Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
553 lines
19 KiB
553 lines
19 KiB
/*M/////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// |
|
// Intel License Agreement |
|
// For Open Source Computer Vision Library |
|
// |
|
// Copyright (C) 2000, Intel Corporation, all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
// |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistribution's of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistribution's in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other materials provided with the distribution. |
|
// |
|
// * The name of Intel Corporation may not be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors "as is" and |
|
// any express or implied warranties, including, but not limited to, the implied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall the Intel Corporation or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
// |
|
//M*/ |
|
|
|
#include "precomp.hpp" |
|
|
|
/****************************************************************************************\ |
|
The code below is some modification of Stan Birchfield's algorithm described in: |
|
|
|
Depth Discontinuities by Pixel-to-Pixel Stereo |
|
Stan Birchfield and Carlo Tomasi |
|
International Journal of Computer Vision, |
|
35(3): 269-293, December 1999. |
|
|
|
This implementation uses different cost function that results in |
|
O(pixPerRow*maxDisparity) complexity of dynamic programming stage versus |
|
O(pixPerRow*log(pixPerRow)*maxDisparity) in the above paper. |
|
\****************************************************************************************/ |
|
|
|
/****************************************************************************************\ |
|
* Find stereo correspondence by dynamic programming algorithm * |
|
\****************************************************************************************/ |
|
#define ICV_DP_STEP_LEFT 0 |
|
#define ICV_DP_STEP_UP 1 |
|
#define ICV_DP_STEP_DIAG 2 |
|
|
|
#define ICV_BIRCH_DIFF_LUM 5 |
|
|
|
#define ICV_MAX_DP_SUM_VAL (INT_MAX/4) |
|
|
|
typedef struct _CvDPCell |
|
{ |
|
uchar step; //local-optimal step |
|
int sum; //current sum |
|
}_CvDPCell; |
|
|
|
typedef struct _CvRightImData |
|
{ |
|
uchar min_val, max_val; |
|
} _CvRightImData; |
|
|
|
#define CV_IMAX3(a,b,c) (std::max(std::max((a), (b)), (c))) |
|
#define CV_IMIN3(a,b,c) (std::min(std::min((a), (b)), (c))) |
|
|
|
static void icvFindStereoCorrespondenceByBirchfieldDP( uchar* src1, uchar* src2, |
|
uchar* disparities, |
|
CvSize size, int widthStep, |
|
int maxDisparity, |
|
float _param1, float _param2, |
|
float _param3, float _param4, |
|
float _param5 ) |
|
{ |
|
int x, y, i, j; |
|
int d, s; |
|
int dispH = maxDisparity + 3; |
|
uchar *dispdata; |
|
int imgW = size.width; |
|
int imgH = size.height; |
|
uchar val, prevval, prev, curr; |
|
int min_val; |
|
uchar* dest = disparities; |
|
