mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
422 lines
13 KiB
422 lines
13 KiB
/*M/////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// |
|
// License Agreement |
|
// For Open Source Computer Vision Library |
|
// |
|
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. |
|
// Copyright (C) 2009, Willow Garage Inc., all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
// |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistribution's of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistribution's in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other materials provided with the distribution. |
|
// |
|
// * The name of the copyright holders may not be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors "as is" and |
|
// any express or implied warranties, including, but not limited to, the implied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall the Intel Corporation or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
// |
|
//M*/ |
|
|
|
#include "precomp.hpp" |
|
#include <stdio.h> |
|
|
|
|
|
namespace cv |
|
{ |
|
|
|
static void |
|
calcMinEigenVal( const Mat& _cov, Mat& _dst ) |
|
{ |
|
int i, j; |
|
Size size = _cov.size(); |
|
#if CV_SSE |
|
volatile bool simd = checkHardwareSupport(CV_CPU_SSE); |
|
#endif |
|
|
|
if( _cov.isContinuous() && _dst.isContinuous() ) |
|
{ |
|
size.width *= size.height; |
|
size.height = 1; |
|
} |
|
|
|
for( i = 0; i < size.height; i++ ) |
|
{ |
|
const float* cov = (const float*)(_cov.data + _cov.step*i); |
|
float* dst = (float*)(_dst.data + _dst.step*i); |
|
j = 0; |
|
#if CV_SSE |
|
if( simd ) |
|
{ |
|
__m128 half = _mm_set1_ps(0.5f); |
|
for( ; j <= size.width - 5; j += 4 ) |
|
{ |
|
__m128 t0 = _mm_loadu_ps(cov + j*3); // a0 b0 c0 x |
|
__m128 t1 = _mm_loadu_ps(cov + j*3 + 3); // a1 b1 c1 x |
|
__m128 t2 = _mm_loadu_ps(cov + j*3 + 6); // a2 b2 c2 x |
|
__m128 t3 = _mm_loadu_ps(cov + j*3 + 9); // a3 b3 c3 x |
|
__m128 a, b, c, t; |
|
t = _mm_unpacklo_ps(t0, t1); // a0 a1 b0 b1 |
|
c = _mm_unpackhi_ps(t0, t1); // c0 c1 x x |
|
b = _mm_unpacklo_ps(t2, t3); // a2 a3 b2 b3 |
|
c = _mm_movelh_ps(c, _mm_unpackhi_ps(t2, t3)); // c0 c1 c2 c3 |
|
a = _mm_movelh_ps(t, b); |
|
b = _mm_movehl_ps(b, t); |
|
a = _mm_mul_ps(a, half); |
|
c = _mm_mul_ps(c, half); |
|
t = _mm_sub_ps(a, c); |
|
t = _mm_add_ps(_mm_mul_ps(t, t), _mm_mul_ps(b,b)); |
|
a = _mm_sub_ps(_mm_add_ps(a, c), _mm_sqrt_ps(t)); |
|
_mm_storeu_ps(dst + j, a); |
|
} |
|
} |
|
#endif |
|
for( ; j < size.width; j++ ) |
|
{ |
|
float a = cov[j*3]*0.5f; |
|
float b = cov[j*3+1]; |
|
float c = cov[j*3+2]*0.5f; |
|
dst[j] = (float)((a + c) - std::sqrt((a - c)*(a - c) + b*b)); |
|
} |
|
} |
|
} |
|
|
|
|
|
static void |
|
calcHarris( const Mat& _cov, Mat& _dst, double k ) |
|
{ |
|
int i, j; |
|
Size size = _cov.size(); |
|
#if CV_SSE |
|
volatile bool simd = checkHardwareSupport(CV_CPU_SSE); |
|
#endif |
|
|
|
if( _cov.isContinuous() && _dst.isContinuous() ) |
