERO( W[0] )) |
|
return CV_NO_ERR; |
|
else |
|
W[0] = 0; |
|
} |
|
else |
|
{ |
|
|
|
if( REAL_ZERO( W[2] )) |
|
return CV_NO_ERR; |
|
else |
|
W[2] = 0; |
|
} /* if */ |
|
} |
|
else |
|
{ |
|
|
|
if( aW[1] < aW[2] ) |
|
{ |
|
|
|
if( REAL_ZERO( W[1] )) |
|
return CV_NO_ERR; |
|
else |
|
W[1] = 0; |
|
} |
|
else |
|
{ |
|
if( REAL_ZERO( W[2] )) |
|
return CV_NO_ERR; |
|
else |
|
W[2] = 0; |
|
} /* if */ |
|
} /* if */ |
|
|
|
for( i = 0; i < 3; i++ ) |
|
{ |
|
for( j3 = 0; j3 < 9; j3 += 3 ) |
|
{ |
|
U[j3 + i] *= W[i]; |
|
} /* for */ |
|
} /* for */ |
|
|
|
for( i = 0, i3 = 0; i < 3; i++, i3 += 3 ) |
|
{ |
|
for( j = 0, j3 = 0; j < 3; j++, j3 += 3 ) |
|
{ |
|
|
|
F[i3 + j] = 0; |
|
|
|
for( t = 0; t < 3; t++ ) |
|
{ |
|
F[i3 + j] += U[i3 + t] * V[j3 + t]; |
|
} /* for */ |
|
} /* for */ |
|
} /* for */ |
|
|
|
return CV_NO_ERR; |
|
} /* cs_Rank2Constraint */ |
|
|
|
|
|
/*===========================================================================*/ |
|
|
|
int |
|
icvSingularValueDecomposition( int M, |
|
int N, |
|
double *A, |
|
double *W, int get_U, double *U, int get_V, double *V ) |
|
{ |
|
int i = 0, j, k, l = 0, i1, k1, l1 = 0; |
|
int iterations, error = 0, jN, iN, kN, lN = 0; |
|
double *rv1; |
|
double c, f, g, h, s, x, y, z, scale, anorm; |
|
double af, ag, ah, t; |
|
int MN = M * N; |
|
int NN = N * N; |
|
|
|
/* max_iterations - maximum number QR-iterations |
|
cc - reduces requirements to number stitch (cc>1) |
|
*/ |
|
|
|
int max_iterations = 100; |
|
double cc = 100; |
|
|
|
if( M < N ) |
|
return N; |
|
|
|
rv1 = (double *) cvAlloc( N * sizeof( double )); |
|
|
|
if( rv1 == 0 ) |
|
return N; |
|
|
|
for( iN = 0; iN < MN; iN += N ) |
|
{ |
|
for( j = 0; j < N; j++ ) |
|
U[iN + j] = A[iN + j]; |
|
} /* for */ |
|
|
|
/* Adduction to bidiagonal type (transformations of reflection). |
|
Bidiagonal matrix is located in W (diagonal elements) |
|
and in rv1 (upperdiagonal elements) |
|
*/ |
|
|
|
g = 0; |
|
scale = 0; |
|
anorm = 0; |
|
|
|
for( i = 0, iN = 0; i < N; i++, iN += N ) |
|
{ |
|
|
|
l = i + 1; |
|
lN = iN + N; |
|
rv1[i] = scale * g; |
|
|
|
/* Multiplyings on the left */ |
|
|
|
g = 0; |
|
s = 0; |
|
scale = 0; |
|
|
|
for( kN = iN; kN < MN; kN += N ) |
|
scale += fabs( U[kN + i] ); |
|
|
|
if( !REAL_ZERO( scale )) |
|
{ |
|
|
|
for( kN = iN; kN < MN; kN += N ) |
|
{ |
|
|
|
U[kN + i] /= scale; |
|
s += U[kN + i] * U[kN + i]; |
|
} /* for */ |
|
|
|
f = U[iN + i]; |
|
g = -sqrt( s ) * Sgn( f ); |
|
h = f * g - s; |
|
U[iN + i] = f - g; |
|
|
