Open Source Computer Vision Library https://opencv.org/
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

3178 lines
101 KiB

/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the OpenCV Foundation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "precomp.hpp"
#include <map>
/*
Part of the file is an extract from the standard OpenCL headers from Khronos site.
Below is the original copyright.
*/
/*******************************************************************************
* Copyright (c) 2008 - 2012 The Khronos Group Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and/or associated documentation files (the
* "Materials"), to deal in the Materials without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Materials, and to
* permit persons to whom the Materials are furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Materials.
*
* THE MATERIALS ARE PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
* MATERIALS OR THE USE OR OTHER DEALINGS IN THE MATERIALS.
******************************************************************************/
#if 0 //defined __APPLE__
#define HAVE_OPENCL 1
#else
#undef HAVE_OPENCL
#endif
#define OPENCV_CL_NOT_IMPLEMENTED -1000
#ifdef HAVE_OPENCL
#if defined __APPLE__
#include <OpenCL/opencl.h>
#else
#include <CL/opencl.h>
#endif
static const bool g_haveOpenCL = true;
#else
extern "C" {
struct _cl_platform_id { int dummy; };
struct _cl_device_id { int dummy; };
struct _cl_context { int dummy; };
struct _cl_command_queue { int dummy; };
struct _cl_mem { int dummy; };
struct _cl_program { int dummy; };
struct _cl_kernel { int dummy; };
struct _cl_event { int dummy; };
struct _cl_sampler { int dummy; };
typedef struct _cl_platform_id * cl_platform_id;
typedef struct _cl_device_id * cl_device_id;
typedef struct _cl_context * cl_context;
typedef struct _cl_command_queue * cl_command_queue;
typedef struct _cl_mem * cl_mem;
typedef struct _cl_program * cl_program;
typedef struct _cl_kernel * cl_kernel;
typedef struct _cl_event * cl_event;
typedef struct _cl_sampler * cl_sampler;
typedef int cl_int;
typedef unsigned cl_uint;
#if defined (_WIN32) && defined(_MSC_VER)
typedef __int64 cl_long;
typedef unsigned __int64 cl_ulong;
#else
typedef long cl_long;
typedef unsigned long cl_ulong;
#endif
typedef cl_uint cl_bool; /* WARNING! Unlike cl_ types in cl_platform.h, cl_bool is not guaranteed to be the same size as the bool in kernels. */
typedef cl_ulong cl_bitfield;
typedef cl_bitfield cl_device_type;
typedef cl_uint cl_platform_info;
typedef cl_uint cl_device_info;
typedef cl_bitfield cl_device_fp_config;
typedef cl_uint cl_device_mem_cache_type;
typedef cl_uint cl_device_local_mem_type;
typedef cl_bitfield cl_device_exec_capabilities;
typedef cl_bitfield cl_command_queue_properties;
typedef intptr_t cl_device_partition_property;
typedef cl_bitfield cl_device_affinity_domain;
typedef intptr_t cl_context_properties;
typedef cl_uint cl_context_info;
typedef cl_uint cl_command_queue_info;
typedef cl_uint cl_channel_order;
typedef cl_uint cl_channel_type;
typedef cl_bitfield cl_mem_flags;
typedef cl_uint cl_mem_object_type;
typedef cl_uint cl_mem_info;
typedef cl_bitfield cl_mem_migration_flags;
typedef cl_uint cl_image_info;
typedef cl_uint cl_buffer_create_type;
typedef cl_uint cl_addressing_mode;
typedef cl_uint cl_filter_mode;
typedef cl_uint cl_sampler_info;
typedef cl_bitfield cl_map_flags;
typedef cl_uint cl_program_info;
typedef cl_uint cl_program_build_info;
typedef cl_uint cl_program_binary_type;
typedef cl_int cl_build_status;
typedef cl_uint cl_kernel_info;
typedef cl_uint cl_kernel_arg_info;
typedef cl_uint cl_kernel_arg_address_qualifier;
typedef cl_uint cl_kernel_arg_access_qualifier;
typedef cl_bitfield cl_kernel_arg_type_qualifier;
typedef cl_uint cl_kernel_work_group_info;
typedef cl_uint cl_event_info;
typedef cl_uint cl_command_type;
typedef cl_uint cl_profiling_info;
typedef struct _cl_image_format {
cl_channel_order image_channel_order;
cl_channel_type image_channel_data_type;
} cl_image_format;
typedef struct _cl_image_desc {
cl_mem_object_type image_type;
size_t image_width;
size_t image_height;
size_t image_depth;
size_t image_array_size;
size_t image_row_pitch;
size_t image_slice_pitch;
cl_uint num_mip_levels;
cl_uint num_samples;
cl_mem buffer;
} cl_image_desc;
typedef struct _cl_buffer_region {
size_t origin;
size_t size;
} cl_buffer_region;
//////////////////////////////////////////////////////////
#define CL_SUCCESS 0
#define CL_DEVICE_NOT_FOUND -1
#define CL_DEVICE_NOT_AVAILABLE -2
#define CL_COMPILER_NOT_AVAILABLE -3
#define CL_MEM_OBJECT_ALLOCATION_FAILURE -4
#define CL_OUT_OF_RESOURCES -5
#define CL_OUT_OF_HOST_MEMORY -6
#define CL_PROFILING_INFO_NOT_AVAILABLE -7
#define CL_MEM_COPY_OVERLAP -8
#define CL_IMAGE_FORMAT_MISMATCH -9
#define CL_IMAGE_FORMAT_NOT_SUPPORTED -10
#define CL_BUILD_PROGRAM_FAILURE -11
#define CL_MAP_FAILURE -12
#define CL_MISALIGNED_SUB_BUFFER_OFFSET -13
#define CL_EXEC_STATUS_ERROR_FOR_EVENTS_IN_WAIT_LIST -14
#define CL_COMPILE_PROGRAM_FAILURE -15
#define CL_LINKER_NOT_AVAILABLE -16
#define CL_LINK_PROGRAM_FAILURE -17
#define CL_DEVICE_PARTITION_FAILED -18
#define CL_KERNEL_ARG_INFO_NOT_AVAILABLE -19
#define CL_INVALID_VALUE -30
#define CL_INVALID_DEVICE_TYPE -31
#define CL_INVALID_PLATFORM -32
#define CL_INVALID_DEVICE -33
#define CL_INVALID_CONTEXT -34
#define CL_INVALID_QUEUE_PROPERTIES -35
#define CL_INVALID_COMMAND_QUEUE -36
#define CL_INVALID_HOST_PTR -37
#define CL_INVALID_MEM_OBJECT -38
#define CL_INVALID_IMAGE_FORMAT_DESCRIPTOR -39
#define CL_INVALID_IMAGE_SIZE -40
#define CL_INVALID_SAMPLER -41
#define CL_INVALID_BINARY -42
#define CL_INVALID_BUILD_OPTIONS -43
#define CL_INVALID_PROGRAM -44
#define CL_INVALID_PROGRAM_EXECUTABLE -45
#define CL_INVALID_KERNEL_NAME -46
#define CL_INVALID_KERNEL_DEFINITION -47
#define CL_INVALID_KERNEL -48
#define CL_INVALID_ARG_INDEX -49
#define CL_INVALID_ARG_VALUE -50
#define CL_INVALID_ARG_SIZE -51
#define CL_INVALID_KERNEL_ARGS -52
#define CL_INVALID_WORK_DIMENSION -53
#define CL_INVALID_WORK_GROUP_SIZE -54
#define CL_INVALID_WORK_ITEM_SIZE -55
#define CL_INVALID_GLOBAL_OFFSET -56
#define CL_INVALID_EVENT_WAIT_LIST -57
#define CL_INVALID_EVENT -58
#define CL_INVALID_OPERATION -59
#define CL_INVALID_GL_OBJECT -60
#define CL_INVALID_BUFFER_SIZE -61
#define CL_INVALID_MIP_LEVEL -62
#define CL_INVALID_GLOBAL_WORK_SIZE -63
#define CL_INVALID_PROPERTY -64
#define CL_INVALID_IMAGE_DESCRIPTOR -65
#define CL_INVALID_COMPILER_OPTIONS -66
#define CL_INVALID_LINKER_OPTIONS -67
#define CL_INVALID_DEVICE_PARTITION_COUNT -68
/*#define CL_VERSION_1_0 1
#define CL_VERSION_1_1 1
#define CL_VERSION_1_2 1*/
#define CL_FALSE 0
#define CL_TRUE 1
#define CL_BLOCKING CL_TRUE
#define CL_NON_BLOCKING CL_FALSE
#define CL_PLATFORM_PROFILE 0x0900
#define CL_PLATFORM_VERSION 0x0901
#define CL_PLATFORM_NAME 0x0902
#define CL_PLATFORM_VENDOR 0x0903
#define CL_PLATFORM_EXTENSIONS 0x0904
#define CL_DEVICE_TYPE_DEFAULT (1 << 0)
#define CL_DEVICE_TYPE_CPU (1 << 1)
#define CL_DEVICE_TYPE_GPU (1 << 2)
#define CL_DEVICE_TYPE_ACCELERATOR (1 << 3)
#define CL_DEVICE_TYPE_CUSTOM (1 << 4)
#define CL_DEVICE_TYPE_ALL 0xFFFFFFFF
#define CL_DEVICE_TYPE 0x1000
#define CL_DEVICE_VENDOR_ID 0x1001
#define CL_DEVICE_MAX_COMPUTE_UNITS 0x1002
#define CL_DEVICE_MAX_WORK_ITEM_DIMENSIONS 0x1003
#define CL_DEVICE_MAX_WORK_GROUP_SIZE 0x1004
#define CL_DEVICE_MAX_WORK_ITEM_SIZES 0x1005
#define CL_DEVICE_PREFERRED_VECTOR_WIDTH_CHAR 0x1006
#define CL_DEVICE_PREFERRED_VECTOR_WIDTH_SHORT 0x1007
#define CL_DEVICE_PREFERRED_VECTOR_WIDTH_INT 0x1008
#define CL_DEVICE_PREFERRED_VECTOR_WIDTH_LONG 0x1009
#define CL_DEVICE_PREFERRED_VECTOR_WIDTH_FLOAT 0x100A
#define CL_DEVICE_PREFERRED_VECTOR_WIDTH_DOUBLE 0x100B
#define CL_DEVICE_MAX_CLOCK_FREQUENCY 0x100C
#define CL_DEVICE_ADDRESS_BITS 0x100D
#define CL_DEVICE_MAX_READ_IMAGE_ARGS 0x100E
#define CL_DEVICE_MAX_WRITE_IMAGE_ARGS 0x100F
#define CL_DEVICE_MAX_MEM_ALLOC_SIZE 0x1010
#define CL_DEVICE_IMAGE2D_MAX_WIDTH 0x1011
#define CL_DEVICE_IMAGE2D_MAX_HEIGHT 0x1012
#define CL_DEVICE_IMAGE3D_MAX_WIDTH 0x1013
#define CL_DEVICE_IMAGE3D_MAX_HEIGHT 0x1014
#define CL_DEVICE_IMAGE3D_MAX_DEPTH 0x1015
#define CL_DEVICE_IMAGE_SUPPORT 0x1016
#define CL_DEVICE_MAX_PARAMETER_SIZE 0x1017
#define CL_DEVICE_MAX_SAMPLERS 0x1018
#define CL_DEVICE_MEM_BASE_ADDR_ALIGN 0x1019
#define CL_DEVICE_MIN_DATA_TYPE_ALIGN_SIZE 0x101A
#define CL_DEVICE_SINGLE_FP_CONFIG 0x101B
#define CL_DEVICE_GLOBAL_MEM_CACHE_TYPE 0x101C
#define CL_DEVICE_GLOBAL_MEM_CACHELINE_SIZE 0x101D
#define CL_DEVICE_GLOBAL_MEM_CACHE_SIZE 0x101E
#define CL_DEVICE_GLOBAL_MEM_SIZE 0x101F
#define CL_DEVICE_MAX_CONSTANT_BUFFER_SIZE 0x1020
#define CL_DEVICE_MAX_CONSTANT_ARGS 0x1021
#define CL_DEVICE_LOCAL_MEM_TYPE 0x1022
#define CL_DEVICE_LOCAL_MEM_SIZE 0x1023
#define CL_DEVICE_ERROR_CORRECTION_SUPPORT 0x1024
#define CL_DEVICE_PROFILING_TIMER_RESOLUTION 0x1025
#define CL_DEVICE_ENDIAN_LITTLE 0x1026
#define CL_DEVICE_AVAILABLE 0x1027
#define CL_DEVICE_COMPILER_AVAILABLE 0x1028
#define CL_DEVICE_EXECUTION_CAPABILITIES 0x1029
#define CL_DEVICE_QUEUE_PROPERTIES 0x102A
#define CL_DEVICE_NAME 0x102B
#define CL_DEVICE_VENDOR 0x102C
#define CL_DRIVER_VERSION 0x102D
#define CL_DEVICE_PROFILE 0x102E
#define CL_DEVICE_VERSION 0x102F
#define CL_DEVICE_EXTENSIONS 0x1030
#define CL_DEVICE_PLATFORM 0x1031
#define CL_DEVICE_DOUBLE_FP_CONFIG 0x1032
#define CL_DEVICE_HALF_FP_CONFIG 0x1033
#define CL_DEVICE_PREFERRED_VECTOR_WIDTH_HALF 0x1034
#define CL_DEVICE_HOST_UNIFIED_MEMORY 0x1035
#define CL_DEVICE_NATIVE_VECTOR_WIDTH_CHAR 0x1036
#define CL_DEVICE_NATIVE_VECTOR_WIDTH_SHORT 0x1037
#define CL_DEVICE_NATIVE_VECTOR_WIDTH_INT 0x1038