int param1 = cvRound(_param1); |
|
int param2 = cvRound(_param2); |
|
int param3 = cvRound(_param3); |
|
int param4 = cvRound(_param4); |
|
int param5 = cvRound(_param5); |
|
|
|
#define CELL(d,x) cells[(d)+(x)*dispH] |
|
|
|
uchar* dsi = (uchar*)cvAlloc(sizeof(uchar)*imgW*dispH); |
|
uchar* edges = (uchar*)cvAlloc(sizeof(uchar)*imgW*imgH); |
|
_CvDPCell* cells = (_CvDPCell*)cvAlloc(sizeof(_CvDPCell)*imgW*MAX(dispH,(imgH+1)/2)); |
|
_CvRightImData* rData = (_CvRightImData*)cvAlloc(sizeof(_CvRightImData)*imgW); |
|
int* reliabilities = (int*)cells; |
|
|
|
for( y = 0; y < imgH; y++ ) |
|
{ |
|
uchar* srcdata1 = src1 + widthStep * y; |
|
uchar* srcdata2 = src2 + widthStep * y; |
|
|
|
//init rData |
|
prevval = prev = srcdata2[0]; |
|
for( j = 1; j < imgW; j++ ) |
|
{ |
|
curr = srcdata2[j]; |
|
val = (uchar)((curr + prev)>>1); |
|
rData[j-1].max_val = (uchar)CV_IMAX3( val, prevval, prev ); |
|
rData[j-1].min_val = (uchar)CV_IMIN3( val, prevval, prev ); |
|
prevval = val; |
|
prev = curr; |
|
} |
|
rData[j-1] = rData[j-2];//last elem |
|
|
|
// fill dissimularity space image |
|
for( i = 1; i <= maxDisparity + 1; i++ ) |
|
{ |
|
dsi += imgW; |
|
rData--; |
|
for( j = i - 1; j < imgW - 1; j++ ) |
|
{ |
|
int t; |
|
if( (t = srcdata1[j] - rData[j+1].max_val) >= 0 ) |
|
{ |
|
dsi[j] = (uchar)t; |
|
} |
|
else if( (t = rData[j+1].min_val - srcdata1[j]) >= 0 ) |
|
{ |
|
dsi[j] = (uchar)t; |
|
} |
|
else |
|
{ |
|
dsi[j] = 0; |
|
} |
|
} |
|
} |
|
dsi -= (maxDisparity+1)*imgW; |
|
rData += maxDisparity+1; |
|
|
|
//intensity gradients image construction |
|
//left row |
|
edges[y*imgW] = edges[y*imgW+1] = edges[y*imgW+2] = 2; |
|
edges[y*imgW+imgW-1] = edges[y*imgW+imgW-2] = edges[y*imgW+imgW-3] = 1; |
|
for( j = 3; j < imgW-4; j++ ) |
|
{ |
|
edges[y*imgW+j] = 0; |
|
|
|
if( ( CV_IMAX3( srcdata1[j-3], srcdata1[j-2], srcdata1[j-1] ) - |
|
CV_IMIN3( srcdata1[j-3], srcdata1[j-2], srcdata1[j-1] ) ) >= ICV_BIRCH_DIFF_LUM ) |
|
{ |
|
edges[y*imgW+j] |= 1; |
|
} |
|
if( ( CV_IMAX3( srcdata2[j+3], srcdata2[j+2], srcdata2[j+1] ) - |
|
CV_IMIN3( srcdata2[j+3], srcdata2[j+2], srcdata2[j+1] ) ) >= ICV_BIRCH_DIFF_LUM ) |
|
{ |
|
edges[y*imgW+j] |= 2; |
|
} |
|
} |
|
|
|
//find correspondence using dynamical programming |
|
//init DP table |
|
for( x = 0; x < imgW; x++ ) |
|
{ |
|
CELL(0,x).sum = CELL(dispH-1,x).sum = ICV_MAX_DP_SUM_VAL; |
|
CELL(0,x).step = CELL(dispH-1,x).step = ICV_DP_STEP_LEFT; |
|
} |
|
for( d = 2; d < dispH; d++ ) |
|
{ |
|
CELL(d,d-2).sum = ICV_MAX_DP_SUM_VAL; |
|
CELL(d,d-2).step = ICV_DP_STEP_UP; |
|
} |
|
CELL(1,0).sum = 0; |
|
CELL(1,0).step = ICV_DP_STEP_LEFT; |
|
|
|
for( x = 1; x < imgW; x++ ) |
|
{ |
|
int dp = MIN( x + 1, maxDisparity + 1); |
|
uchar* _edges = edges + y*imgW + x; |
|
int e0 = _edges[0] & 1; |
|
_CvDPCell* _cell = cells + x*dispH; |
|
|
|
do |
|
{ |
|
int _s = dsi[dp*imgW+x]; |
|
int sum[3]; |
|
|
|
//check left step |
|
sum[0] = _cell[dp-dispH].sum - param2; |