|
for( j = l; j < N; j++ ) |
|
{ |
|
|
|
s = 0; |
|
|
|
for( kN = iN; kN < MN; kN += N ) |
|
{ |
|
|
|
s += U[kN + i] * U[kN + j]; |
|
} /* for */ |
|
|
|
f = s / h; |
|
|
|
for( kN = iN; kN < MN; kN += N ) |
|
{ |
|
|
|
U[kN + j] += f * U[kN + i]; |
|
} /* for */ |
|
} /* for */ |
|
|
|
for( kN = iN; kN < MN; kN += N ) |
|
U[kN + i] *= scale; |
|
} /* if */ |
|
|
|
W[i] = scale * g; |
|
|
|
/* Multiplyings on the right */ |
|
|
|
g = 0; |
|
s = 0; |
|
scale = 0; |
|
|
|
for( k = l; k < N; k++ ) |
|
scale += fabs( U[iN + k] ); |
|
|
|
if( !REAL_ZERO( scale )) |
|
{ |
|
|
|
for( k = l; k < N; k++ ) |
|
{ |
|
|
|
U[iN + k] /= scale; |
|
s += (U[iN + k]) * (U[iN + k]); |
|
} /* for */ |
|
|
|
f = U[iN + l]; |
|
g = -sqrt( s ) * Sgn( f ); |
|
h = f * g - s; |
|
U[i * N + l] = f - g; |
|
|
|
for( k = l; k < N; k++ ) |
|
rv1[k] = U[iN + k] / h; |
|
|
|
for( jN = lN; jN < MN; jN += N ) |
|
{ |
|
|
|
s = 0; |
|
|
|
for( k = l; k < N; k++ ) |
|
s += U[jN + k] * U[iN + k]; |
|
|
|
for( k = l; k < N; k++ ) |
|
U[jN + k] += s * rv1[k]; |
|
|
|
} /* for */ |
|
|
|
for( k = l; k < N; k++ ) |
|
U[iN + k] *= scale; |
|
} /* if */ |
|
|
|
t = fabs( W[i] ); |
|
t += fabs( rv1[i] ); |
|
anorm = MAX( anorm, t ); |
|
} /* for */ |
|
|
|
anorm *= cc; |
|
|
|
/* accumulation of right transformations, if needed */ |
|
|
|
if( get_V ) |
|
{ |
|
|
|
for( i = N - 1, iN = NN - N; i >= 0; i--, iN -= N ) |
|
{ |
|
|
|
if( i < N - 1 ) |
|
{ |
|
|
|
/* pass-by small g */ |
|
if( !REAL_ZERO( g )) |
|
{ |
|
|
|
for( j = l, jN = lN; j < N; j++, jN += N ) |
|
V[jN + i] = U[iN + j] / U[iN + l] / g; |
|
|
|
for( j = l; j < N; j++ ) |
|
{ |
|
|
|
s = 0; |
|
|
|
for( k = l, kN = lN; k < N; k++, kN += N ) |
|
s += U[iN + k] * V[kN + j]; |
|
|
|
for( kN = lN; kN < NN; kN += N ) |
|
V[kN + j] += s * V[kN + i]; |
|
} /* for */ |
|
} /* if */ |
|
|
|
for( j = l, jN = lN; j < N; j++, jN += N ) |
|
{ |
|
V[iN + j] = 0; |
|
V[jN + i] = 0; |
|
} /* for */ |
|
} /* if */ |
|
|
|
V[iN + i] = 1; |
|
g = rv1[i]; |
|
l = i; |
|
lN = iN; |
|
} /* for */ |
|
} /* if */ |
|
|
|
/* accumulation of left transformations, if needed */ |
|
|
|
if( get_U ) |
|
{ |
|
|
|
for( i = N - 1, iN = NN - N; i >= 0; i--, iN -= N ) |
|
{ |
|
|
|
l = i + 1; |
|
lN = iN + N; |
|
g = W[i]; |
|
|
|
for( j = l; j < N; j++ ) |
|
U[iN + j] = 0; |
|
|
|
/* pass-by small g */ |
|
if( !REAL_ZERO( g )) |
|
{ |
|
|
|
for( j = l; j < N; j++ ) |
|
{ |
|
|
|
s = 0; |
|
|
|
for( kN = lN; kN < MN; kN += N ) |
|
s += U[kN + i] * U[kN + j]; |
|
|
|
f = s / U[iN + i] / g; |