#define CL_DEVICE_NATIVE_VECTOR_WIDTH_LONG 0x1039
#define CL_DEVICE_NATIVE_VECTOR_WIDTH_FLOAT 0x103A
#define CL_DEVICE_NATIVE_VECTOR_WIDTH_DOUBLE 0x103B
#define CL_DEVICE_NATIVE_VECTOR_WIDTH_HALF 0x103C
#define CL_DEVICE_OPENCL_C_VERSION 0x103D
#define CL_DEVICE_LINKER_AVAILABLE 0x103E
#define CL_DEVICE_BUILT_IN_KERNELS 0x103F
#define CL_DEVICE_IMAGE_MAX_BUFFER_SIZE 0x1040
#define CL_DEVICE_IMAGE_MAX_ARRAY_SIZE 0x1041
#define CL_DEVICE_PARENT_DEVICE 0x1042
#define CL_DEVICE_PARTITION_MAX_SUB_DEVICES 0x1043
#define CL_DEVICE_PARTITION_PROPERTIES 0x1044
#define CL_DEVICE_PARTITION_AFFINITY_DOMAIN 0x1045
#define CL_DEVICE_PARTITION_TYPE 0x1046
#define CL_DEVICE_REFERENCE_COUNT 0x1047
#define CL_DEVICE_PREFERRED_INTEROP_USER_SYNC 0x1048
#define CL_DEVICE_PRINTF_BUFFER_SIZE 0x1049
#define CL_DEVICE_IMAGE_PITCH_ALIGNMENT 0x104A
#define CL_DEVICE_IMAGE_BASE_ADDRESS_ALIGNMENT 0x104B
#define CL_FP_DENORM (1 << 0)
#define CL_FP_INF_NAN (1 << 1)
#define CL_FP_ROUND_TO_NEAREST (1 << 2)
#define CL_FP_ROUND_TO_ZERO (1 << 3)
#define CL_FP_ROUND_TO_INF (1 << 4)
#define CL_FP_FMA (1 << 5)
#define CL_FP_SOFT_FLOAT (1 << 6)
#define CL_FP_CORRECTLY_ROUNDED_DIVIDE_SQRT (1 << 7)
#define CL_NONE 0x0
#define CL_READ_ONLY_CACHE 0x1
#define CL_READ_WRITE_CACHE 0x2
#define CL_LOCAL 0x1
#define CL_GLOBAL 0x2
#define CL_EXEC_KERNEL (1 << 0)
#define CL_EXEC_NATIVE_KERNEL (1 << 1)
#define CL_QUEUE_OUT_OF_ORDER_EXEC_MODE_ENABLE (1 << 0)
#define CL_QUEUE_PROFILING_ENABLE (1 << 1)
#define CL_CONTEXT_REFERENCE_COUNT 0x1080
#define CL_CONTEXT_DEVICES 0x1081
#define CL_CONTEXT_PROPERTIES 0x1082
#define CL_CONTEXT_NUM_DEVICES 0x1083
#define CL_CONTEXT_PLATFORM 0x1084
#define CL_CONTEXT_INTEROP_USER_SYNC 0x1085
#define CL_DEVICE_PARTITION_EQUALLY 0x1086
#define CL_DEVICE_PARTITION_BY_COUNTS 0x1087
#define CL_DEVICE_PARTITION_BY_COUNTS_LIST_END 0x0
#define CL_DEVICE_PARTITION_BY_AFFINITY_DOMAIN 0x1088
#define CL_DEVICE_AFFINITY_DOMAIN_NUMA (1 << 0)
#define CL_DEVICE_AFFINITY_DOMAIN_L4_CACHE (1 << 1)
#define CL_DEVICE_AFFINITY_DOMAIN_L3_CACHE (1 << 2)
#define CL_DEVICE_AFFINITY_DOMAIN_L2_CACHE (1 << 3)
#define CL_DEVICE_AFFINITY_DOMAIN_L1_CACHE (1 << 4)
#define CL_DEVICE_AFFINITY_DOMAIN_NEXT_PARTITIONABLE (1 << 5)
#define CL_QUEUE_CONTEXT 0x1090
#define CL_QUEUE_DEVICE 0x1091
#define CL_QUEUE_REFERENCE_COUNT 0x1092
#define CL_QUEUE_PROPERTIES 0x1093
#define CL_MEM_READ_WRITE (1 << 0)
#define CL_MEM_WRITE_ONLY (1 << 1)
#define CL_MEM_READ_ONLY (1 << 2)
#define CL_MEM_USE_HOST_PTR (1 << 3)
#define CL_MEM_ALLOC_HOST_PTR (1 << 4)
#define CL_MEM_COPY_HOST_PTR (1 << 5)
// reserved (1 << 6)
#define CL_MEM_HOST_WRITE_ONLY (1 << 7)
#define CL_MEM_HOST_READ_ONLY (1 << 8)
#define CL_MEM_HOST_NO_ACCESS (1 << 9)
#define CL_MIGRATE_MEM_OBJECT_HOST (1 << 0)
#define CL_MIGRATE_MEM_OBJECT_CONTENT_UNDEFINED (1 << 1)
#define CL_R 0x10B0
#define CL_A 0x10B1
#define CL_RG 0x10B2
#define CL_RA 0x10B3
#define CL_RGB 0x10B4
#define CL_RGBA 0x10B5
#define CL_BGRA 0x10B6
#define CL_ARGB 0x10B7
#define CL_INTENSITY 0x10B8
#define CL_LUMINANCE 0x10B9
#define CL_Rx 0x10BA
#define CL_RGx 0x10BB
#define CL_RGBx 0x10BC
#define CL_DEPTH 0x10BD
#define CL_DEPTH_STENCIL 0x10BE
#define CL_SNORM_INT8 0x10D0
#define CL_SNORM_INT16 0x10D1
#define CL_UNORM_INT8 0x10D2
#define CL_UNORM_INT16 0x10D3
#define CL_UNORM_SHORT_565 0x10D4
#define CL_UNORM_SHORT_555 0x10D5
#define CL_UNORM_INT_101010 0x10D6
#define CL_SIGNED_INT8 0x10D7
#define CL_SIGNED_INT16 0x10D8
#define CL_SIGNED_INT32 0x10D9
#define CL_UNSIGNED_INT8 0x10DA
#define CL_UNSIGNED_INT16 0x10DB
#define CL_UNSIGNED_INT32 0x10DC
#define CL_HALF_FLOAT 0x10DD
#define CL_FLOAT 0x10DE
#define CL_UNORM_INT24 0x10DF
#define CL_MEM_OBJECT_BUFFER 0x10F0
#define CL_MEM_OBJECT_IMAGE2D 0x10F1
#define CL_MEM_OBJECT_IMAGE3D 0x10F2
#define CL_MEM_OBJECT_IMAGE2D_ARRAY 0x10F3
#define CL_MEM_OBJECT_IMAGE1D 0x10F4
#define CL_MEM_OBJECT_IMAGE1D_ARRAY 0x10F5
#define CL_MEM_OBJECT_IMAGE1D_BUFFER 0x10F6
#define CL_MEM_TYPE 0x1100
#define CL_MEM_FLAGS 0x1101
#define CL_MEM_SIZE 0x1102
#define CL_MEM_HOST_PTR 0x1103
#define CL_MEM_MAP_COUNT 0x1104
#define CL_MEM_REFERENCE_COUNT 0x1105
#define CL_MEM_CONTEXT 0x1106
#define CL_MEM_ASSOCIATED_MEMOBJECT 0x1107
#define CL_MEM_OFFSET 0x1108
#define CL_IMAGE_FORMAT 0x1110
#define CL_IMAGE_ELEMENT_SIZE 0x1111
#define CL_IMAGE_ROW_PITCH 0x1112
#define CL_IMAGE_SLICE_PITCH 0x1113
#define CL_IMAGE_WIDTH 0x1114
#define CL_IMAGE_HEIGHT 0x1115
#define CL_IMAGE_DEPTH 0x1116
#define CL_IMAGE_ARRAY_SIZE 0x1117
#define CL_IMAGE_BUFFER 0x1118
#define CL_IMAGE_NUM_MIP_LEVELS 0x1119
#define CL_IMAGE_NUM_SAMPLES 0x111A
#define CL_ADDRESS_NONE 0x1130
#define CL_ADDRESS_CLAMP_TO_EDGE 0x1131
#define CL_ADDRESS_CLAMP 0x1132
#define CL_ADDRESS_REPEAT 0x1133
#define CL_ADDRESS_MIRRORED_REPEAT 0x1134
#define CL_FILTER_NEAREST 0x1140
#define CL_FILTER_LINEAR 0x1141
#define CL_SAMPLER_REFERENCE_COUNT 0x1150
#define CL_SAMPLER_CONTEXT 0x1151
#define CL_SAMPLER_NORMALIZED_COORDS 0x1152
#define CL_SAMPLER_ADDRESSING_MODE 0x1153
#define CL_SAMPLER_FILTER_MODE 0x1154
#define CL_MAP_READ (1 << 0)
#define CL_MAP_WRITE (1 << 1)
#define CL_MAP_WRITE_INVALIDATE_REGION (1 << 2)
#define CL_PROGRAM_REFERENCE_COUNT 0x1160
#define CL_PROGRAM_CONTEXT 0x1161
#define CL_PROGRAM_NUM_DEVICES 0x1162
#define CL_PROGRAM_DEVICES 0x1163
#define CL_PROGRAM_SOURCE 0x1164
#define CL_PROGRAM_BINARY_SIZES 0x1165
#define CL_PROGRAM_BINARIES 0x1166
#define CL_PROGRAM_NUM_KERNELS 0x1167
#define CL_PROGRAM_KERNEL_NAMES 0x1168
#define CL_PROGRAM_BUILD_STATUS 0x1181
#define CL_PROGRAM_BUILD_OPTIONS 0x1182
#define CL_PROGRAM_BUILD_LOG 0x1183
#define CL_PROGRAM_BINARY_TYPE 0x1184
#define CL_PROGRAM_BINARY_TYPE_NONE 0x0
#define CL_PROGRAM_BINARY_TYPE_COMPILED_OBJECT 0x1
#define CL_PROGRAM_BINARY_TYPE_LIBRARY 0x2
#define CL_PROGRAM_BINARY_TYPE_EXECUTABLE 0x4
#define CL_BUILD_SUCCESS 0
#define CL_BUILD_NONE -1
#define CL_BUILD_ERROR -2
#define CL_BUILD_IN_PROGRESS -3
#define CL_KERNEL_FUNCTION_NAME 0x1190
#define CL_KERNEL_NUM_ARGS 0x1191
#define CL_KERNEL_REFERENCE_COUNT 0x1192
#define CL_KERNEL_CONTEXT 0x1193
#define CL_KERNEL_PROGRAM 0x1194
#define CL_KERNEL_ATTRIBUTES 0x1195
#define CL_KERNEL_ARG_ADDRESS_QUALIFIER 0x1196
#define CL_KERNEL_ARG_ACCESS_QUALIFIER 0x1197
#define CL_KERNEL_ARG_TYPE_NAME 0x1198
#define CL_KERNEL_ARG_TYPE_QUALIFIER 0x1199
#define CL_KERNEL_ARG_NAME 0x119A
#define CL_KERNEL_ARG_ADDRESS_GLOBAL 0x119B
#define CL_KERNEL_ARG_ADDRESS_LOCAL 0x119C
#define CL_KERNEL_ARG_ADDRESS_CONSTANT 0x119D
#define CL_KERNEL_ARG_ADDRESS_PRIVATE 0x119E
#define CL_KERNEL_ARG_ACCESS_READ_ONLY 0x11A0
#define CL_KERNEL_ARG_ACCESS_WRITE_ONLY 0x11A1
#define CL_KERNEL_ARG_ACCESS_READ_WRITE 0x11A2
#define CL_KERNEL_ARG_ACCESS_NONE 0x11A3
#define CL_KERNEL_ARG_TYPE_NONE 0
#define CL_KERNEL_ARG_TYPE_CONST (1 << 0)
#define CL_KERNEL_ARG_TYPE_RESTRICT (1 << 1)
#define CL_KERNEL_ARG_TYPE_VOLATILE (1 << 2)
#define CL_KERNEL_WORK_GROUP_SIZE 0x11B0
#define CL_KERNEL_COMPILE_WORK_GROUP_SIZE 0x11B1
#define CL_KERNEL_LOCAL_MEM_SIZE 0x11B2
#define CL_KERNEL_PREFERRED_WORK_GROUP_SIZE_MULTIPLE 0x11B3
#define CL_KERNEL_PRIVATE_MEM_SIZE 0x11B4
#define CL_KERNEL_GLOBAL_WORK_SIZE 0x11B5
#define CL_EVENT_COMMAND_QUEUE 0x11D0
#define CL_EVENT_COMMAND_TYPE 0x11D1
#define CL_EVENT_REFERENCE_COUNT 0x11D2
#define CL_EVENT_COMMAND_EXECUTION_STATUS 0x11D3
#define CL_EVENT_CONTEXT 0x11D4
#define CL_COMMAND_NDRANGE_KERNEL 0x11F0
#define CL_COMMAND_TASK 0x11F1
#define CL_COMMAND_NATIVE_KERNEL 0x11F2
#define CL_COMMAND_READ_BUFFER 0x11F3
#define CL_COMMAND_WRITE_BUFFER 0x11F4
#define CL_COMMAND_COPY_BUFFER 0x11F5
#define CL_COMMAND_READ_IMAGE 0x11F6
#define CL_COMMAND_WRITE_IMAGE 0x11F7
#define CL_COMMAND_COPY_IMAGE 0x11F8
#define CL_COMMAND_COPY_IMAGE_TO_BUFFER 0x11F9
#define CL_COMMAND_COPY_BUFFER_TO_IMAGE 0x11FA
#define CL_COMMAND_MAP_BUFFER 0x11FB
#define CL_COMMAND_MAP_IMAGE 0x11FC
#define CL_COMMAND_UNMAP_MEM_OBJECT 0x11FD
#define CL_COMMAND_MARKER 0x11FE
#define CL_COMMAND_ACQUIRE_GL_OBJECTS 0x11FF
#define CL_COMMAND_RELEASE_GL_OBJECTS 0x1200
#define CL_COMMAND_READ_BUFFER_RECT 0x1201
#define CL_COMMAND_WRITE_BUFFER_RECT 0x1202
#define CL_COMMAND_COPY_BUFFER_RECT 0x1203
#define CL_COMMAND_USER 0x1204
#define CL_COMMAND_BARRIER 0x1205
#define CL_COMMAND_MIGRATE_MEM_OBJECTS 0x1206
#define CL_COMMAND_FILL_BUFFER 0x1207
#define CL_COMMAND_FILL_IMAGE 0x1208
#define CL_COMPLETE 0x0
#define CL_RUNNING 0x1
#define CL_SUBMITTED 0x2
#define CL_QUEUED 0x3
#define CL_BUFFER_CREATE_TYPE_REGION 0x1220
#define CL_PROFILING_COMMAND_QUEUED 0x1280
#define CL_PROFILING_COMMAND_SUBMIT 0x1281
#define CL_PROFILING_COMMAND_START 0x1282
#define CL_PROFILING_COMMAND_END 0x1283
#define CL_CALLBACK CV_STDCALL
static volatile bool g_haveOpenCL = false;
static const char* oclFuncToCheck = "clEnqueueReadBufferRect";
#if defined(__APPLE__)
#include <dlfcn.h>
static void* initOpenCLAndLoad(const char* funcname)
{
static bool initialized = false;
static void* handle = 0;
if (!handle)
{
if(!initialized)
{
const char* oclpath = getenv("OPENCV_OPENCL_RUNTIME");
oclpath = oclpath && strlen(oclpath) > 0 ? oclpath :
"/System/Library/Frameworks/OpenCL.framework/Versions/Current/OpenCL";
handle = dlopen(oclpath, RTLD_LAZY);
initialized = true;
g_haveOpenCL = handle != 0 && dlsym(handle, oclFuncToCheck) != 0;
if( g_haveOpenCL )
fprintf(stderr, "Succesffuly loaded OpenCL v1.1+ runtime from %s\n", oclpath);
else
fprintf(stderr, "Failed to load OpenCL runtime\n");
}
if(!handle)
return 0;
}
return funcname && handle ? dlsym(handle, funcname) : 0;
}
#elif defined WIN32 || defined _WIN32
#ifndef _WIN32_WINNT // This is needed for the declaration of TryEnterCriticalSection in winbase.h with Visual Studio 2005 (and older?)