|
|
|
//check up step |
|
if( _cell[dp+1].step != ICV_DP_STEP_DIAG && e0 ) |
|
{ |
|
sum[1] = _cell[dp+1].sum + param1; |
|
|
|
if( _cell[dp-1-dispH].step != ICV_DP_STEP_UP && (_edges[1-dp] & 2) ) |
|
{ |
|
int t; |
|
|
|
sum[2] = _cell[dp-1-dispH].sum + param1; |
|
|
|
t = sum[1] < sum[0]; |
|
|
|
//choose local-optimal pass |
|
if( sum[t] <= sum[2] ) |
|
{ |
|
_cell[dp].step = (uchar)t; |
|
_cell[dp].sum = sum[t] + _s; |
|
} |
|
else |
|
{ |
|
_cell[dp].step = ICV_DP_STEP_DIAG; |
|
_cell[dp].sum = sum[2] + _s; |
|
} |
|
} |
|
else |
|
{ |
|
if( sum[0] <= sum[1] ) |
|
{ |
|
_cell[dp].step = ICV_DP_STEP_LEFT; |
|
_cell[dp].sum = sum[0] + _s; |
|
} |
|
else |
|
{ |
|
_cell[dp].step = ICV_DP_STEP_UP; |
|
_cell[dp].sum = sum[1] + _s; |
|
} |
|
} |
|
} |
|
else if( _cell[dp-1-dispH].step != ICV_DP_STEP_UP && (_edges[1-dp] & 2) ) |
|
{ |
|
sum[2] = _cell[dp-1-dispH].sum + param1; |
|
if( sum[0] <= sum[2] ) |
|
{ |
|
_cell[dp].step = ICV_DP_STEP_LEFT; |
|
_cell[dp].sum = sum[0] + _s; |
|
} |
|
else |
|
{ |
|
_cell[dp].step = ICV_DP_STEP_DIAG; |
|
_cell[dp].sum = sum[2] + _s; |
|
} |
|
} |
|
else |
|
{ |
|
_cell[dp].step = ICV_DP_STEP_LEFT; |
|
_cell[dp].sum = sum[0] + _s; |
|
} |
|
} |
|
while( --dp ); |
|
}// for x |
|
|
|
//extract optimal way and fill disparity image |
|
dispdata = dest + widthStep * y; |
|
|
|
//find min_val |
|
min_val = ICV_MAX_DP_SUM_VAL; |
|
for( i = 1; i <= maxDisparity + 1; i++ ) |
|
{ |
|
if( min_val > CELL(i,imgW-1).sum ) |
|
{ |
|
d = i; |
|
min_val = CELL(i,imgW-1).sum; |
|
} |
|
} |
|
|
|
//track optimal pass |
|
for( x = imgW - 1; x > 0; x-- ) |
|
{ |
|
dispdata[x] = (uchar)(d - 1); |
|
while( CELL(d,x).step == ICV_DP_STEP_UP ) d++; |
|
if ( CELL(d,x).step == ICV_DP_STEP_DIAG ) |
|
{ |
|
s = x; |
|
while( CELL(d,x).step == ICV_DP_STEP_DIAG ) |
|
{ |
|
d--; |
|
x--; |
|
} |
|
for( i = x; i < s; i++ ) |
|
{ |
|
dispdata[i] = (uchar)(d-1); |
|
} |
|
} |
|
}//for x |
|
}// for y |
|
|
|
//Postprocessing the Disparity Map |
|
|
|
//remove obvious errors in the disparity map |
|
for( x = 0; x < imgW; x++ ) |
|
{ |
|
for( y = 1; y < imgH - 1; y++ ) |
|
{ |
|
if( dest[(y-1)*widthStep+x] == dest[(y+1)*widthStep+x] ) |
|
{ |
|
dest[y*widthStep+x] = dest[(y-1)*widthStep+x]; |
|
} |
|
} |
|
} |
|
|
|
//compute intensity Y-gradients |
|
for( x = 0; x < imgW; x++ ) |
|
{ |
|
for( y = 1; y < imgH - 1; y++ ) |
|
{ |
|
if( ( CV_IMAX3( src1[(y-1)*widthStep+x], src1[y*widthStep+x], |
|
src1[(y+1)*widthStep+x] ) - |
|
CV_IMIN3( src1[(y-1)*widthStep+x], src1[y*widthStep+x], |
|
src1[(y+1)*widthStep+x] ) ) >= ICV_BIRCH_DIFF_LUM ) |
|
{ |
|
edges[y*imgW+x] |= 4; |
|
edges[(y+1)*imgW+x] |= 4; |
|
edges[(y-1)*imgW+x] |= 4; |
|
y++; |
|
} |
|
} |
|
} |
|
|
|
//remove along any particular row, every gradient |
|
//for which two adjacent columns do not agree. |
|
for( y = 0; y < imgH; y++ ) |
|
{ |
|
prev = edges[y*imgW]; |
|
for( x = 1; x < imgW - 1; x++ ) |