|
|
|
for( kN = iN; kN < MN; kN += N ) |
|
U[kN + j] += f * U[kN + i]; |
|
} /* for */ |
|
|
|
for( jN = iN; jN < MN; jN += N ) |
|
U[jN + i] /= g; |
|
} |
|
else |
|
{ |
|
|
|
for( jN = iN; jN < MN; jN += N ) |
|
U[jN + i] = 0; |
|
} /* if */ |
|
|
|
U[iN + i] += 1; |
|
} /* for */ |
|
} /* if */ |
|
|
|
/* Iterations QR-algorithm for bidiagonal matrixes |
|
W[i] - is the main diagonal |
|
rv1[i] - is the top diagonal, rv1[0]=0. |
|
*/ |
|
|
|
for( k = N - 1; k >= 0; k-- ) |
|
{ |
|
|
|
k1 = k - 1; |
|
iterations = 0; |
|
|
|
for( ;; ) |
|
{ |
|
|
|
/* Cycle: checking a possibility of fission matrix */ |
|
for( l = k; l >= 0; l-- ) |
|
{ |
|
|
|
l1 = l - 1; |
|
|
|
if( REAL_ZERO( rv1[l] ) || REAL_ZERO( W[l1] )) |
|
break; |
|
} /* for */ |
|
|
|
if( !REAL_ZERO( rv1[l] )) |
|
{ |
|
|
|
/* W[l1] = 0, matrix possible to fission |
|
by clearing out rv1[l] */ |
|
|
|
c = 0; |
|
s = 1; |
|
|
|
for( i = l; i <= k; i++ ) |
|
{ |
|
|
|
f = s * rv1[i]; |
|
rv1[i] = c * rv1[i]; |
|
|
|
/* Rotations are done before the end of the block, |
|
or when element in the line is finagle. |
|
*/ |
|
|
|
if( REAL_ZERO( f )) |
|
break; |
|
|
|
g = W[i]; |
|
|
|
/* Scaling prevents finagling H ( F!=0!) */ |
|
|
|
af = fabs( f ); |
|
ag = fabs( g ); |
|
|
|
if( af < ag ) |
|
h = ag * sqrt( 1 + (f / g) * (f / g) ); |
|
else |
|
h = af * sqrt( 1 + (f / g) * (f / g) ); |
|
|
|
W[i] = h; |
|
c = g / h; |
|
s = -f / h; |
|
|
|
if( get_U ) |
|
{ |
|
|
|
for( jN = 0; jN < MN; jN += N ) |
|
{ |
|
|
|
y = U[jN + l1]; |
|
z = U[jN + i]; |
|
U[jN + l1] = y * c + z * s; |
|
U[jN + i] = -y * s + z * c; |
|
} /* for */ |
|
} /* if */ |
|
} /* for */ |
|
} /* if */ |
|
|
|
|
|
/* Output in this place of program means, |
|
that rv1[L] = 0, matrix fissioned |
|
Iterations of the process of the persecution |
|
will be executed always for |
|
the bottom block ( from l before k ), |
|
with increase l possible. |
|
*/ |
|
|
|
z = W[k]; |
|
|
|
if( l == k ) |
|
break; |
|
|
|
/* Completion iterations: lower block |
|
became trivial ( rv1[K]=0) */ |
|
|
|
if( iterations++ == max_iterations ) |
|
return k; |
|
|
|
/* Shift is computed on the lowest order 2 minor. */ |
|
|
|
x = W[l]; |
|
y = W[k1]; |
|
g = rv1[k1]; |
|
h = rv1[k]; |
|
|
|
/* consequent fission prevents forming a machine zero */ |
|
f = ((y - z) * (y + z) + (g - h) * (g + h)) / (2 * h) / y; |
|
|
|
/* prevented overflow */ |
|
if( fabs( f ) > 1 ) |
|
{ |
|
g = fabs( f ); |
|
g *= sqrt( 1 + (1 / f) * (1 / f) ); |
|
} |
|
else |
|