#define _WIN32_WINNT 0x0400 // http://msdn.microsoft.com/en-us/library/ms686857(VS.85).aspx
#endif
#include <windows.h>
#if (_WIN32_WINNT >= 0x0602)
#include <synchapi.h>
#endif
#undef small
#undef min
#undef max
#undef abs
static void* initOpenCLAndLoad(const char* funcname)
{
static bool initialized = false;
static HMODULE handle = 0;
if (!handle)
{
if(!initialized)
{
handle = LoadLibraryA("OpenCL.dll");
initialized = true;
g_haveOpenCL = handle != 0 && GetProcAddress(handle, oclFuncToCheck) != 0;
}
if(!handle)
return 0;
}
return funcname ? (void*)GetProcAddress(handle, funcname) : 0;
}
#elif defined(__linux)
#include <dlfcn.h>
#include <stdio.h>
static void* initOpenCLAndLoad(const char* funcname)
{
static bool initialized = false;
static void* handle = 0;
if (!handle)
{
if(!initialized)
{
handle = dlopen("libOpenCL.so", RTLD_LAZY);
if(!handle)
handle = dlopen("libCL.so", RTLD_LAZY);
initialized = true;
g_haveOpenCL = handle != 0 && dlsym(handle, oclFuncToCheck) != 0;
}
if(!handle)
return 0;
}
return funcname ? (void*)dlsym(handle, funcname) : 0;
}
#else
static void* initOpenCLAndLoad(const char*)
{
return 0;
}
#endif
#define OCL_FUNC(rettype, funcname, argsdecl, args) \
typedef rettype (CV_STDCALL * funcname##_t) argsdecl; \
static rettype funcname argsdecl \
{ \
static funcname##_t funcname##_p = 0; \
if( !funcname##_p ) \
{ \
funcname##_p = (funcname##_t)initOpenCLAndLoad(#funcname); \
if( !funcname##_p ) \
return OPENCV_CL_NOT_IMPLEMENTED; \
} \
return funcname##_p args; \
}
#define OCL_FUNC_P(rettype, funcname, argsdecl, args) \
typedef rettype (CV_STDCALL * funcname##_t) argsdecl; \
static rettype funcname argsdecl \
{ \
static funcname##_t funcname##_p = 0; \
if( !funcname##_p ) \
{ \
funcname##_p = (funcname##_t)initOpenCLAndLoad(#funcname); \
if( !funcname##_p ) \
{ \
if( errcode_ret ) \
*errcode_ret = OPENCV_CL_NOT_IMPLEMENTED; \
return 0; \
} \
} \
return funcname##_p args; \
}
OCL_FUNC(cl_int, clGetPlatformIDs,
(cl_uint num_entries, cl_platform_id* platforms, cl_uint* num_platforms),
(num_entries, platforms, num_platforms))
OCL_FUNC(cl_int, clGetPlatformInfo,
(cl_platform_id platform, cl_platform_info param_name,
size_t param_value_size, void * param_value,
size_t * param_value_size_ret),
(platform, param_name, param_value_size, param_value, param_value_size_ret))
OCL_FUNC(cl_int, clGetDeviceInfo,
(cl_device_id device,
cl_device_info param_name,
size_t param_value_size,
void * param_value,
size_t * param_value_size_ret),
(device, param_name, param_value_size, param_value, param_value_size_ret))
OCL_FUNC(cl_int, clGetDeviceIDs,
(cl_platform_id platform,
cl_device_type device_type,
cl_uint num_entries,
cl_device_id * devices,
cl_uint * num_devices),
(platform, device_type, num_entries, devices, num_devices))
OCL_FUNC_P(cl_context, clCreateContext,
(const cl_context_properties * properties,
cl_uint num_devices,
const cl_device_id * devices,
void (CL_CALLBACK * pfn_notify)(const char *, const void *, size_t, void *),
void * user_data,
cl_int * errcode_ret),
(properties, num_devices, devices, pfn_notify, user_data, errcode_ret))
OCL_FUNC(cl_int, clReleaseContext, (cl_context context), (context))
/*
OCL_FUNC(cl_int, clRetainContext, (cl_context context), (context))
OCL_FUNC_P(cl_context, clCreateContextFromType,
(const cl_context_properties * properties,
cl_device_type device_type,
void (CL_CALLBACK * pfn_notify)(const char *, const void *, size_t, void *),
void * user_data,
cl_int * errcode_ret),
(properties, device_type, pfn_notify, user_data, errcode_ret))
OCL_FUNC(cl_int, clGetContextInfo,
(cl_context context,
cl_context_info param_name,
size_t param_value_size,
void * param_value,
size_t * param_value_size_ret),
(context, param_name, param_value_size,
param_value, param_value_size_ret))
*/
OCL_FUNC_P(cl_command_queue, clCreateCommandQueue,
(cl_context context,
cl_device_id device,
cl_command_queue_properties properties,
cl_int * errcode_ret),
(context, device, properties, errcode_ret))
OCL_FUNC(cl_int, clReleaseCommandQueue, (cl_command_queue command_queue), (command_queue))
OCL_FUNC_P(cl_mem, clCreateBuffer,
(cl_context context,
cl_mem_flags flags,
size_t size,
void * host_ptr,
cl_int * errcode_ret),
(context, flags, size, host_ptr, errcode_ret))
/*
OCL_FUNC(cl_int, clRetainCommandQueue, (cl_command_queue command_queue), (command_queue))
OCL_FUNC(cl_int, clGetCommandQueueInfo,
(cl_command_queue command_queue,
cl_command_queue_info param_name,
size_t param_value_size,
void * param_value,
size_t * param_value_size_ret),
(command_queue, param_name, param_value_size, param_value, param_value_size_ret))
OCL_FUNC_P(cl_mem, clCreateSubBuffer,
(cl_mem buffer,
cl_mem_flags flags,
cl_buffer_create_type buffer_create_type,
const void * buffer_create_info,
cl_int * errcode_ret),
(buffer, flags, buffer_create_type, buffer_create_info, errcode_ret))
OCL_FUNC_P(cl_mem, clCreateImage,
(cl_context context,
cl_mem_flags flags,
const cl_image_format * image_format,
const cl_image_desc * image_desc,
void * host_ptr,
cl_int * errcode_ret),
(context, flags, image_format, image_desc, host_ptr, errcode_ret))
OCL_FUNC(cl_int, clGetSupportedImageFormats,
(cl_context context,
cl_mem_flags flags,
cl_mem_object_type image_type,
cl_uint num_entries,
cl_image_format * image_formats,
cl_uint * num_image_formats),
(context, flags, image_type, num_entries, image_formats, num_image_formats))
OCL_FUNC(cl_int, clGetMemObjectInfo,
(cl_mem memobj,
cl_mem_info param_name,
size_t param_value_size,
void * param_value,
size_t * param_value_size_ret),
(memobj, param_name, param_value_size, param_value, param_value_size_ret))
OCL_FUNC(cl_int, clGetImageInfo,
(cl_mem image,
cl_image_info param_name,
size_t param_value_size,
void * param_value,
size_t * param_value_size_ret),
(image, param_name, param_value_size, param_value, param_value_size_ret))
OCL_FUNC(cl_int, clCreateKernelsInProgram,
(cl_program program,
cl_uint num_kernels,
cl_kernel * kernels,
cl_uint * num_kernels_ret),
(program, num_kernels, kernels, num_kernels_ret))
OCL_FUNC(cl_int, clRetainKernel, (cl_kernel kernel), (kernel))
OCL_FUNC(cl_int, clGetKernelArgInfo,
(cl_kernel kernel,
cl_uint arg_indx,
cl_kernel_arg_info param_name,
size_t param_value_size,
void * param_value,
size_t * param_value_size_ret),
(kernel, arg_indx, param_name, param_value_size, param_value, param_value_size_ret))
OCL_FUNC(cl_int, clEnqueueReadImage,
(cl_command_queue command_queue,
cl_mem image,
cl_bool blocking_read,
const size_t * origin[3],
const size_t * region[3],
size_t row_pitch,
size_t slice_pitch,
void * ptr,
cl_uint num_events_in_wait_list,
const cl_event * event_wait_list,
cl_event * event),
(command_queue, image, blocking_read, origin, region,
row_pitch, slice_pitch,
ptr,
num_events_in_wait_list,
event_wait_list,
event))
OCL_FUNC(cl_int, clEnqueueWriteImage,
(cl_command_queue command_queue,
cl_mem image,
cl_bool blocking_write,
const size_t * origin[3],
const size_t * region[3],
size_t input_row_pitch,
size_t input_slice_pitch,
const void * ptr,
cl_uint num_events_in_wait_list,
const cl_event * event_wait_list,
cl_event * event),
(command_queue, image, blocking_write, origin, region, input_row_pitch,
input_slice_pitch, ptr, num_events_in_wait_list, event_wait_list, event))
OCL_FUNC(cl_int, clEnqueueFillImage,
(cl_command_queue command_queue,
cl_mem image,
const void * fill_color,
const size_t * origin[3],
const size_t * region[3],
cl_uint num_events_in_wait_list,
const cl_event * event_wait_list,
cl_event * event),
(command_queue, image, fill_color, origin, region,
num_events_in_wait_list, event_wait_list, event))
OCL_FUNC(cl_int, clEnqueueCopyImage,
(cl_command_queue command_queue,
cl_mem src_image,
cl_mem dst_image,
const size_t * src_origin[3],
const size_t * dst_origin[3],
const size_t * region[3],
cl_uint num_events_in_wait_list,
const cl_event * event_wait_list,
cl_event * event),
(command_queue, src_image, dst_image, src_origin, dst_origin,
region, num_events_in_wait_list, event_wait_list, event))
OCL_FUNC(cl_int, clEnqueueCopyImageToBuffer,
(cl_command_queue command_queue,
cl_mem src_image,
cl_mem dst_buffer,
const size_t * src_origin[3],
const size_t * region[3],
size_t dst_offset,
cl_uint num_events_in_wait_list,
const cl_event * event_wait_list,
cl_event * event),
(command_queue, src_image, dst_buffer, src_origin, region, dst_offset,
num_events_in_wait_list, event_wait_list, event))
OCL_FUNC(cl_int, clEnqueueCopyBufferToImage,
(cl_command_queue command_queue,
cl_mem src_buffer,
cl_mem dst_image,
size_t src_offset,
const size_t * dst_origin[3],
const size_t * region[3],
cl_uint num_events_in_wait_list,
const cl_event * event_wait_list,
cl_event * event),
(command_queue, src_buffer, dst_image, src_offset, dst_origin,
region, num_events_in_wait_list, event_wait_list, event))
OCL_FUNC_P(void*, clEnqueueMapImage,
(cl_command_queue command_queue,
cl_mem image,
cl_bool blocking_map,
cl_map_flags map_flags,
const size_t * origin[3],
const size_t * region[3],
size_t * image_row_pitch,
size_t * image_slice_pitch,
cl_uint num_events_in_wait_list,
const cl_event * event_wait_list,
cl_event * event,
cl_int * errcode_ret),
(command_queue, image, blocking_map, map_flags, origin, region,
image_row_pitch, image_slice_pitch, num_events_in_wait_list,
event_wait_list, event, errcode_ret))
OCL_FUNC(cl_int, clRetainProgram, (cl_program program), (program))
OCL_FUNC(cl_int, clGetKernelInfo,
(cl_kernel kernel,
cl_kernel_info param_name,
size_t param_value_size,
void * param_value,
size_t * param_value_size_ret),
(kernel, param_name, param_value_size, param_value, param_value_size_ret))
OCL_FUNC(cl_int, clRetainMemObject, (cl_mem memobj), (memobj))
*/
OCL_FUNC(cl_int, clReleaseMemObject, (cl_mem memobj), (memobj))
OCL_FUNC_P(cl_program, clCreateProgramWithSource,
(cl_context context,
cl_uint count,