|
{ |
|
size.width *= size.height; |
|
size.height = 1; |
|
} |
|
|
|
for( i = 0; i < size.height; i++ ) |
|
{ |
|
const float* cov = (const float*)(_cov.data + _cov.step*i); |
|
float* dst = (float*)(_dst.data + _dst.step*i); |
|
j = 0; |
|
|
|
#if CV_SSE |
|
if( simd ) |
|
{ |
|
__m128 k4 = _mm_set1_ps((float)k); |
|
for( ; j <= size.width - 5; j += 4 ) |
|
{ |
|
__m128 t0 = _mm_loadu_ps(cov + j*3); // a0 b0 c0 x |
|
__m128 t1 = _mm_loadu_ps(cov + j*3 + 3); // a1 b1 c1 x |
|
__m128 t2 = _mm_loadu_ps(cov + j*3 + 6); // a2 b2 c2 x |
|
__m128 t3 = _mm_loadu_ps(cov + j*3 + 9); // a3 b3 c3 x |
|
__m128 a, b, c, t; |
|
t = _mm_unpacklo_ps(t0, t1); // a0 a1 b0 b1 |
|
c = _mm_unpackhi_ps(t0, t1); // c0 c1 x x |
|
b = _mm_unpacklo_ps(t2, t3); // a2 a3 b2 b3 |
|
c = _mm_movelh_ps(c, _mm_unpackhi_ps(t2, t3)); // c0 c1 c2 c3 |
|
a = _mm_movelh_ps(t, b); |
|
b = _mm_movehl_ps(b, t); |
|
t = _mm_add_ps(a, c); |
|
a = _mm_sub_ps(_mm_mul_ps(a, c), _mm_mul_ps(b, b)); |
|
t = _mm_mul_ps(_mm_mul_ps(k4, t), t); |
|
a = _mm_sub_ps(a, t); |
|
_mm_storeu_ps(dst + j, a); |
|
} |
|
} |
|
#endif |
|
|
|
for( ; j < size.width; j++ ) |
|
{ |
|
float a = cov[j*3]; |
|
float b = cov[j*3+1]; |
|
float c = cov[j*3+2]; |
|
dst[j] = (float)(a*c - b*b - k*(a + c)*(a + c)); |
|
} |
|
} |
|
} |
|
|
|
|
|
void eigen2x2( const float* cov, float* dst, int n ) |
|
{ |
|
for( int j = 0; j < n; j++ ) |
|
{ |
|
double a = cov[j*3]; |
|
double b = cov[j*3+1]; |
|
double c = cov[j*3+2]; |
|
|
|
double u = (a + c)*0.5; |
|
double v = std::sqrt((a - c)*(a - c)*0.25 + b*b); |
|
double l1 = u + v; |
|
double l2 = u - v; |
|
|
|
double x = b; |
|
double y = l1 - a; |
|
double e = fabs(x); |
|
|
|
if( e + fabs(y) < 1e-4 ) |
|
{ |
|
y = b; |
|
x = l1 - c; |
|
e = fabs(x); |
|
if( e + fabs(y) < 1e-4 ) |
|
{ |
|
e = 1./(e + fabs(y) + FLT_EPSILON); |
|
x *= e, y *= e; |
|
} |
|
} |
|
|
|
double d = 1./std::sqrt(x*x + y*y + DBL_EPSILON); |
|
dst[6*j] = (float)l1; |
|
dst[6*j + 2] = (float)(x*d); |
|
dst[6*j + 3] = (float)(y*d); |
|
|
|
x = b; |
|
y = l2 - a; |
|
e = fabs(x); |
|
|
|
if( e + fabs(y) < 1e-4 ) |
|
{ |
|
y = b; |
|
x = l2 - c; |
|
e = fabs(x); |
|
if( e + fabs(y) < 1e-4 ) |
|
{ |
|
e = 1./(e + fabs(y) + FLT_EPSILON); |
|
x *= e, y *= e; |
|
} |
|
} |
|
|
|
d = 1./std::sqrt(x*x + y*y + DBL_EPSILON); |
|
dst[6*j + 1] = (float)l2; |
|
dst[6*j + 4] = (float)(x*d); |
|
dst[6*j + 5] = (float)(y*d); |
|
} |
|
} |
|
|
|
static void |
|
calcEigenValsVecs( const Mat& _cov, Mat& _dst ) |
|
{ |
|
Size size = _cov.size(); |
|
if( _cov.isContinuous() && _dst.isContinuous() ) |
|
{ |
|
size.width *= size.height; |
|
size.height = 1; |
|
} |
|
|
|
for( int i = 0; i < size.height; i++ ) |
|
{ |
|
const float* cov = (const float*)(_cov.data + _cov.step*i); |
|
float* dst = (float*)(_dst.data + _dst.step*i); |
|
|
|
eigen2x2(cov, dst, size.width); |
|
} |
|
} |
|
|
|
|
|
enum { MINEIGENVAL=0, HARRIS=1, EIGENVALSVECS=2 }; |
|
|
|
|
|