g = sqrt( f * f + 1 ); |
|
|
|
f = ((x - z) * (x + z) + h * (y / (f + fabs( g ) * Sgn( f )) - h)) / x; |
|
c = 1; |
|
s = 1; |
|
|
|
for( i1 = l; i1 <= k1; i1++ ) |
|
{ |
|
|
|
i = i1 + 1; |
|
g = rv1[i]; |
|
y = W[i]; |
|
h = s * g; |
|
g *= c; |
|
|
|
/* Scaling at calculation Z prevents its clearing, |
|
however if F and H both are zero - pass-by of fission on Z. |
|
*/ |
|
|
|
af = fabs( f ); |
|
ah = fabs( h ); |
|
|
|
if( af < ah ) |
|
z = ah * sqrt( 1 + (f / h) * (f / h) ); |
|
|
|
else |
|
{ |
|
|
|
z = 0; |
|
if( !REAL_ZERO( af )) |
|
z = af * sqrt( 1 + (h / f) * (h / f) ); |
|
} /* if */ |
|
|
|
rv1[i1] = z; |
|
|
|
/* if Z=0, the rotation is free. */ |
|
if( !REAL_ZERO( z )) |
|
{ |
|
|
|
c = f / z; |
|
s = h / z; |
|
} /* if */ |
|
|
|
f = x * c + g * s; |
|
g = -x * s + g * c; |
|
h = y * s; |
|
y *= c; |
|
|
|
if( get_V ) |
|
{ |
|
|
|
for( jN = 0; jN < NN; jN += N ) |
|
{ |
|
|
|
x = V[jN + i1]; |
|
z = V[jN + i]; |
|
V[jN + i1] = x * c + z * s; |
|
V[jN + i] = -x * s + z * c; |
|
} /* for */ |
|
} /* if */ |
|
|
|
af = fabs( f ); |
|
ah = fabs( h ); |
|
|
|
if( af < ah ) |
|
z = ah * sqrt( 1 + (f / h) * (f / h) ); |
|
else |
|
{ |
|
|
|
z = 0; |
|
if( !REAL_ZERO( af )) |
|
z = af * sqrt( 1 + (h / f) * (h / f) ); |
|
} /* if */ |
|
|
|
W[i1] = z; |
|
|
|
if( !REAL_ZERO( z )) |
|
{ |
|
|
|
c = f / z; |
|
s = h / z; |
|
} /* if */ |
|
|
|
f = c * g + s * y; |
|
x = -s * g + c * y; |
|
|
|
if( get_U ) |
|
{ |
|
|
|
for( jN = 0; jN < MN; jN += N ) |
|
{ |
|
|
|
y = U[jN + i1]; |
|
z = U[jN + i]; |
|
U[jN + i1] = y * c + z * s; |
|
U[jN + i] = -y * s + z * c; |
|
} /* for */ |
|
} /* if */ |
|
} /* for */ |
|
|
|
rv1[l] = 0; |
|
rv1[k] = f; |
|
W[k] = x; |
|
} /* for */ |
|
|
|
if( z < 0 ) |
|
{ |
|
|
|
W[k] = -z; |
|
|
|
if( get_V ) |
|
{ |
|
|
|
for( jN = 0; jN < NN; jN += N ) |
|
V[jN + k] *= -1; |
|
} /* if */ |
|
} /* if */ |
|
} /* for */ |
|
|
|
cvFree( &rv1 ); |
|
|
|
return error; |
|
|
|
} /* vm_SingularValueDecomposition */ |
|
|
|
/*========================================================================*/ |
|
|
|
/* Obsolete functions. Just for ViewMorping */ |
|
/*=====================================================================================*/ |
|
|
|
int |
|
icvGaussMxN( double *A, double *B, int M, int N, double **solutions ) |
|
{ |
|
int *variables; |
|
int row, swapi, i, i_best = 0, j, j_best = 0, t; |
|
double swapd, ratio, bigest; |
|
|
|
if( !A || !B || !M || !N ) |
|
return -1; |
|
|
|
variables = (int *) cvAlloc( (size_t) N * sizeof( int )); |