const char ** strings,
const size_t * lengths,
cl_int * errcode_ret),
(context, count, strings, lengths, errcode_ret))
OCL_FUNC_P(cl_program, clCreateProgramWithBinary,
(cl_context context,
cl_uint num_devices,
const cl_device_id * device_list,
const size_t * lengths,
const unsigned char ** binaries,
cl_int * binary_status,
cl_int * errcode_ret),
(context, num_devices, device_list, lengths, binaries, binary_status, errcode_ret))
OCL_FUNC(cl_int, clReleaseProgram, (cl_program program), (program))
OCL_FUNC(cl_int, clBuildProgram,
(cl_program program,
cl_uint num_devices,
const cl_device_id * device_list,
const char * options,
void (CL_CALLBACK * pfn_notify)(cl_program, void *),
void * user_data),
(program, num_devices, device_list, options, pfn_notify, user_data))
OCL_FUNC(cl_int, clGetProgramInfo,
(cl_program program,
cl_program_info param_name,
size_t param_value_size,
void * param_value,
size_t * param_value_size_ret),
(program, param_name, param_value_size, param_value, param_value_size_ret))
OCL_FUNC(cl_int, clGetProgramBuildInfo,
(cl_program program,
cl_device_id device,
cl_program_build_info param_name,
size_t param_value_size,
void * param_value,
size_t * param_value_size_ret),
(program, device, param_name, param_value_size, param_value, param_value_size_ret))
OCL_FUNC_P(cl_kernel, clCreateKernel,
(cl_program program,
const char * kernel_name,
cl_int * errcode_ret),
(program, kernel_name, errcode_ret))
OCL_FUNC(cl_int, clReleaseKernel, (cl_kernel kernel), (kernel))
OCL_FUNC(cl_int, clSetKernelArg,
(cl_kernel kernel,
cl_uint arg_index,
size_t arg_size,
const void * arg_value),
(kernel, arg_index, arg_size, arg_value))
OCL_FUNC(cl_int, clGetKernelWorkGroupInfo,
(cl_kernel kernel,
cl_device_id device,
cl_kernel_work_group_info param_name,
size_t param_value_size,
void * param_value,
size_t * param_value_size_ret),
(kernel, device, param_name, param_value_size, param_value, param_value_size_ret))
OCL_FUNC(cl_int, clFinish, (cl_command_queue command_queue), (command_queue))
OCL_FUNC(cl_int, clEnqueueReadBuffer,
(cl_command_queue command_queue,
cl_mem buffer,
cl_bool blocking_read,
size_t offset,
size_t size,
void * ptr,
cl_uint num_events_in_wait_list,
const cl_event * event_wait_list,
cl_event * event),
(command_queue, buffer, blocking_read, offset, size, ptr,
num_events_in_wait_list, event_wait_list, event))
OCL_FUNC(cl_int, clEnqueueReadBufferRect,
(cl_command_queue command_queue,
cl_mem buffer,
cl_bool blocking_read,
const size_t * buffer_offset,
const size_t * host_offset,
const size_t * region,
size_t buffer_row_pitch,
size_t buffer_slice_pitch,
size_t host_row_pitch,
size_t host_slice_pitch,
void * ptr,
cl_uint num_events_in_wait_list,
const cl_event * event_wait_list,
cl_event * event),
(command_queue, buffer, blocking_read, buffer_offset, host_offset, region, buffer_row_pitch,
buffer_slice_pitch, host_row_pitch, host_slice_pitch, ptr, num_events_in_wait_list,
event_wait_list, event))
OCL_FUNC(cl_int, clEnqueueWriteBuffer,
(cl_command_queue command_queue,
cl_mem buffer,
cl_bool blocking_write,
size_t offset,
size_t size,
const void * ptr,
cl_uint num_events_in_wait_list,
const cl_event * event_wait_list,
cl_event * event),
(command_queue, buffer, blocking_write, offset, size, ptr,
num_events_in_wait_list, event_wait_list, event))
OCL_FUNC(cl_int, clEnqueueWriteBufferRect,
(cl_command_queue command_queue,
cl_mem buffer,
cl_bool blocking_write,
const size_t * buffer_offset,
const size_t * host_offset,
const size_t * region,
size_t buffer_row_pitch,
size_t buffer_slice_pitch,
size_t host_row_pitch,
size_t host_slice_pitch,
const void * ptr,
cl_uint num_events_in_wait_list,
const cl_event * event_wait_list,
cl_event * event),
(command_queue, buffer, blocking_write, buffer_offset, host_offset,
region, buffer_row_pitch, buffer_slice_pitch, host_row_pitch,
host_slice_pitch, ptr, num_events_in_wait_list, event_wait_list, event))
/*OCL_FUNC(cl_int, clEnqueueFillBuffer,
(cl_command_queue command_queue,
cl_mem buffer,
const void * pattern,
size_t pattern_size,
size_t offset,
size_t size,
cl_uint num_events_in_wait_list,
const cl_event * event_wait_list,
cl_event * event),
(command_queue, buffer, pattern, pattern_size, offset, size,
num_events_in_wait_list, event_wait_list, event))*/
OCL_FUNC(cl_int, clEnqueueCopyBuffer,
(cl_command_queue command_queue,
cl_mem src_buffer,
cl_mem dst_buffer,
size_t src_offset,
size_t dst_offset,
size_t size,
cl_uint num_events_in_wait_list,
const cl_event * event_wait_list,
cl_event * event),
(command_queue, src_buffer, dst_buffer, src_offset, dst_offset,
size, num_events_in_wait_list, event_wait_list, event))
OCL_FUNC(cl_int, clEnqueueCopyBufferRect,
(cl_command_queue command_queue,
cl_mem src_buffer,
cl_mem dst_buffer,
const size_t * src_origin,
const size_t * dst_origin,
const size_t * region,
size_t src_row_pitch,
size_t src_slice_pitch,
size_t dst_row_pitch,
size_t dst_slice_pitch,
cl_uint num_events_in_wait_list,
const cl_event * event_wait_list,
cl_event * event),
(command_queue, src_buffer, dst_buffer, src_origin, dst_origin,
region, src_row_pitch, src_slice_pitch, dst_row_pitch, dst_slice_pitch,
num_events_in_wait_list, event_wait_list, event))
OCL_FUNC_P(void*, clEnqueueMapBuffer,
(cl_command_queue command_queue,
cl_mem buffer,
cl_bool blocking_map,
cl_map_flags map_flags,
size_t offset,
size_t size,
cl_uint num_events_in_wait_list,
const cl_event * event_wait_list,
cl_event * event,
cl_int * errcode_ret),
(command_queue, buffer, blocking_map, map_flags, offset, size,
num_events_in_wait_list, event_wait_list, event, errcode_ret))
OCL_FUNC(cl_int, clEnqueueUnmapMemObject,
(cl_command_queue command_queue,
cl_mem memobj,
void * mapped_ptr,
cl_uint num_events_in_wait_list,
const cl_event * event_wait_list,
cl_event * event),
(command_queue, memobj, mapped_ptr, num_events_in_wait_list, event_wait_list, event))
OCL_FUNC(cl_int, clEnqueueNDRangeKernel,
(cl_command_queue command_queue,
cl_kernel kernel,
cl_uint work_dim,
const size_t * global_work_offset,
const size_t * global_work_size,
const size_t * local_work_size,
cl_uint num_events_in_wait_list,
const cl_event * event_wait_list,
cl_event * event),
(command_queue, kernel, work_dim, global_work_offset, global_work_size,
local_work_size, num_events_in_wait_list, event_wait_list, event))
OCL_FUNC(cl_int, clEnqueueTask,
(cl_command_queue command_queue,
cl_kernel kernel,
cl_uint num_events_in_wait_list,
const cl_event * event_wait_list,
cl_event * event),
(command_queue, kernel, num_events_in_wait_list, event_wait_list, event))
OCL_FUNC(cl_int, clSetEventCallback,
(cl_event event,
cl_int command_exec_callback_type ,
void (CL_CALLBACK *pfn_event_notify) (cl_event event, cl_int event_command_exec_status, void *user_data),
void *user_data),
(event, command_exec_callback_type, pfn_event_notify, user_data))
OCL_FUNC(cl_int, clReleaseEvent, (cl_event event), (event))
}
#endif
namespace cv { namespace ocl {
struct UMat2D
{
UMat2D(const UMat& m)
{
offset = (int)m.offset;
step = (int)m.step;
rows = m.rows;
cols = m.cols;
}
int offset;
int step;
int rows;
int cols;
};
struct UMat3D
{
UMat3D(const UMat& m)
{
offset = (int)m.offset;
step = (int)m.step.p[1];
slicestep = (int)m.step.p[0];
slices = (int)m.size.p[0];
rows = m.size.p[1];
cols = m.size.p[2];
}
int offset;
int slicestep;
int step;
int slices;
int rows;
int cols;
};
// Computes 64-bit "cyclic redundancy check" sum, as specified in ECMA-182
static uint64 crc64( const uchar* data, size_t size, uint64 crc0=0 )
{
static uint64 table[256];
static bool initialized = false;
if( !initialized )
{
for( int i = 0; i < 256; i++ )
{
uint64 c = i;
for( int j = 0; j < 8; j++ )
c = ((c & 1) ? CV_BIG_UINT(0xc96c5795d7870f42) : 0) ^ (c >> 1);
table[i] = c;
}
initialized = true;
}
uint64 crc = ~crc0;
for( size_t idx = 0; idx < size; idx++ )
crc = table[(uchar)crc ^ data[idx]] ^ (crc >> 8);
return ~crc;
}
struct HashKey
{
typedef uint64 part;
HashKey(part _a, part _b) : a(_a), b(_b) {}
part a, b;
};
inline bool operator == (const HashKey& h1, const HashKey& h2)
{
return h1.a == h2.a && h1.b == h2.b;
}
inline bool operator < (const HashKey& h1, const HashKey& h2)
{
return h1.a < h2.a || (h1.a == h2.a && h1.b < h2.b);
}
bool haveOpenCL()
{
initOpenCLAndLoad(0);
return g_haveOpenCL;
}
bool useOpenCL()
{
TLSData* data = TLSData::get();
if( data->useOpenCL < 0 )
data->useOpenCL = (int)haveOpenCL();
return data->useOpenCL > 0;
}
void setUseOpenCL(bool flag)
{
if( haveOpenCL() )
{
TLSData* data = TLSData::get();
data->useOpenCL = flag ? 1 : 0;
}
}
void finish2()
{
Queue::getDefault().finish();
}
#define IMPLEMENT_REFCOUNTABLE() \
void addref() { CV_XADD(&refcount, 1); } \
void release() { if( CV_XADD(&refcount, -1) == 1 ) delete this; } \
int refcount
class Platform
{
public:
Platform();
~Platform();
Platform(const Platform& p);
Platform& operator = (const Platform& p);
void* ptr() const;
static Platform& getDefault();
protected:
struct Impl;
Impl* p;
};
struct Platform::Impl
{
Impl()
{
refcount = 1;
handle = 0;
initialized = false;
}
~Impl() {}
void init()
{
if( !initialized )
{
//cl_uint num_entries
cl_uint n = 0;
if( clGetPlatformIDs(1, &handle, &n) < 0 || n == 0 )
handle = 0;
if( handle != 0 )
{
char buf[1000];
size_t len = 0;
clGetPlatformInfo(handle, CL_PLATFORM_VENDOR, sizeof(buf), buf, &len);
buf[len] = '\0';
vendor = String(buf);
}
initialized = true;
}
}
IMPLEMENT_REFCOUNTABLE();
cl_platform_id handle;
String vendor;
bool initialized;
};
Platform::Platform()
{
p = 0;
}
Platform::~Platform()
{
if(p)
p->release();
}
Platform::Platform(const Platform& pl)
{
p = (Impl*)pl.p;
if(p)
p->addref();
}
Platform& Platform::operator = (const Platform& pl)
{
Impl* newp = (Impl*)pl.p;
if(newp)
newp->addref();
if(p)
p->release();
p = newp;
return *this;
}
void* Platform::ptr() const
{
return p ? p->handle : 0;