|
{ |
|
curr = edges[y*imgW+x]; |
|
if( (curr & 4) && |
|
( !( prev & 4 ) || |
|
!( edges[y*imgW+x+1] & 4 ) ) ) |
|
{ |
|
edges[y*imgW+x] -= 4; |
|
} |
|
prev = curr; |
|
} |
|
} |
|
|
|
// define reliability |
|
for( x = 0; x < imgW; x++ ) |
|
{ |
|
for( y = 1; y < imgH; y++ ) |
|
{ |
|
i = y - 1; |
|
for( ; y < imgH && dest[y*widthStep+x] == dest[(y-1)*widthStep+x]; y++ ) |
|
; |
|
s = y - i; |
|
for( ; i < y; i++ ) |
|
{ |
|
reliabilities[i*imgW+x] = s; |
|
} |
|
} |
|
} |
|
|
|
//Y - propagate reliable regions |
|
for( x = 0; x < imgW; x++ ) |
|
{ |
|
for( y = 0; y < imgH; y++ ) |
|
{ |
|
d = dest[y*widthStep+x]; |
|
if( reliabilities[y*imgW+x] >= param4 && !(edges[y*imgW+x] & 4) && |
|
d > 0 )//highly || moderately |
|
{ |
|
disparities[y*widthStep+x] = (uchar)d; |
|
//up propagation |
|
for( i = y - 1; i >= 0; i-- ) |
|
{ |
|
if( ( edges[i*imgW+x] & 4 ) || |
|
( dest[i*widthStep+x] < d && |
|
reliabilities[i*imgW+x] >= param3 ) || |
|
( reliabilities[y*imgW+x] < param5 && |
|
dest[i*widthStep+x] - 1 == d ) ) break; |
|
|
|
disparities[i*widthStep+x] = (uchar)d; |
|
} |
|
|
|
//down propagation |
|
for( i = y + 1; i < imgH; i++ ) |
|
{ |
|
if( ( edges[i*imgW+x] & 4 ) || |
|
( dest[i*widthStep+x] < d && |
|
reliabilities[i*imgW+x] >= param3 ) || |
|
( reliabilities[y*imgW+x] < param5 && |
|
dest[i*widthStep+x] - 1 == d ) ) break; |
|
|
|
disparities[i*widthStep+x] = (uchar)d; |
|
} |
|
y = i - 1; |
|
} |
|
else |
|
{ |
|
disparities[y*widthStep+x] = (uchar)d; |
|
} |
|
} |
|
} |
|
|
|
// define reliability along X |
|
for( y = 0; y < imgH; y++ ) |
|
{ |
|
for( x = 1; x < imgW; x++ ) |
|
{ |
|
i = x - 1; |
|
for( ; x < imgW && dest[y*widthStep+x] == dest[y*widthStep+x-1]; x++ ) {} |
|
s = x - i; |
|
for( ; i < x; i++ ) |
|
{ |
|
reliabilities[y*imgW+i] = s; |
|
} |
|
} |
|
} |
|
|
|
//X - propagate reliable regions |
|
for( y = 0; y < imgH; y++ ) |
|
{ |
|
for( x = 0; x < imgW; x++ ) |
|
{ |
|
d = dest[y*widthStep+x]; |
|
if( reliabilities[y*imgW+x] >= param4 && !(edges[y*imgW+x] & 1) && |
|
d > 0 )//highly || moderately |
|
{ |
|
disparities[y*widthStep+x] = (uchar)d; |
|
//up propagation |
|
for( i = x - 1; i >= 0; i-- ) |
|
{ |
|
if( (edges[y*imgW+i] & 1) || |
|
( dest[y*widthStep+i] < d && |
|
reliabilities[y*imgW+i] >= param3 ) || |
|
( reliabilities[y*imgW+x] < param5 && |
|
dest[y*widthStep+i] - 1 == d ) ) break; |
|
|
|
disparities[y*widthStep+i] = (uchar)d; |
|
} |
|
|
|
//down propagation |
|
for( i = x + 1; i < imgW; i++ ) |
|
{ |
|
if( (edges[y*imgW+i] & 1) || |
|
( dest[y*widthStep+i] < d && |
|
reliabilities[y*imgW+i] >= param3 ) || |
|
( reliabilities[y*imgW+x] < param5 && |
|
dest[y*widthStep+i] - 1 == d ) ) break; |
|
|
|
disparities[y*widthStep+i] = (uchar)d; |
|
} |
|
x = i - 1; |
|
} |
|
else |
|
{ |
|
disparities[y*widthStep+x] = (uchar)d; |
|
} |
|
} |
|
} |
|
|
|
//release resources |
|
cvFree( &dsi ); |
|
cvFree( &edges ); |
|