|
|
|
if( variables == 0 ) |
|
return -1; |
|
|
|
for( i = 0; i < N; i++ ) |
|
{ |
|
variables[i] = i; |
|
} /* for */ |
|
|
|
/* ----- Direct way ----- */ |
|
|
|
for( row = 0; row < M; row++ ) |
|
{ |
|
|
|
bigest = 0; |
|
|
|
for( j = row; j < M; j++ ) |
|
{ /* search non null element */ |
|
for( i = row; i < N; i++ ) |
|
{ |
|
double a = fabs( A[j * N + i] ), b = fabs( bigest ); |
|
if( a > b ) |
|
{ |
|
bigest = A[j * N + i]; |
|
i_best = i; |
|
j_best = j; |
|
} /* if */ |
|
} /* for */ |
|
} /* for */ |
|
|
|
if( REAL_ZERO( bigest )) |
|
break; /* if all shank elements are null */ |
|
|
|
if( j_best - row ) |
|
{ |
|
|
|
for( t = 0; t < N; t++ ) |
|
{ /* swap a rows */ |
|
|
|
swapd = A[row * N + t]; |
|
A[row * N + t] = A[j_best * N + t]; |
|
A[j_best * N + t] = swapd; |
|
} /* for */ |
|
|
|
swapd = B[row]; |
|
B[row] = B[j_best]; |
|
B[j_best] = swapd; |
|
} /* if */ |
|
|
|
if( i_best - row ) |
|
{ |
|
|
|
for( t = 0; t < M; t++ ) |
|
{ /* swap a columns */ |
|
|
|
swapd = A[t * N + i_best]; |
|
A[t * N + i_best] = A[t * N + row]; |
|
A[t * N + row] = swapd; |
|
} /* for */ |
|
|
|
swapi = variables[row]; |
|
variables[row] = variables[i_best]; |
|
variables[i_best] = swapi; |
|
} /* if */ |
|
|
|
for( i = row + 1; i < M; i++ ) |
|
{ /* recounting A and B */ |
|
|
|
ratio = -A[i * N + row] / A[row * N + row]; |
|
B[i] += B[row] * ratio; |
|
|
|
for( j = N - 1; j >= row; j-- ) |
|
{ |
|
|
|
A[i * N + j] += A[row * N + j] * ratio; |
|
} /* for */ |
|
} /* for */ |
|
} /* for */ |
|
|
|
if( row < M ) |
|
{ /* if rank(A)<M */ |
|
|
|
for( j = row; j < M; j++ ) |
|
{ |
|
if( !REAL_ZERO( B[j] )) |
|
{ |
|
|
|
cvFree( &variables ); |
|
return -1; /* if system is antithetic */ |
|
} /* if */ |
|
} /* for */ |
|
|
|
M = row; /* decreasing size of the task */ |
|
} /* if */ |
|
|
|
/* ----- Reverse way ----- */ |
|
|
|
if( M < N ) |
|
{ /* if solution are not exclusive */ |
|
|
|
*solutions = (double *) cvAlloc( ((N - M + 1) * N) * sizeof( double )); |
|
|
|
if( *solutions == 0 ) |
|
{ |
|
cvFree( &variables ); |
|
return -1; |
|
} |
|
|
|
|
|
for( t = M; t <= N; t++ ) |
|
{ |
|
for( j = M; j < N; j++ ) |
|
{ |
|
|
|
(*solutions)[(t - M) * N + variables[j]] = (double) (t == j); |
|
} /* for */ |
|
|
|
for( i = M - 1; i >= 0; i-- ) |
|
{ /* finding component of solution */ |
|
|
|
if( t < N ) |
|
{ |
|
(*solutions)[(t - M) * N + variables[i]] = 0; |
|
} |
|
else |
|
{ |
|
(*solutions)[(t - M) * N + variables[i]] = B[i] / A[i * N + i]; |
|
} /* if */ |
|
|
|