}
Platform& Platform::getDefault()
{
static Platform p;
if( !p.p )
{
p.p = new Impl;
p.p->init();
}
return p;
}
///////////////////////////////////////////////////////////////////////////////////
struct Device::Impl
{
Impl(void* d)
{
handle = (cl_device_id)d;
}
template<typename _TpCL, typename _TpOut>
_TpOut getProp(cl_device_info prop) const
{
_TpCL temp=_TpCL();
size_t sz = 0;
return clGetDeviceInfo(handle, prop, sizeof(temp), &temp, &sz) >= 0 &&
sz == sizeof(temp) ? _TpOut(temp) : _TpOut();
}
bool getBoolProp(cl_device_info prop) const
{
cl_bool temp = CL_FALSE;
size_t sz = 0;
return clGetDeviceInfo(handle, prop, sizeof(temp), &temp, &sz) >= 0 &&
sz == sizeof(temp) ? temp != 0 : false;
}
String getStrProp(cl_device_info prop) const
{
char buf[1024];
size_t sz=0;
return clGetDeviceInfo(handle, prop, sizeof(buf)-16, buf, &sz) >= 0 &&
sz < sizeof(buf) ? String(buf) : String();
}
IMPLEMENT_REFCOUNTABLE();
cl_device_id handle;
};
Device::Device()
{
p = 0;
}
Device::Device(void* d)
{
p = 0;
set(d);
}
Device::Device(const Device& d)
{
p = d.p;
if(p)
p->addref();
}
Device& Device::operator = (const Device& d)
{
Impl* newp = (Impl*)d.p;
if(newp)
newp->addref();
if(p)
p->release();
p = newp;
return *this;
}
Device::~Device()
{
if(p)
p->release();
}
void Device::set(void* d)
{
if(p)
p->release();
p = new Impl(d);
}
void* Device::ptr() const
{
return p ? p->handle : 0;
}
String Device::name() const
{ return p ? p->getStrProp(CL_DEVICE_NAME) : String(); }
String Device::extensions() const
{ return p ? p->getStrProp(CL_DEVICE_EXTENSIONS) : String(); }
String Device::vendor() const
{ return p ? p->getStrProp(CL_DEVICE_VENDOR) : String(); }
String Device::OpenCL_C_Version() const
{ return p ? p->getStrProp(CL_DEVICE_OPENCL_C_VERSION) : String(); }
String Device::OpenCLVersion() const
{ return p ? p->getStrProp(CL_DEVICE_EXTENSIONS) : String(); }
String Device::driverVersion() const
{ return p ? p->getStrProp(CL_DRIVER_VERSION) : String(); }
int Device::type() const
{ return p ? p->getProp<cl_device_type, int>(CL_DEVICE_TYPE) : 0; }
int Device::addressBits() const
{ return p ? p->getProp<cl_uint, int>(CL_DEVICE_ADDRESS_BITS) : 0; }
bool Device::available() const
{ return p ? p->getBoolProp(CL_DEVICE_AVAILABLE) : false; }
bool Device::compilerAvailable() const
{ return p ? p->getBoolProp(CL_DEVICE_COMPILER_AVAILABLE) : false; }
bool Device::linkerAvailable() const
{ return p ? p->getBoolProp(CL_DEVICE_LINKER_AVAILABLE) : false; }
int Device::doubleFPConfig() const
{ return p ? p->getProp<cl_device_fp_config, int>(CL_DEVICE_DOUBLE_FP_CONFIG) : 0; }
int Device::singleFPConfig() const
{ return p ? p->getProp<cl_device_fp_config, int>(CL_DEVICE_SINGLE_FP_CONFIG) : 0; }
int Device::halfFPConfig() const
{ return p ? p->getProp<cl_device_fp_config, int>(CL_DEVICE_HALF_FP_CONFIG) : 0; }
bool Device::endianLittle() const
{ return p ? p->getBoolProp(CL_DEVICE_ENDIAN_LITTLE) : false; }
bool Device::errorCorrectionSupport() const
{ return p ? p->getBoolProp(CL_DEVICE_ERROR_CORRECTION_SUPPORT) : false; }
int Device::executionCapabilities() const
{ return p ? p->getProp<cl_device_exec_capabilities, int>(CL_DEVICE_EXECUTION_CAPABILITIES) : 0; }
size_t Device::globalMemCacheSize() const
{ return p ? p->getProp<cl_ulong, size_t>(CL_DEVICE_GLOBAL_MEM_CACHE_SIZE) : 0; }
int Device::globalMemCacheType() const
{ return p ? p->getProp<cl_device_mem_cache_type, int>(CL_DEVICE_GLOBAL_MEM_CACHE_TYPE) : 0; }
int Device::globalMemCacheLineSize() const
{ return p ? p->getProp<cl_uint, int>(CL_DEVICE_GLOBAL_MEM_CACHELINE_SIZE) : 0; }
size_t Device::globalMemSize() const
{ return p ? p->getProp<cl_ulong, size_t>(CL_DEVICE_GLOBAL_MEM_SIZE) : 0; }
size_t Device::localMemSize() const
{ return p ? p->getProp<cl_ulong, size_t>(CL_DEVICE_LOCAL_MEM_SIZE) : 0; }
int Device::localMemType() const
{ return p ? p->getProp<cl_device_local_mem_type, int>(CL_DEVICE_LOCAL_MEM_TYPE) : 0; }
bool Device::hostUnifiedMemory() const
{ return p ? p->getBoolProp(CL_DEVICE_HOST_UNIFIED_MEMORY) : false; }
bool Device::imageSupport() const
{ return p ? p->getBoolProp(CL_DEVICE_IMAGE_SUPPORT) : false; }
size_t Device::image2DMaxWidth() const
{ return p ? p->getProp<size_t, size_t>(CL_DEVICE_IMAGE2D_MAX_WIDTH) : 0; }
size_t Device::image2DMaxHeight() const
{ return p ? p->getProp<size_t, size_t>(CL_DEVICE_IMAGE2D_MAX_HEIGHT) : 0; }
size_t Device::image3DMaxWidth() const
{ return p ? p->getProp<size_t, size_t>(CL_DEVICE_IMAGE3D_MAX_WIDTH) : 0; }
size_t Device::image3DMaxHeight() const
{ return p ? p->getProp<size_t, size_t>(CL_DEVICE_IMAGE3D_MAX_HEIGHT) : 0; }
size_t Device::image3DMaxDepth() const
{ return p ? p->getProp<size_t, size_t>(CL_DEVICE_IMAGE3D_MAX_DEPTH) : 0; }
size_t Device::imageMaxBufferSize() const
{ return p ? p->getProp<size_t, size_t>(CL_DEVICE_IMAGE_MAX_BUFFER_SIZE) : 0; }
size_t Device::imageMaxArraySize() const
{ return p ? p->getProp<size_t, size_t>(CL_DEVICE_IMAGE_MAX_ARRAY_SIZE) : 0; }
int Device::maxClockFrequency() const
{ return p ? p->getProp<cl_uint, int>(CL_DEVICE_MAX_CLOCK_FREQUENCY) : 0; }
int Device::maxComputeUnits() const
{ return p ? p->getProp<cl_uint, int>(CL_DEVICE_MAX_COMPUTE_UNITS) : 0; }
int Device::maxConstantArgs() const
{ return p ? p->getProp<cl_uint, int>(CL_DEVICE_MAX_CONSTANT_ARGS) : 0; }
size_t Device::maxConstantBufferSize() const
{ return p ? p->getProp<cl_ulong, size_t>(CL_DEVICE_MAX_CONSTANT_BUFFER_SIZE) : 0; }
size_t Device::maxMemAllocSize() const
{ return p ? p->getProp<cl_ulong, size_t>(CL_DEVICE_MAX_MEM_ALLOC_SIZE) : 0; }
size_t Device::maxParameterSize() const
{ return p ? p->getProp<cl_ulong, size_t>(CL_DEVICE_MAX_PARAMETER_SIZE) : 0; }
int Device::maxReadImageArgs() const
{ return p ? p->getProp<cl_uint, int>(CL_DEVICE_MAX_READ_IMAGE_ARGS) : 0; }
int Device::maxWriteImageArgs() const
{ return p ? p->getProp<cl_uint, int>(CL_DEVICE_MAX_WRITE_IMAGE_ARGS) : 0; }
int Device::maxSamplers() const
{ return p ? p->getProp<cl_uint, int>(CL_DEVICE_MAX_SAMPLERS) : 0; }
size_t Device::maxWorkGroupSize() const
{ return p ? p->getProp<size_t, size_t>(CL_DEVICE_MAX_WORK_GROUP_SIZE) : 0; }
int Device::maxWorkItemDims() const
{ return p ? p->getProp<cl_uint, int>(CL_DEVICE_MAX_WORK_ITEM_DIMENSIONS) : 0; }
void Device::maxWorkItemSizes(size_t* sizes) const
{
if(p)
{
const int MAX_DIMS = 32;
size_t retsz = 0;
clGetDeviceInfo(p->handle, CL_DEVICE_MAX_WORK_ITEM_SIZES,
MAX_DIMS*sizeof(sizes[0]), &sizes[0], &retsz);
}
}
int Device::memBaseAddrAlign() const
{ return p ? p->getProp<cl_uint, int>(CL_DEVICE_MEM_BASE_ADDR_ALIGN) : 0; }
int Device::nativeVectorWidthChar() const
{ return p ? p->getProp<cl_uint, int>(CL_DEVICE_NATIVE_VECTOR_WIDTH_CHAR) : 0; }
int Device::nativeVectorWidthShort() const
{ return p ? p->getProp<cl_uint, int>(CL_DEVICE_NATIVE_VECTOR_WIDTH_SHORT) : 0; }
int Device::nativeVectorWidthInt() const
{ return p ? p->getProp<cl_uint, int>(CL_DEVICE_NATIVE_VECTOR_WIDTH_INT) : 0; }
int Device::nativeVectorWidthLong() const
{ return p ? p->getProp<cl_uint, int>(CL_DEVICE_NATIVE_VECTOR_WIDTH_LONG) : 0; }
int Device::nativeVectorWidthFloat() const
{ return p ? p->getProp<cl_uint, int>(CL_DEVICE_NATIVE_VECTOR_WIDTH_FLOAT) : 0; }
int Device::nativeVectorWidthDouble() const
{ return p ? p->getProp<cl_uint, int>(CL_DEVICE_NATIVE_VECTOR_WIDTH_DOUBLE) : 0; }
int Device::nativeVectorWidthHalf() const
{ return p ? p->getProp<cl_uint, int>(CL_DEVICE_NATIVE_VECTOR_WIDTH_HALF) : 0; }
int Device::preferredVectorWidthChar() const
{ return p ? p->getProp<cl_uint, int>(CL_DEVICE_PREFERRED_VECTOR_WIDTH_CHAR) : 0; }
int Device::preferredVectorWidthShort() const
{ return p ? p->getProp<cl_uint, int>(CL_DEVICE_PREFERRED_VECTOR_WIDTH_SHORT) : 0; }
int Device::preferredVectorWidthInt() const
{ return p ? p->getProp<cl_uint, int>(CL_DEVICE_PREFERRED_VECTOR_WIDTH_INT) : 0; }
int Device::preferredVectorWidthLong() const
{ return p ? p->getProp<cl_uint, int>(CL_DEVICE_PREFERRED_VECTOR_WIDTH_LONG) : 0; }
int Device::preferredVectorWidthFloat() const
{ return p ? p->getProp<cl_uint, int>(CL_DEVICE_PREFERRED_VECTOR_WIDTH_FLOAT) : 0; }
int Device::preferredVectorWidthDouble() const
{ return p ? p->getProp<cl_uint, int>(CL_DEVICE_PREFERRED_VECTOR_WIDTH_DOUBLE) : 0; }
int Device::preferredVectorWidthHalf() const
{ return p ? p->getProp<cl_uint, int>(CL_DEVICE_PREFERRED_VECTOR_WIDTH_HALF) : 0; }
size_t Device::printfBufferSize() const
{ return p ? p->getProp<size_t, size_t>(CL_DEVICE_PRINTF_BUFFER_SIZE) : 0; }
size_t Device::profilingTimerResolution() const
{ return p ? p->getProp<size_t, size_t>(CL_DEVICE_PROFILING_TIMER_RESOLUTION) : 0; }
const Device& Device::getDefault()
{
const Context2& ctx = Context2::getDefault();
int idx = TLSData::get()->device;
return ctx.device(idx);
}
/////////////////////////////////////////////////////////////////////////////////////////
struct Context2::Impl
{
Impl(int dtype0)
{
refcount = 1;
handle = 0;
cl_int retval = 0;
cl_platform_id pl = (cl_platform_id)Platform::getDefault().ptr();
cl_context_properties prop[] =
{
CL_CONTEXT_PLATFORM, (cl_context_properties)pl,
0
};
cl_uint i, nd0 = 0, nd = 0;
int dtype = dtype0 & 15;
clGetDeviceIDs( pl, dtype, 0, 0, &nd0 );
if(retval < 0)
return;
AutoBuffer<void*> dlistbuf(nd0*2+1);
cl_device_id* dlist = (cl_device_id*)(void**)dlistbuf;
cl_device_id* dlist_new = dlist + nd0;
clGetDeviceIDs( pl, dtype, nd0, dlist, &nd0 );
String name0;
for(i = 0; i < nd0; i++)
{
Device d(dlist[i]);
if( !d.available() || !d.compilerAvailable() )
continue;
if( dtype0 == Device::TYPE_DGPU && d.hostUnifiedMemory() )
continue;
if( dtype0 == Device::TYPE_IGPU && !d.hostUnifiedMemory() )
continue;
String name = d.name();
if( nd != 0 && name != name0 )
continue;
name0 = name;
dlist_new[nd++] = dlist[i];
}
if(nd == 0)
return;
// !!! in the current implementation force the number of devices to 1 !!!
