mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
138 lines
5.4 KiB
138 lines
5.4 KiB
/*M/////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// |
|
// License Agreement |
|
// For Open Source Computer Vision Library |
|
// |
|
// Copyright (C) 2013, OpenCV Foundation, all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
// |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistribution's of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistribution's in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other materials provided with the distribution. |
|
// |
|
// * The name of the copyright holders may not be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors "as is" and |
|
// any express or implied warranties, including, but not limited to, the implied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall the Intel Corporation or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
// |
|
// Authors: |
|
// * Peter Andreas Entschev, peter@entschev.com |
|
// |
|
//M*/ |
|
|
|
#include "test_precomp.hpp" |
|
|
|
#ifdef HAVE_OPENCL |
|
|
|
//////////////////////////////////////////////////////// |
|
// ORB |
|
|
|
namespace |
|
{ |
|
IMPLEMENT_PARAM_CLASS(ORB_FeaturesCount, int) |
|
IMPLEMENT_PARAM_CLASS(ORB_ScaleFactor, float) |
|
IMPLEMENT_PARAM_CLASS(ORB_LevelsCount, int) |
|
IMPLEMENT_PARAM_CLASS(ORB_EdgeThreshold, int) |
|
IMPLEMENT_PARAM_CLASS(ORB_firstLevel, int) |
|
IMPLEMENT_PARAM_CLASS(ORB_WTA_K, int) |
|
IMPLEMENT_PARAM_CLASS(ORB_PatchSize, int) |
|
IMPLEMENT_PARAM_CLASS(ORB_BlurForDescriptor, bool) |
|
} |
|
|
|
CV_ENUM(ORB_ScoreType, ORB::HARRIS_SCORE, ORB::FAST_SCORE) |
|
|
|
PARAM_TEST_CASE(ORB, ORB_FeaturesCount, ORB_ScaleFactor, ORB_LevelsCount, ORB_EdgeThreshold, |
|
ORB_firstLevel, ORB_WTA_K, ORB_ScoreType, ORB_PatchSize, ORB_BlurForDescriptor) |
|
{ |
|
int nFeatures; |
|
float scaleFactor; |
|
int nLevels; |
|
int edgeThreshold; |
|
int firstLevel; |
|
int WTA_K; |
|
int scoreType; |
|
int patchSize; |
|
bool blurForDescriptor; |
|
|
|
virtual void SetUp() |
|
{ |
|
nFeatures = GET_PARAM(0); |
|
scaleFactor = GET_PARAM(1); |
|
nLevels = GET_PARAM(2); |
|
edgeThreshold = GET_PARAM(3); |
|
firstLevel = GET_PARAM(4); |
|
WTA_K = GET_PARAM(5); |
|
scoreType = GET_PARAM(6); |
|
patchSize = GET_PARAM(7); |
|
blurForDescriptor = GET_PARAM(8); |
|
} |
|
}; |
|
|
|
OCL_TEST_P(ORB, Accuracy) |
|
{ |
|
cv::Mat image = readImage("gpu/perf/aloe.png", cv::IMREAD_GRAYSCALE); |
|
ASSERT_FALSE(image.empty()); |
|
|
|
cv::Mat mask(image.size(), CV_8UC1, cv::Scalar::all(1)); |
|
mask(cv::Range(0, image.rows / 2), cv::Range(0, image.cols / 2)).setTo(cv::Scalar::all(0)); |
|
|
|
cv::ocl::oclMat ocl_image = cv::ocl::oclMat(image); |
|
cv::ocl::oclMat ocl_mask = cv::ocl::oclMat(mask); |
|
|
|
cv::ocl::ORB_OCL orb(nFeatures, scaleFactor, nLevels, edgeThreshold, firstLevel, WTA_K, scoreType, patchSize); |
|
orb.blurForDescriptor = blurForDescriptor; |
|
|
|
std::vector<cv::KeyPoint> keypoints; |
|
cv::ocl::oclMat descriptors; |
|
orb(ocl_image, ocl_mask, keypoints, descriptors); |
|
|
|
cv::ORB orb_gold(nFeatures, scaleFactor, nLevels, edgeThreshold, firstLevel, WTA_K, scoreType, patchSize); |
|
|
|
std::vector<cv::KeyPoint> keypoints_gold; |
|
cv::Mat descriptors_gold; |
|
orb_gold(image, mask, keypoints_gold, descriptors_gold); |
|
|
|
cv::BFMatcher matcher(cv::NORM_HAMMING); |
|
std::vector<cv::DMatch> matches; |
|
matcher.match(descriptors_gold, cv::Mat(descriptors), matches); |
|
|
|
int matchedCount = getMatchedPointsCount(keypoints_gold, keypoints, matches); |
|
double matchedRatio = static_cast<double>(matchedCount) / keypoints.size(); |
|
|
|
EXPECT_GT(matchedRatio, 0.35); |
|
} |
|
|
|
INSTANTIATE_TEST_CASE_P(OCL_Features2D, ORB, testing::Combine( |
|
testing::Values(ORB_FeaturesCount(1000)), |
|
testing::Values(ORB_ScaleFactor(1.2f)), |
|
testing::Values(ORB_LevelsCount(4), ORB_LevelsCount(8)), |
|
testing::Values(ORB_EdgeThreshold(31)), |
|
testing::Values(ORB_firstLevel(0), ORB_firstLevel(2)), |
|
testing::Values(ORB_WTA_K(2), ORB_WTA_K(3), ORB_WTA_K(4)), |
|
testing::Values(ORB_ScoreType(cv::ORB::HARRIS_SCORE)), |
|
testing::Values(ORB_PatchSize(31), ORB_PatchSize(29)), |
|
testing::Values(ORB_BlurForDescriptor(false), ORB_BlurForDescriptor(true)))); |
|
|
|
#endif
|
|
|