for( j = i + 1; j < N; j++ ) |
|
{ |
|
|
|
(*solutions)[(t - M) * N + variables[i]] -= |
|
(*solutions)[(t - M) * N + variables[j]] * A[i * N + j] / A[i * N + i]; |
|
} /* for */ |
|
} /* for */ |
|
} /* for */ |
|
|
|
cvFree( &variables ); |
|
return N - M; |
|
} /* if */ |
|
|
|
*solutions = (double *) cvAlloc( (N) * sizeof( double )); |
|
|
|
if( solutions == 0 ) |
|
return -1; |
|
|
|
for( i = N - 1; i >= 0; i-- ) |
|
{ /* finding exclusive solution */ |
|
|
|
(*solutions)[variables[i]] = B[i] / A[i * N + i]; |
|
|
|
for( j = i + 1; j < N; j++ ) |
|
{ |
|
|
|
(*solutions)[variables[i]] -= |
|
(*solutions)[variables[j]] * A[i * N + j] / A[i * N + i]; |
|
} /* for */ |
|
} /* for */ |
|
|
|
cvFree( &variables ); |
|
return 0; |
|
|
|
} /* icvGaussMxN */ |
|
|
|
|
|
/*======================================================================================*/ |
|
/*F/////////////////////////////////////////////////////////////////////////////////////// |
|
// Name: icvPoint7 |
|
// Purpose: |
|
// |
|
// |
|
// Context: |
|
// Parameters: |
|
// |
|
// |
|
// |
|
// |
|
// |
|
// |
|
// |
|
// Returns: |
|
// CV_NO_ERR if all Ok or error code |
|
// Notes: |
|
//F*/ |
|
|
|
CvStatus |
|
icvPoint7( int *ml, int *mr, double *F, int *amount ) |
|
{ |
|
double A[63], B[7]; |
|
double *solutions = 0; |
|
double a2, a1, a0; |
|
double squares[6]; |
|
int i, j; |
|
|
|
/* int amount; */ |
|
/* float* F; */ |
|
|
|
CvStatus error = CV_BADFACTOR_ERR; |
|
|
|
/* F = (float*)matrix->m; */ |
|
|
|
if( !ml || !mr || !F ) |
|
return CV_BADFACTOR_ERR; |
|
|
|
for( i = 0; i < 7; i++ ) |
|
{ |
|
for( j = 0; j < 9; j++ ) |
|
{ |
|
|
|
A[i * 9 + j] = (double) ml[i * 3 + j / 3] * (double) mr[i * 3 + j % 3]; |
|
} /* for */ |
|
B[i] = 0; |
|
} /* for */ |
|
|
|
*amount = 0; |
|
|
|
if( icvGaussMxN( A, B, 7, 9, &solutions ) == 2 ) |
|
{ |
|
if( icvGetCoef( solutions, solutions + 9, &a2, &a1, &a0 ) == CV_NO_ERR ) |
|
{ |
|
icvCubic( a2, a1, a0, squares ); |
|
|
|
for( i = 0; i < 1; i++ ) |
|
{ |
|
|
|
if( REAL_ZERO( squares[i * 2 + 1] )) |
|
{ |
|
|
|
for( j = 0; j < 9; j++ ) |
|
{ |
|
|
|
F[*amount + j] = (float) (squares[i] * solutions[j] + |
|
(1 - squares[i]) * solutions[j + 9]); |
|
} /* for */ |
|
|
|
*amount += 9; |
|
|
|
error = CV_NO_ERR; |
|
} /* if */ |
|
} /* for */ |
|
|
|
cvFree( &solutions ); |
|
return error; |
|
} |
|
else |
|
{ |
|
cvFree( &solutions ); |
|
} /* if */ |
|
|
|
} |
|
else |
|
{ |
|
cvFree( &solutions ); |
|
} /* if */ |
|
|
|
return error; |
|
} /* icvPoint7 */ |
|
|
|
|