nd = 1;
handle = clCreateContext(prop, nd, dlist_new, 0, 0, &retval);
bool ok = handle != 0 && retval >= 0;
if( ok )
{
devices.resize(nd);
for( i = 0; i < nd; i++ )
devices[i].set(dlist_new[i]);
}
}
~Impl()
{
if(handle)
clReleaseContext(handle);
devices.clear();
}
Program getProg(const ProgramSource2& src,
const String& buildflags, String& errmsg)
{
String prefix = Program::getPrefix(buildflags);
HashKey k(src.hash(), crc64((const uchar*)prefix.c_str(), prefix.size()));
phash_t::iterator it = phash.find(k);
if( it != phash.end() )
return it->second;
//String filename = format("%08x%08x_%08x%08x.clb2",
Program prog(src, buildflags, errmsg);
if(prog.ptr())
phash.insert(std::pair<HashKey,Program>(k, prog));
return prog;
}
IMPLEMENT_REFCOUNTABLE();
cl_context handle;
std::vector<Device> devices;
bool initialized;
typedef ProgramSource2::hash_t hash_t;
struct HashKey
{
HashKey(hash_t _a, hash_t _b) : a(_a), b(_b) {}
bool operator < (const HashKey& k) const { return a < k.a || (a == k.a && b < k.b); }
bool operator == (const HashKey& k) const { return a == k.a && b == k.b; }
bool operator != (const HashKey& k) const { return a != k.a || b != k.b; }
hash_t a, b;
};
typedef std::map<HashKey, Program> phash_t;
phash_t phash;
};
Context2::Context2()
{
p = 0;
}
Context2::Context2(int dtype)
{
p = 0;
create(dtype);
}
bool Context2::create(int dtype0)
{
if( !haveOpenCL() )
return false;
if(p)
p->release();
p = new Impl(dtype0);
if(!p->handle)
{
delete p;
p = 0;
}
return p != 0;
}
Context2::~Context2()
{
p->release();
}
Context2::Context2(const Context2& c)
{
p = (Impl*)c.p;
if(p)
p->addref();
}
Context2& Context2::operator = (const Context2& c)
{
Impl* newp = (Impl*)c.p;
if(newp)
newp->addref();
if(p)
p->release();
p = newp;
return *this;
}
void* Context2::ptr() const
{
return p->handle;
}
size_t Context2::ndevices() const
{
return p ? p->devices.size() : 0;
}
const Device& Context2::device(size_t idx) const
{
static Device dummy;
return !p || idx >= p->devices.size() ? dummy : p->devices[idx];
}
Context2& Context2::getDefault()
{
static Context2 ctx;
if( !ctx.p && haveOpenCL() )
{
// do not create new Context2 right away.
// First, try to retrieve existing context of the same type.
// In its turn, Platform::getContext() may call Context2::create()
// if there is no such context.
ctx.create(Device::TYPE_ACCELERATOR);
if(!ctx.p)
ctx.create(Device::TYPE_DGPU);
if(!ctx.p)
ctx.create(Device::TYPE_IGPU);
if(!ctx.p)
ctx.create(Device::TYPE_CPU);
}
return ctx;
}
Program Context2::getProg(const ProgramSource2& prog,
const String& buildopts, String& errmsg)
{
return p ? p->getProg(prog, buildopts, errmsg) : Program();
}
struct Queue::Impl
{
Impl(const Context2& c, const Device& d)
{
refcount = 1;
const Context2* pc = &c;
cl_context ch = (cl_context)pc->ptr();
if( !ch )
{
pc = &Context2::getDefault();
ch = (cl_context)pc->ptr();
}
cl_device_id dh = (cl_device_id)d.ptr();
if( !dh )
dh = (cl_device_id)pc->device(0).ptr();
cl_int retval = 0;
handle = clCreateCommandQueue(ch, dh, 0, &retval);
}
~Impl()
{
if(handle)
{
clFinish(handle);
clReleaseCommandQueue(handle);
}
}
IMPLEMENT_REFCOUNTABLE();
cl_command_queue handle;
bool initialized;
};
Queue::Queue()
{
p = 0;
}
Queue::Queue(const Context2& c, const Device& d)
{
p = 0;
create(c, d);
}
Queue::Queue(const Queue& q)
{
p = q.p;
if(p)
p->addref();
}
Queue& Queue::operator = (const Queue& q)
{
Impl* newp = (Impl*)q.p;
if(newp)
newp->addref();
if(p)
p->release();
p = newp;
return *this;
}
Queue::~Queue()
{
if(p)
p->release();
}
bool Queue::create(const Context2& c, const Device& d)
{
if(p)
p->release();
p = new Impl(c, d);
return p->handle != 0;
}
void Queue::finish()
{
if(p && p->handle)
clFinish(p->handle);
}
void* Queue::ptr() const
{
return p ? p->handle : 0;
}
Queue& Queue::getDefault()
{
Queue& q = TLSData::get()->oclQueue;
if( !q.p && haveOpenCL() )
q.create(Context2::getDefault());
return q;
}
static cl_command_queue getQueue(const Queue& q)
{
cl_command_queue qq = (cl_command_queue)q.ptr();
if(!qq)
qq = (cl_command_queue)Queue::getDefault().ptr();
return qq;
}
KernelArg::KernelArg()
: flags(0), m(0), obj(0), sz(0), wscale(1)
{
}
KernelArg::KernelArg(int _flags, UMat* _m, int _wscale, const void* _obj, size_t _sz)
: flags(_flags), m(_m), obj(_obj), sz(_sz), wscale(_wscale)
{
}
KernelArg KernelArg::Constant(const Mat& m)
{
CV_Assert(m.isContinuous());
return KernelArg(CONSTANT, 0, 1, m.data, m.total()*m.elemSize());
}
struct Kernel::Impl
{
Impl(const char* kname, const Program& prog)
{
e = 0; refcount = 1;
cl_program ph = (cl_program)prog.ptr();
cl_int retval = 0;
handle = ph != 0 ?
clCreateKernel(ph, kname, &retval) : 0;
for( int i = 0; i < MAX_ARRS; i++ )
u[i] = 0;
haveTempDstUMats = false;
}
void cleanupUMats()
{
for( int i = 0; i < MAX_ARRS; i++ )
if( u[i] )
{
if( CV_XADD(&u[i]->urefcount, -1) == 1 )
u[i]->currAllocator->deallocate(u[i]);
u[i] = 0;
}
nu = 0;
haveTempDstUMats = false;
}
void addUMat(const UMat& m, bool dst)
{
CV_Assert(nu < MAX_ARRS && m.u && m.u->urefcount > 0);
u[nu] = m.u;
CV_XADD(&m.u->urefcount, 1);
nu++;
if(dst && m.u->tempUMat())
haveTempDstUMats = true;
}
void finit()
{
cleanupUMats();
if(e) { clReleaseEvent(e); e = 0; }
release();
}
~Impl()
{
if(handle)
clReleaseKernel(handle);
}
IMPLEMENT_REFCOUNTABLE();
cl_kernel handle;
cl_event e;
enum { MAX_ARRS = 16 };
UMatData* u[MAX_ARRS];
int nu;
bool haveTempDstUMats;
};
}}
extern "C"
{
static void CL_CALLBACK oclCleanupCallback(cl_event, cl_int, void *p)
{
((cv::ocl::Kernel::Impl*)p)->finit();
}
}
namespace cv { namespace ocl {
Kernel::Kernel()
{
p = 0;
}
Kernel::Kernel(const char* kname, const Program& prog)
{
p = 0;
create(kname, prog);
}
Kernel::Kernel(const char* kname, const ProgramSource2& src,
const String& buildopts, String* errmsg)
{
p = 0;
create(kname, src, buildopts, errmsg);
}
Kernel::Kernel(const Kernel& k)
{
p = k.p;
if(p)
p->addref();
}
Kernel& Kernel::operator = (const Kernel& k)
{
Impl* newp = (Impl*)k.p;
if(newp)
newp->addref();
if(p)
p->release();
p = newp;
return *this;
}
Kernel::~Kernel()
{
if(p)
p->release();
}
bool Kernel::create(const char* kname, const Program& prog)
{
if(p)
p->release();
p = new Impl(kname, prog);
if(p->handle == 0)
{
p->release();
p = 0;
}
return p != 0;
}
bool Kernel::create(const char* kname, const ProgramSource2& src,
const String& buildopts, String* errmsg)
{
if(p)
{
p->release();
p = 0;
}
String tempmsg;
if( !errmsg ) errmsg = &tempmsg;
const Program& prog = Context2::getDefault().getProg(src, buildopts, *errmsg);
return create(kname, prog);
}
void* Kernel::ptr() const
{
return p ? p->handle : 0;
}
bool Kernel::empty() const
{
return ptr() == 0;
}
int Kernel::set(int i, const void* value, size_t sz)
{
CV_Assert(i >= 0);
if( i == 0 )
p->cleanupUMats();
if( !p || !p->handle || clSetKernelArg(p->handle, (cl_uint)i, sz, value) < 0 )
return -1;
return i+1;
}
int Kernel::set(int i, const UMat& m)
{
return set(i, KernelArg(KernelArg::READ_WRITE, (UMat*)&m, 0, 0));
}
int Kernel::set(int i, const KernelArg& arg)
{
CV_Assert( i >= 0 );
if( !p || !p->handle )
return -1;
if( i == 0 )
p->cleanupUMats();
if( arg.m )
{
int accessFlags = ((arg.flags & KernelArg::READ_ONLY) ? ACCESS_READ : 0) +
((arg.flags & KernelArg::WRITE_ONLY) ? ACCESS_WRITE : 0);
bool ptronly = (arg.flags & KernelArg::PTR_ONLY) != 0;
cl_mem h = (cl_mem)arg.m->handle(accessFlags);
if (ptronly)
clSetKernelArg(p->handle, (cl_uint)i++, sizeof(h), &h);
else if( arg.m->dims <= 2 )
{
UMat2D u2d(*arg.m);
clSetKernelArg(p->handle, (cl_uint)i, sizeof(h), &h);
clSetKernelArg(p->handle, (cl_uint)(i+1), sizeof(u2d.step), &u2d.step);
clSetKernelArg(p->handle, (cl_uint)(i+2), sizeof(u2d.offset), &u2d.offset);
i += 3;
if( !(arg.flags & KernelArg::NO_SIZE) )
{
int cols = u2d.cols*arg.wscale;
clSetKernelArg(p->handle, (cl_uint)i, sizeof(u2d.rows), &u2d.rows);
clSetKernelArg(p->handle, (cl_uint)(i+1), sizeof(cols), &cols);
i += 2;
}
}
else
{
UMat3D u3d(*arg.m);
clSetKernelArg(p->handle, (cl_uint)i, sizeof(h), &h);
clSetKernelArg(p->handle, (cl_uint)(i+1), sizeof(u3d.slicestep), &u3d.slicestep);
clSetKernelArg(p->handle, (cl_uint)(i+2), sizeof(u3d.step), &u3d.step);
clSetKernelArg(p->handle, (cl_uint)(i+3), sizeof(u3d.offset), &u3d.offset);
i += 4;
if( !(arg.flags & KernelArg::NO_SIZE) )
{
int cols = u3d.cols*arg.wscale;
clSetKernelArg(p->handle, (cl_uint)i, sizeof(u3d.slices), &u3d.rows);
clSetKernelArg(p->handle, (cl_uint)(i+1), sizeof(u3d.rows), &u3d.rows);
clSetKernelArg(p->handle, (cl_uint)(i+2), sizeof(u3d.cols), &cols);
i += 3;
}
}
p->addUMat(*arg.m, (accessFlags & ACCESS_WRITE) != 0);
return i;
}
clSetKernelArg(p->handle, (cl_uint)i, arg.sz, arg.obj);
return i+1;
}
bool Kernel::run(int dims, size_t _globalsize[], size_t _localsize[],
bool sync, const Queue& q)
{
if(!p || !p->handle || p->e != 0)
return false;
cl_command_queue qq = getQueue(q);
size_t offset[CV_MAX_DIM] = {0}, globalsize[CV_MAX_DIM] = {1,1,1};
size_t total = 1;
CV_Assert(_globalsize != 0);
for (int i = 0; i < dims; i++)
{
size_t val = _localsize ? _localsize[i] :
dims == 1 ? 64 : dims == 2 ? (16>>i) : dims == 3 ? (8>>(int)(i>0)) : 1;
CV_Assert( val > 0 );
total *= _globalsize[i];
globalsize[i] = ((_globalsize[i] + val - 1)/val)*val;
}
if( total == 0 )
return true;
if( p->haveTempDstUMats )
sync = true;
cl_int retval = clEnqueueNDRangeKernel(qq, p->handle, (cl_uint)dims,
offset, globalsize, _localsize, 0, 0,
sync ? 0 : &p->e);
if( sync || retval < 0 )
{
clFinish(qq);
p->cleanupUMats();
}
else
{
p->addref();
clSetEventCallback(p->e, CL_COMPLETE, oclCleanupCallback, p);
}
return retval >= 0;
}
bool Kernel::runTask(bool sync, const Queue& q)
{
if(!p || !p->handle || p->e != 0)
return false;
cl_command_queue qq = getQueue(q);
cl_int retval = clEnqueueTask(qq, p->handle, 0, 0, sync ? 0 : &p->e);
if( sync || retval < 0 )
{
clFinish(qq);
p->cleanupUMats();
}
else
{
p->addref();
clSetEventCallback(p->e, CL_COMPLETE, oclCleanupCallback, p);
}
return retval >= 0;
}
size_t Kernel::workGroupSize() const
{
if(!p)
return 0;
size_t val = 0, retsz = 0;
cl_device_id dev = (cl_device_id)Device::getDefault().ptr();
return clGetKernelWorkGroupInfo(p->handle, dev, CL_KERNEL_WORK_GROUP_SIZE,
sizeof(val), &val, &retsz) >= 0 ? val : 0;
}
bool Kernel::compileWorkGroupSize(size_t wsz[]) const
{
if(!p || !wsz)
return 0;
size_t retsz = 0;
cl_device_id dev = (cl_device_id)Device::getDefault().ptr();
return clGetKernelWorkGroupInfo(p->handle, dev, CL_KERNEL_COMPILE_WORK_GROUP_SIZE,
sizeof(wsz[0]*3), wsz, &retsz) >= 0;