static void |
|
cornerEigenValsVecs( const Mat& src, Mat& eigenv, int block_size, |
|
int aperture_size, int op_type, double k=0., |
|
int borderType=BORDER_DEFAULT ) |
|
{ |
|
#ifdef HAVE_TEGRA_OPTIMIZATION |
|
if (tegra::cornerEigenValsVecs(src, eigenv, block_size, aperture_size, op_type, k, borderType)) |
|
return; |
|
#endif |
|
|
|
int depth = src.depth(); |
|
double scale = (double)(1 << ((aperture_size > 0 ? aperture_size : 3) - 1)) * block_size; |
|
if( aperture_size < 0 ) |
|
scale *= 2.; |
|
if( depth == CV_8U ) |
|
scale *= 255.; |
|
scale = 1./scale; |
|
|
|
CV_Assert( src.type() == CV_8UC1 || src.type() == CV_32FC1 ); |
|
|
|
Mat Dx, Dy; |
|
if( aperture_size > 0 ) |
|
{ |
|
Sobel( src, Dx, CV_32F, 1, 0, aperture_size, scale, 0, borderType ); |
|
Sobel( src, Dy, CV_32F, 0, 1, aperture_size, scale, 0, borderType ); |
|
} |
|
else |
|
{ |
|
Scharr( src, Dx, CV_32F, 1, 0, scale, 0, borderType ); |
|
Scharr( src, Dy, CV_32F, 0, 1, scale, 0, borderType ); |
|
} |
|
|
|
Size size = src.size(); |
|
Mat cov( size, CV_32FC3 ); |
|
int i, j; |
|
|
|
for( i = 0; i < size.height; i++ ) |
|
{ |
|
float* cov_data = (float*)(cov.data + i*cov.step); |
|
const float* dxdata = (const float*)(Dx.data + i*Dx.step); |
|
const float* dydata = (const float*)(Dy.data + i*Dy.step); |
|
|
|
for( j = 0; j < size.width; j++ ) |
|
{ |
|
float dx = dxdata[j]; |
|
float dy = dydata[j]; |
|
|
|
cov_data[j*3] = dx*dx; |
|
cov_data[j*3+1] = dx*dy; |
|
cov_data[j*3+2] = dy*dy; |
|
} |
|
} |
|
|
|
boxFilter(cov, cov, cov.depth(), Size(block_size, block_size), |
|
Point(-1,-1), false, borderType ); |
|
|
|
if( op_type == MINEIGENVAL ) |
|
calcMinEigenVal( cov, eigenv ); |
|
else if( op_type == HARRIS ) |
|
calcHarris( cov, eigenv, k ); |
|
else if( op_type == EIGENVALSVECS ) |
|
calcEigenValsVecs( cov, eigenv ); |
|
} |
|
|
|
} |
|
|
|
void cv::cornerMinEigenVal( InputArray _src, OutputArray _dst, int blockSize, int ksize, int borderType ) |
|
{ |
|
Mat src = _src.getMat(); |
|
_dst.create( src.size(), CV_32F ); |
|
Mat dst = _dst.getMat(); |
|
cornerEigenValsVecs( src, dst, blockSize, ksize, MINEIGENVAL, 0, borderType ); |
|
} |
|
|
|
|
|
void cv::cornerHarris( InputArray _src, OutputArray _dst, int blockSize, int ksize, double k, int borderType ) |
|
{ |
|
Mat src = _src.getMat(); |
|
_dst.create( src.size(), CV_32F ); |
|
Mat dst = _dst.getMat(); |
|
cornerEigenValsVecs( src, dst, blockSize, ksize, HARRIS, k, borderType ); |
|
} |
|
|
|
|
|
void cv::cornerEigenValsAndVecs( InputArray _src, OutputArray _dst, int blockSize, int ksize, int borderType ) |
|
{ |
|
Mat src = _src.getMat(); |
|
Size dsz = _dst.size(); |
|
int dtype = _dst.type(); |
|
|
|
if( dsz.height != src.rows || dsz.width*CV_MAT_CN(dtype) != src.cols*6 || CV_MAT_DEPTH(dtype) != CV_32F ) |
|
_dst.create( src.size(), CV_32FC(6) ); |
|
Mat dst = _dst.getMat(); |
|
cornerEigenValsVecs( src, dst, blockSize, ksize, EIGENVALSVECS, 0, borderType ); |
|