cvFree( &cells ); |
|
cvFree( &rData ); |
|
} |
|
|
|
|
|
/*F/////////////////////////////////////////////////////////////////////////// |
|
// |
|
// Name: cvFindStereoCorrespondence |
|
// Purpose: find stereo correspondence on stereo-pair |
|
// Context: |
|
// Parameters: |
|
// leftImage - left image of stereo-pair (format 8uC1). |
|
// rightImage - right image of stereo-pair (format 8uC1). |
|
// mode -mode of correspondance retrieval (now CV_RETR_DP_BIRCHFIELD only) |
|
// dispImage - destination disparity image |
|
// maxDisparity - maximal disparity |
|
// param1, param2, param3, param4, param5 - parameters of algorithm |
|
// Returns: |
|
// Notes: |
|
// Images must be rectified. |
|
// All images must have format 8uC1. |
|
//F*/ |
|
CV_IMPL void |
|
cvFindStereoCorrespondence( |
|
const CvArr* leftImage, const CvArr* rightImage, |
|
int mode, |
|
CvArr* depthImage, |
|
int maxDisparity, |
|
double param1, double param2, double param3, |
|
double param4, double param5 ) |
|
{ |
|
CV_FUNCNAME( "cvFindStereoCorrespondence" ); |
|
|
|
__BEGIN__; |
|
|
|
CvMat *src1, *src2; |
|
CvMat *dst; |
|
CvMat src1_stub, src2_stub, dst_stub; |
|
int coi; |
|
|
|
CV_CALL( src1 = cvGetMat( leftImage, &src1_stub, &coi )); |
|
if( coi ) CV_ERROR( CV_BadCOI, "COI is not supported by the function" ); |
|
CV_CALL( src2 = cvGetMat( rightImage, &src2_stub, &coi )); |
|
if( coi ) CV_ERROR( CV_BadCOI, "COI is not supported by the function" ); |
|
CV_CALL( dst = cvGetMat( depthImage, &dst_stub, &coi )); |
|
if( coi ) CV_ERROR( CV_BadCOI, "COI is not supported by the function" ); |
|
|
|
// check args |
|
if( CV_MAT_TYPE( src1->type ) != CV_8UC1 || |
|
CV_MAT_TYPE( src2->type ) != CV_8UC1 || |
|
CV_MAT_TYPE( dst->type ) != CV_8UC1) CV_ERROR(CV_StsUnsupportedFormat, |
|
"All images must be single-channel and have 8u" ); |
|
|
|
if( !CV_ARE_SIZES_EQ( src1, src2 ) || !CV_ARE_SIZES_EQ( src1, dst ) ) |
|
CV_ERROR( CV_StsUnmatchedSizes, "" ); |
|
|
|
if( maxDisparity <= 0 || maxDisparity >= src1->width || maxDisparity > 255 ) |
|
CV_ERROR(CV_StsOutOfRange, |
|
"parameter /maxDisparity/ is out of range"); |
|
|
|
if( mode == CV_DISPARITY_BIRCHFIELD ) |
|
{ |
|
if( param1 == CV_UNDEF_SC_PARAM ) param1 = CV_IDP_BIRCHFIELD_PARAM1; |
|
if( param2 == CV_UNDEF_SC_PARAM ) param2 = CV_IDP_BIRCHFIELD_PARAM2; |
|
if( param3 == CV_UNDEF_SC_PARAM ) param3 = CV_IDP_BIRCHFIELD_PARAM3; |
|
if( param4 == CV_UNDEF_SC_PARAM ) param4 = CV_IDP_BIRCHFIELD_PARAM4; |
|
if( param5 == CV_UNDEF_SC_PARAM ) param5 = CV_IDP_BIRCHFIELD_PARAM5; |
|
|
|
CV_CALL( icvFindStereoCorrespondenceByBirchfieldDP( src1->data.ptr, |
|
src2->data.ptr, dst->data.ptr, |
|
cvGetMatSize( src1 ), src1->step, |
|
maxDisparity, (float)param1, (float)param2, (float)param3, |
|
(float)param4, (float)param5 ) ); |
|
} |
|
else |
|
{ |
|
CV_ERROR( CV_StsBadArg, "Unsupported mode of function" ); |
|
} |
|
|
|
__END__; |
|
} |
|
|
|
/* End of file. */
|
|
|