}
size_t Kernel::localMemSize() const
{
if(!p)
return 0;
size_t retsz = 0;
cl_ulong val = 0;
cl_device_id dev = (cl_device_id)Device::getDefault().ptr();
return clGetKernelWorkGroupInfo(p->handle, dev, CL_KERNEL_LOCAL_MEM_SIZE,
sizeof(val), &val, &retsz) >= 0 ? (size_t)val : 0;
}
////////////////////////////////////////////////////////////////////////////////////////
struct Program::Impl
{
Impl(const ProgramSource2& _src,
const String& _buildflags, String& errmsg)
{
refcount = 1;
const Context2& ctx = Context2::getDefault();
src = _src;
buildflags = _buildflags;
const String& srcstr = src.source();
const char* srcptr = srcstr.c_str();
size_t srclen = srcstr.size();
cl_int retval = 0;
handle = clCreateProgramWithSource((cl_context)ctx.ptr(), 1, &srcptr, &srclen, &retval);
if( handle && retval >= 0 )
{
int i, n = (int)ctx.ndevices();
AutoBuffer<void*> deviceListBuf(n+1);
void** deviceList = deviceListBuf;
for( i = 0; i < n; i++ )
deviceList[i] = ctx.device(i).ptr();
retval = clBuildProgram(handle, n,
(const cl_device_id*)deviceList,
buildflags.c_str(), 0, 0);
if( retval < 0 )
{
size_t retsz = 0;
retval = clGetProgramBuildInfo(handle, (cl_device_id)deviceList[0],
CL_PROGRAM_BUILD_LOG, 0, 0, &retsz);
if( retval >= 0 && retsz > 0 )
{
AutoBuffer<char> bufbuf(retsz + 16);
char* buf = bufbuf;
retval = clGetProgramBuildInfo(handle, (cl_device_id)deviceList[0],
CL_PROGRAM_BUILD_LOG, retsz+1, buf, &retsz);
if( retval >= 0 )
{
errmsg = String(buf);
CV_Error_(Error::StsAssert, ("OpenCL program can not be built: %s", errmsg.c_str()));
}
}
}
CV_Assert(retval >= 0);
}
}
Impl(const String& _buf, const String& _buildflags)
{
refcount = 1;
handle = 0;
buildflags = _buildflags;
if(_buf.empty())
return;
String prefix0 = Program::getPrefix(buildflags);
const Context2& ctx = Context2::getDefault();
const Device& dev = Device::getDefault();
const char* pos0 = _buf.c_str();
const char* pos1 = strchr(pos0, '\n');
if(!pos1)
return;
const char* pos2 = strchr(pos1+1, '\n');
if(!pos2)
return;
const char* pos3 = strchr(pos2+1, '\n');
if(!pos3)
return;
size_t prefixlen = (pos3 - pos0)+1;
String prefix(pos0, prefixlen);
if( prefix != prefix0 )
return;
const uchar* bin = (uchar*)(pos3+1);
void* devid = dev.ptr();
size_t codelen = _buf.length() - prefixlen;
cl_int binstatus = 0, retval = 0;
handle = clCreateProgramWithBinary((cl_context)ctx.ptr(), 1, (cl_device_id*)&devid,
&codelen, &bin, &binstatus, &retval);
}
String store()
{
if(!handle)
return String();
size_t progsz = 0, retsz = 0;
String prefix = Program::getPrefix(buildflags);
size_t prefixlen = prefix.length();
if(clGetProgramInfo(handle, CL_PROGRAM_BINARY_SIZES, sizeof(progsz), &progsz, &retsz) < 0)
return String();
AutoBuffer<uchar> bufbuf(prefixlen + progsz + 16);
uchar* buf = bufbuf;
memcpy(buf, prefix.c_str(), prefixlen);
buf += prefixlen;
if(clGetProgramInfo(handle, CL_PROGRAM_BINARIES, sizeof(buf), &buf, &retsz) < 0)
return String();
buf[progsz] = (uchar)'\0';
return String((const char*)(uchar*)bufbuf, prefixlen + progsz);
}
~Impl()
{
if( handle )
clReleaseProgram(handle);
}
IMPLEMENT_REFCOUNTABLE();
ProgramSource2 src;
String buildflags;
cl_program handle;
};
Program::Program() { p = 0; }
Program::Program(const ProgramSource2& src,
const String& buildflags, String& errmsg)
{
p = 0;
create(src, buildflags, errmsg);
}
Program::Program(const Program& prog)
{
p = prog.p;
if(p)
p->addref();
}
Program& Program::operator = (const Program& prog)
{
Impl* newp = (Impl*)prog.p;
if(newp)
newp->addref();
if(p)
p->release();
p = newp;
return *this;
}
Program::~Program()
{
if(p)
p->release();
}
bool Program::create(const ProgramSource2& src,
const String& buildflags, String& errmsg)
{
if(p)
p->release();
p = new Impl(src, buildflags, errmsg);
if(!p->handle)
{
p->release();
p = 0;
}
return p != 0;
}
const ProgramSource2& Program::source() const
{
static ProgramSource2 dummy;
return p ? p->src : dummy;
}
void* Program::ptr() const
{
return p ? p->handle : 0;
}
bool Program::read(const String& bin, const String& buildflags)
{
if(p)
p->release();
p = new Impl(bin, buildflags);
return p->handle != 0;
}
bool Program::write(String& bin) const
{
if(!p)
return false;
bin = p->store();
return !bin.empty();
}
String Program::getPrefix() const
{
if(!p)
return String();
return getPrefix(p->buildflags);
}
String Program::getPrefix(const String& buildflags)
{
const Context2& ctx = Context2::getDefault();
const Device& dev = ctx.device(0);
return format("name=%s\ndriver=%s\nbuildflags=%s\n",
dev.name().c_str(), dev.driverVersion().c_str(), buildflags.c_str());
}
////////////////////////////////////////////////////////////////////////////////////////
struct ProgramSource2::Impl
{
Impl(const char* _src)
{
init(String(_src));
}
Impl(const String& _src)
{
init(_src);
}
void init(const String& _src)
{
refcount = 1;
src = _src;
h = crc64((uchar*)src.c_str(), src.size());
}
IMPLEMENT_REFCOUNTABLE();
String src;
ProgramSource2::hash_t h;
};
ProgramSource2::ProgramSource2()
{
p = 0;
}
ProgramSource2::ProgramSource2(const char* prog)
{
p = new Impl(prog);
}
ProgramSource2::ProgramSource2(const String& prog)
{
p = new Impl(prog);
}
ProgramSource2::~ProgramSource2()
{
if(p)
p->release();
}
ProgramSource2::ProgramSource2(const ProgramSource2& prog)
{
p = prog.p;
if(p)
p->addref();
}
ProgramSource2& ProgramSource2::operator = (const ProgramSource2& prog)
{
Impl* newp = (Impl*)prog.p;
if(newp)
newp->addref();
if(p)
p->release();
p = newp;
return *this;
}
const String& ProgramSource2::source() const
{
static String dummy;
return p ? p->src : dummy;
}
ProgramSource2::hash_t ProgramSource2::hash() const
{
return p ? p->h : 0;
}
//////////////////////////////////////////////////////////////////////////////////////////////
class OpenCLAllocator : public MatAllocator
{
public:
OpenCLAllocator() { matStdAllocator = Mat::getStdAllocator(); }
UMatData* defaultAllocate(int dims, const int* sizes, int type, void* data, size_t* step, int flags) const
{
UMatData* u = matStdAllocator->allocate(dims, sizes, type, data, step, flags);
u->urefcount = 1;
u->refcount = 0;
return u;
}
void getBestFlags(const Context2& ctx, int /*flags*/, int& createFlags, int& flags0) const
{
const Device& dev = ctx.device(0);
createFlags = CL_MEM_READ_WRITE;
if( dev.hostUnifiedMemory() )
flags0 = 0;
else
flags0 = UMatData::COPY_ON_MAP;
}
UMatData* allocate(int dims, const int* sizes, int type,
void* data, size_t* step, int flags) const
{
if(!useOpenCL())
return defaultAllocate(dims, sizes, type, data, step, flags);
CV_Assert(data == 0);
size_t total = CV_ELEM_SIZE(type);
for( int i = dims-1; i >= 0; i-- )
{
if( step )
step[i] = total;
total *= sizes[i];
}
Context2& ctx = Context2::getDefault();
int createFlags = 0, flags0 = 0;
getBestFlags(ctx, flags, createFlags, flags0);
cl_int retval = 0;
void* handle = clCreateBuffer((cl_context)ctx.ptr(),
createFlags, total, 0, &retval);
if( !handle || retval < 0 )
return defaultAllocate(dims, sizes, type, data, step, flags);
UMatData* u = new UMatData(this);
u->data = 0;
u->size = total;
u->handle = handle;
u->urefcount = 1;
u->flags = flags0;
return u;
}
bool allocate(UMatData* u, int accessFlags) const
{
if(!u)
return false;
UMatDataAutoLock lock(u);
if(u->handle == 0)
{
CV_Assert(u->origdata != 0);
Context2& ctx = Context2::getDefault();
int createFlags = 0, flags0 = 0;
getBestFlags(ctx, accessFlags, createFlags, flags0);
cl_context ctx_handle = (cl_context)ctx.ptr();
cl_int retval = 0;
int tempUMatFlags = UMatData::TEMP_UMAT;
u->handle = clCreateBuffer(ctx_handle, CL_MEM_USE_HOST_PTR|createFlags,
u->size, u->origdata, &retval);
if((!u->handle || retval < 0) && !(accessFlags & ACCESS_FAST))
{
u->handle = clCreateBuffer(ctx_handle, CL_MEM_COPY_HOST_PTR|createFlags,
u->size, u->origdata, &retval);
tempUMatFlags = UMatData::TEMP_COPIED_UMAT;
}
if(!u->handle || retval < 0)
return false;
u->prevAllocator = u->currAllocator;
u->currAllocator = this;
u->flags |= tempUMatFlags;
}
if(accessFlags & ACCESS_WRITE)
u->markHostCopyObsolete(true);
CV_XADD(&u->urefcount, 1);
return true;
}
/*void sync(UMatData* u) const
{
cl_command_queue q = (cl_command_queue)Queue::getDefault().ptr();
UMatDataAutoLock lock(u);
if( u->hostCopyObsolete() && u->handle && u->refcount > 0 && u->origdata)
{
if( u->tempCopiedUMat() )
{
clEnqueueReadBuffer(q, (cl_mem)u->handle, CL_TRUE, 0,
u->size, u->origdata, 0, 0, 0);
}
else
{
cl_int retval = 0;
void* data = clEnqueueMapBuffer(q, (cl_mem)u->handle, CL_TRUE,
(CL_MAP_READ | CL_MAP_WRITE),
0, u->size, 0, 0, 0, &retval);
clEnqueueUnmapMemObject(q, (cl_mem)u->handle, data, 0, 0, 0);
clFinish(q);
}
u->markHostCopyObsolete(false);
}
else if( u->copyOnMap() && u->deviceCopyObsolete() && u->data )
{
clEnqueueWriteBuffer(q, (cl_mem)u->handle, CL_TRUE, 0,
u->size, u->data, 0, 0, 0);
}
}*/
void deallocate(UMatData* u) const
{
if(!u)
return;
// TODO: !!! when we add Shared Virtual Memory Support,
// this function (as well as the others) should be corrected
CV_Assert(u->handle != 0 && u->urefcount == 0);
if(u->tempUMat())
{
UMatDataAutoLock lock(u);
if( u->hostCopyObsolete() && u->refcount > 0 )
{
cl_command_queue q = (cl_command_queue)Queue::getDefault().ptr();
if( u->tempCopiedUMat() )
{
clEnqueueReadBuffer(q, (cl_mem)u->handle, CL_TRUE, 0,
u->size, u->origdata, 0, 0, 0);
}
else
{
cl_int retval = 0;
void* data = clEnqueueMapBuffer(q, (cl_mem)u->handle, CL_TRUE,
(CL_MAP_READ | CL_MAP_WRITE),
0, u->size, 0, 0, 0, &retval);
clEnqueueUnmapMemObject(q, (cl_mem)u->handle, data, 0, 0, 0);
clFinish(q);
}
}
u->markHostCopyObsolete(false);
clReleaseMemObject((cl_mem)u->handle);
u->handle = 0;
u->currAllocator = u->prevAllocator;
if(u->data && u->copyOnMap() && !(u->flags & UMatData::USER_ALLOCATED))
fastFree(u->data);
u->data = u->origdata;
if(u->refcount == 0)
u->currAllocator->deallocate(u);
}
else
{
CV_Assert(u->refcount == 0);
if(u->data && u->copyOnMap() && !(u->flags & UMatData::USER_ALLOCATED))
{
fastFree(u->data);
u->data = 0;
}
clReleaseMemObject((cl_mem)u->handle);
u->handle = 0;
delete u;
}
}
void map(UMatData* u, int accessFlags) const
{
if(!u)
return;
CV_Assert( u->handle != 0 );
UMatDataAutoLock autolock(u);
if(accessFlags & ACCESS_WRITE)
u->markDeviceCopyObsolete(true);
cl_command_queue q = (cl_command_queue)Queue::getDefault().ptr();
if( u->refcount == 0 )
{
if( !u->copyOnMap() )
{
CV_Assert(u->data == 0);
// because there can be other map requests for the same UMat with different access flags,
// we use the universal (read-write) access mode.