} |
|
|
|
|
|
void cv::preCornerDetect( InputArray _src, OutputArray _dst, int ksize, int borderType ) |
|
{ |
|
Mat Dx, Dy, D2x, D2y, Dxy, src = _src.getMat(); |
|
|
|
CV_Assert( src.type() == CV_8UC1 || src.type() == CV_32FC1 ); |
|
_dst.create( src.size(), CV_32F ); |
|
Mat dst = _dst.getMat(); |
|
|
|
Sobel( src, Dx, CV_32F, 1, 0, ksize, 1, 0, borderType ); |
|
Sobel( src, Dy, CV_32F, 0, 1, ksize, 1, 0, borderType ); |
|
Sobel( src, D2x, CV_32F, 2, 0, ksize, 1, 0, borderType ); |
|
Sobel( src, D2y, CV_32F, 0, 2, ksize, 1, 0, borderType ); |
|
Sobel( src, Dxy, CV_32F, 1, 1, ksize, 1, 0, borderType ); |
|
|
|
double factor = 1 << (ksize - 1); |
|
if( src.depth() == CV_8U ) |
|
factor *= 255; |
|
factor = 1./(factor * factor * factor); |
|
|
|
Size size = src.size(); |
|
int i, j; |
|
for( i = 0; i < size.height; i++ ) |
|
{ |
|
float* dstdata = (float*)(dst.data + i*dst.step); |
|
const float* dxdata = (const float*)(Dx.data + i*Dx.step); |
|
const float* dydata = (const float*)(Dy.data + i*Dy.step); |
|
const float* d2xdata = (const float*)(D2x.data + i*D2x.step); |
|
const float* d2ydata = (const float*)(D2y.data + i*D2y.step); |
|
const float* dxydata = (const float*)(Dxy.data + i*Dxy.step); |
|
|
|
for( j = 0; j < size.width; j++ ) |
|
{ |
|
float dx = dxdata[j]; |
|
float dy = dydata[j]; |
|
dstdata[j] = (float)(factor*(dx*dx*d2ydata[j] + dy*dy*d2xdata[j] - 2*dx*dy*dxydata[j])); |
|
} |
|
} |
|
} |
|
|
|
CV_IMPL void |
|
cvCornerMinEigenVal( const CvArr* srcarr, CvArr* dstarr, |
|
int block_size, int aperture_size ) |
|
{ |
|
cv::Mat src = cv::cvarrToMat(srcarr), dst = cv::cvarrToMat(dstarr); |
|
|
|
CV_Assert( src.size() == dst.size() && dst.type() == CV_32FC1 ); |
|
cv::cornerMinEigenVal( src, dst, block_size, aperture_size, cv::BORDER_REPLICATE ); |
|
} |
|
|
|
CV_IMPL void |
|
cvCornerHarris( const CvArr* srcarr, CvArr* dstarr, |
|
int block_size, int aperture_size, double k ) |
|
{ |
|
cv::Mat src = cv::cvarrToMat(srcarr), dst = cv::cvarrToMat(dstarr); |
|
|
|
CV_Assert( src.size() == dst.size() && dst.type() == CV_32FC1 ); |
|
cv::cornerHarris( src, dst, block_size, aperture_size, k, cv::BORDER_REPLICATE ); |
|
} |
|
|
|
|
|
CV_IMPL void |
|
cvCornerEigenValsAndVecs( const void* srcarr, void* dstarr, |
|
int block_size, int aperture_size ) |
|
{ |
|
cv::Mat src = cv::cvarrToMat(srcarr), dst = cv::cvarrToMat(dstarr); |
|
|
|
CV_Assert( src.rows == dst.rows && src.cols*6 == dst.cols*dst.channels() && dst.depth() == CV_32F ); |
|
cv::cornerEigenValsAndVecs( src, dst, block_size, aperture_size, cv::BORDER_REPLICATE ); |
|
} |
|
|
|
|
|
CV_IMPL void |
|
cvPreCornerDetect( const void* srcarr, void* dstarr, int aperture_size ) |
|
{ |
|
cv::Mat src = cv::cvarrToMat(srcarr), dst = cv::cvarrToMat(dstarr); |
|
|
|
CV_Assert( src.size() == dst.size() && dst.type() == CV_32FC1 ); |
|
cv::preCornerDetect( src, dst, aperture_size, cv::BORDER_REPLICATE ); |
|
} |
|
|
|
/* End of file */
|
|
|