cl_int retval = 0;
u->data = (uchar*)clEnqueueMapBuffer(q, (cl_mem)u->handle, CL_TRUE,
(CL_MAP_READ | CL_MAP_WRITE),
0, u->size, 0, 0, 0, &retval);
if(u->data && retval >= 0)
{
u->markHostCopyObsolete(false);
return;
}
// if map failed, switch to copy-on-map mode for the particular buffer
u->flags |= UMatData::COPY_ON_MAP;
}
if(!u->data)
{
u->data = (uchar*)fastMalloc(u->size);
u->markHostCopyObsolete(true);
}
}
if( (accessFlags & ACCESS_READ) != 0 && u->hostCopyObsolete() )
{
CV_Assert( clEnqueueReadBuffer(q, (cl_mem)u->handle, CL_TRUE, 0,
u->size, u->data, 0, 0, 0) >= 0 );
u->markHostCopyObsolete(false);
}
}
void unmap(UMatData* u) const
{
if(!u)
return;
CV_Assert(u->handle != 0);
UMatDataAutoLock autolock(u);
cl_command_queue q = (cl_command_queue)Queue::getDefault().ptr();
cl_int retval = 0;
if( !u->copyOnMap() && u->data )
{
CV_Assert( (retval = clEnqueueUnmapMemObject(q,
(cl_mem)u->handle, u->data, 0, 0, 0)) >= 0 );
clFinish(q);
u->data = 0;
}
else if( u->copyOnMap() && u->deviceCopyObsolete() )
{
CV_Assert( (retval = clEnqueueWriteBuffer(q, (cl_mem)u->handle, CL_TRUE, 0,
u->size, u->data, 0, 0, 0)) >= 0 );
}
u->markDeviceCopyObsolete(false);
u->markHostCopyObsolete(false);
}
bool checkContinuous(int dims, const size_t sz[],
const size_t srcofs[], const size_t srcstep[],
const size_t dstofs[], const size_t dststep[],
size_t& total, size_t new_sz[],
size_t& srcrawofs, size_t new_srcofs[], size_t new_srcstep[],
size_t& dstrawofs, size_t new_dstofs[], size_t new_dststep[]) const
{
bool iscontinuous = true;
srcrawofs = srcofs ? srcofs[dims-1] : 0;
dstrawofs = dstofs ? dstofs[dims-1] : 0;
total = sz[dims-1];
for( int i = dims-2; i >= 0; i-- )
{
if( i >= 0 && (total != srcstep[i] || total != dststep[i]) )
iscontinuous = false;
total *= sz[i];
if( srcofs )
srcrawofs += srcofs[i]*srcstep[i];
if( dstofs )
dstrawofs += dstofs[i]*dststep[i];
}
if( !iscontinuous )
{
// OpenCL uses {x, y, z} order while OpenCV uses {z, y, x} order.
if( dims == 2 )
{
new_sz[0] = sz[1]; new_sz[1] = sz[0]; new_sz[2] = 1;
// we assume that new_... arrays are initialized by caller
// with 0's, so there is no else branch
if( srcofs )
{
new_srcofs[0] = srcofs[1];
new_srcofs[1] = srcofs[0];
new_srcofs[2] = 0;
}
if( dstofs )
{
new_dstofs[0] = dstofs[1];
new_dstofs[1] = dstofs[0];
new_dstofs[2] = 0;
}
new_srcstep[0] = srcstep[0]; new_srcstep[1] = 0;
new_dststep[0] = dststep[0]; new_dststep[1] = 0;
}
else
{
// we could check for dims == 3 here,
// but from user perspective this one is more informative
CV_Assert(dims <= 3);
new_sz[0] = sz[2]; new_sz[1] = sz[1]; new_sz[2] = sz[0];
if( srcofs )
{
new_srcofs[0] = srcofs[2];
new_srcofs[1] = srcofs[1];
new_srcofs[2] = srcofs[0];
}
if( dstofs )
{
new_dstofs[0] = dstofs[2];
new_dstofs[1] = dstofs[1];
new_dstofs[2] = dstofs[0];
}
new_srcstep[0] = srcstep[1]; new_srcstep[1] = srcstep[0];
new_dststep[0] = dststep[1]; new_dststep[1] = dststep[0];
}
}
return iscontinuous;
}
void download(UMatData* u, void* dstptr, int dims, const size_t sz[],
const size_t srcofs[], const size_t srcstep[],
const size_t dststep[]) const
{
if(!u)
return;
UMatDataAutoLock autolock(u);
if( u->data && !u->hostCopyObsolete() )
{
Mat::getStdAllocator()->download(u, dstptr, dims, sz, srcofs, srcstep, dststep);
return;
}
CV_Assert( u->handle != 0 );
cl_command_queue q = (cl_command_queue)Queue::getDefault().ptr();
size_t total = 0, new_sz[] = {0, 0, 0};
size_t srcrawofs = 0, new_srcofs[] = {0, 0, 0}, new_srcstep[] = {0, 0, 0};
size_t dstrawofs = 0, new_dstofs[] = {0, 0, 0}, new_dststep[] = {0, 0, 0};
bool iscontinuous = checkContinuous(dims, sz, srcofs, srcstep, 0, dststep,
total, new_sz,
srcrawofs, new_srcofs, new_srcstep,
dstrawofs, new_dstofs, new_dststep);
if( iscontinuous )
{
CV_Assert( clEnqueueReadBuffer(q, (cl_mem)u->handle, CL_TRUE,
srcrawofs, total, dstptr, 0, 0, 0) >= 0 );
}
else
{
CV_Assert( clEnqueueReadBufferRect(q, (cl_mem)u->handle, CL_TRUE,
new_srcofs, new_dstofs, new_sz, new_srcstep[0], new_srcstep[1],
new_dststep[0], new_dststep[1], dstptr, 0, 0, 0) >= 0 );
}
}
void upload(UMatData* u, const void* srcptr, int dims, const size_t sz[],
const size_t dstofs[], const size_t dststep[],
const size_t srcstep[]) const
{
if(!u)
return;
// there should be no user-visible CPU copies of the UMat which we are going to copy to
CV_Assert(u->refcount == 0 || u->tempUMat());
size_t total = 0, new_sz[] = {0, 0, 0};
size_t srcrawofs = 0, new_srcofs[] = {0, 0, 0}, new_srcstep[] = {0, 0, 0};
size_t dstrawofs = 0, new_dstofs[] = {0, 0, 0}, new_dststep[] = {0, 0, 0};
bool iscontinuous = checkContinuous(dims, sz, 0, srcstep, dstofs, dststep,
total, new_sz,
srcrawofs, new_srcofs, new_srcstep,
dstrawofs, new_dstofs, new_dststep);
UMatDataAutoLock autolock(u);
// if there is cached CPU copy of the GPU matrix,
// we could use it as a destination.
// we can do it in 2 cases:
// 1. we overwrite the whole content
// 2. we overwrite part of the matrix, but the GPU copy is out-of-date
if( u->data && (u->hostCopyObsolete() <= u->deviceCopyObsolete() || total == u->size))
{
Mat::getStdAllocator()->upload(u, srcptr, dims, sz, dstofs, dststep, srcstep);
u->markHostCopyObsolete(false);
u->markDeviceCopyObsolete(true);
return;
}
CV_Assert( u->handle != 0 );
cl_command_queue q = (cl_command_queue)Queue::getDefault().ptr();
if( iscontinuous )
{
int crc = 0;
for( size_t i = 0; i < total; i++ )
crc ^= ((uchar*)srcptr)[i];
CV_Assert( clEnqueueWriteBuffer(q, (cl_mem)u->handle,
CL_TRUE, dstrawofs, total, srcptr, 0, 0, 0) >= 0 );
}
else
{
CV_Assert( clEnqueueWriteBufferRect(q, (cl_mem)u->handle, CL_TRUE,
new_dstofs, new_srcofs, new_sz, new_dststep[0], new_dststep[1],
new_srcstep[0], new_srcstep[1], srcptr, 0, 0, 0) >= 0 );
}
u->markHostCopyObsolete(true);
u->markDeviceCopyObsolete(false);
clFinish(q);
}
void copy(UMatData* src, UMatData* dst, int dims, const size_t sz[],
const size_t srcofs[], const size_t srcstep[],
const size_t dstofs[], const size_t dststep[], bool _sync) const
{
if(!src || !dst)
return;
size_t total = 0, new_sz[] = {0, 0, 0};
size_t srcrawofs = 0, new_srcofs[] = {0, 0, 0}, new_srcstep[] = {0, 0, 0};
size_t dstrawofs = 0, new_dstofs[] = {0, 0, 0}, new_dststep[] = {0, 0, 0};
bool iscontinuous = checkContinuous(dims, sz, srcofs, srcstep, dstofs, dststep,
total, new_sz,
srcrawofs, new_srcofs, new_srcstep,
dstrawofs, new_dstofs, new_dststep);
UMatDataAutoLock src_autolock(src);
UMatDataAutoLock dst_autolock(dst);
if( !src->handle || (src->data && src->hostCopyObsolete() <= src->deviceCopyObsolete()) )
{
upload(dst, src->data + srcrawofs, dims, sz, dstofs, dststep, srcstep);
return;
}
if( !dst->handle || (dst->data && dst->hostCopyObsolete() <= dst->deviceCopyObsolete()) )
{
download(src, dst->data + dstrawofs, dims, sz, srcofs, srcstep, dststep);
dst->markHostCopyObsolete(false);
dst->markDeviceCopyObsolete(true);
return;
}
// there should be no user-visible CPU copies of the UMat which we are going to copy to
CV_Assert(dst->refcount == 0);
cl_command_queue q = (cl_command_queue)Queue::getDefault().ptr();
if( iscontinuous )
{
CV_Assert( clEnqueueCopyBuffer(q, (cl_mem)src->handle, (cl_mem)dst->handle,
srcrawofs, dstrawofs, total, 0, 0, 0) >= 0 );
}
else
{
cl_int retval;
CV_Assert( (retval = clEnqueueCopyBufferRect(q, (cl_mem)src->handle, (cl_mem)dst->handle,
new_srcofs, new_dstofs, new_sz,
new_srcstep[0], new_srcstep[1],
new_dststep[0], new_dststep[1],
0, 0, 0)) >= 0 );
}
dst->markHostCopyObsolete(true);
dst->markDeviceCopyObsolete(false);
if( _sync )
clFinish(q);
}
MatAllocator* matStdAllocator;
};
MatAllocator* getOpenCLAllocator()
{
static OpenCLAllocator allocator;
return &allocator;
}
const char* typeToStr(int t)
{
static const char* tab[]=
{
"uchar", "uchar2", "uchar3", "uchar4",
"char", "char2", "char3", "char4",
"ushort", "ushort2", "ushort3", "ushort4",
"short", "short2", "short3", "short4",
"int", "int2", "int3", "int4",
"float", "float2", "float3", "float4",
"double", "double2", "double3", "double4",
"?", "?", "?", "?"
};
int cn = CV_MAT_CN(t);
return cn > 4 ? "?" : tab[CV_MAT_DEPTH(t)*4 + cn-1];
}
const char* memopTypeToStr(int t)
{
static const char* tab[]=
{
"uchar", "uchar2", "uchar3", "uchar4",
"uchar", "uchar2", "uchar3", "uchar4",
"ushort", "ushort2", "ushort3", "ushort4",
"ushort", "ushort2", "ushort3", "ushort4",
"int", "int2", "int3", "int4",
"int", "int2", "int3", "int4",
"int2", "int4", "?", "int8",
"?", "?", "?", "?"
};
int cn = CV_MAT_CN(t);
return cn > 4 ? "?" : tab[CV_MAT_DEPTH(t)*4 + cn-1];
}
const char* convertTypeStr(int sdepth, int ddepth, int cn, char* buf)
{
if( sdepth == ddepth )
return "noconvert";
const char *typestr = typeToStr(CV_MAKETYPE(ddepth, cn));
if( ddepth >= CV_32F ||
(ddepth == CV_32S && sdepth < CV_32S) ||
(ddepth == CV_16S && sdepth <= CV_8S) ||
(ddepth == CV_16U && sdepth == CV_8U))
{
sprintf(buf, "convert_%s", typestr);
}
else if( sdepth >= CV_32F )
{
sprintf(buf, "convert_%s%s_rte", typestr, (ddepth < CV_32S ? "_sat" : ""));
}
else
{
sprintf(buf, "convert_%s_sat", typestr);
}
return buf;
}
}}