mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
320 lines
12 KiB
320 lines
12 KiB
/*M/////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// |
|
// Intel License Agreement |
|
// For Open Source Computer Vision Library |
|
// |
|
// Copyright (C) 2000, Intel Corporation, all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
// |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistribution's of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistribution's in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other materials provided with the distribution. |
|
// |
|
// * The name of Intel Corporation may not be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors "as is" and |
|
// any express or implied warranties, including, but not limited to, the implied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall the Intel Corporation or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
// |
|
//M*/ |
|
|
|
#include "test_precomp.hpp" |
|
|
|
using namespace cv; |
|
using namespace std; |
|
|
|
template <typename T, typename compute> |
|
class ShapeBaseTest : public cvtest::BaseTest |
|
{ |
|
public: |
|
typedef Point_<T> PointType; |
|
ShapeBaseTest(int _NSN, int _NP, float _CURRENT_MAX_ACCUR) |
|
: NSN(_NSN), NP(_NP), CURRENT_MAX_ACCUR(_CURRENT_MAX_ACCUR) |
|
{ |
|
// generate file list |
|
vector<string> shapeNames; |
|
shapeNames.push_back("apple"); //ok |
|
shapeNames.push_back("children"); // ok |
|
shapeNames.push_back("device7"); // ok |
|
shapeNames.push_back("Heart"); // ok |
|
shapeNames.push_back("teddy"); // ok |
|
for (vector<string>::const_iterator i = shapeNames.begin(); i != shapeNames.end(); ++i) |
|
{ |
|
for (int j = 0; j < NSN; ++j) |
|
{ |
|
stringstream filename; |
|
filename << cvtest::TS::ptr()->get_data_path() |
|
<< "shape/mpeg_test/" << *i << "-" << j + 1 << ".png"; |
|
filenames.push_back(filename.str()); |
|
} |
|
} |
|
// distance matrix |
|
const int totalCount = (int)filenames.size(); |
|
distanceMat = Mat::zeros(totalCount, totalCount, CV_32F); |
|
} |
|
|
|
protected: |
|
void run(int) |
|
{ |
|
mpegTest(); |
|
displayMPEGResults(); |
|
} |
|
|
|
vector<PointType> convertContourType(const Mat& currentQuery) const |
|
{ |
|
vector<vector<Point> > _contoursQuery; |
|
findContours(currentQuery, _contoursQuery, RETR_LIST, CHAIN_APPROX_NONE); |
|
|
|
vector <PointType> contoursQuery; |
|
for (size_t border=0; border<_contoursQuery.size(); border++) |
|
{ |
|
for (size_t p=0; p<_contoursQuery[border].size(); p++) |
|
{ |
|
contoursQuery.push_back(PointType((T)_contoursQuery[border][p].x, |
|
(T)_contoursQuery[border][p].y)); |
|
} |
|
} |
|
|
|
// In case actual number of points is less than n |
|
for (int add=(int)contoursQuery.size()-1; add<NP; add++) |
|
{ |
|
contoursQuery.push_back(contoursQuery[contoursQuery.size()-add+1]); //adding dummy values |
|
} |
|
|
|
// Uniformly sampling |
|
random_shuffle(contoursQuery.begin(), contoursQuery.end()); |
|
int nStart=NP; |
|
vector<PointType> cont; |
|
for (int i=0; i<nStart; i++) |
|
{ |
|
cont.push_back(contoursQuery[i]); |
|
} |
|
return cont; |
|
} |
|
|
|
void mpegTest() |
|
{ |
|
// query contours (normal v flipped, h flipped) and testing contour |
|
vector<PointType> contoursQuery1, contoursQuery2, contoursQuery3, contoursTesting; |
|
// reading query and computing its properties |
|
for (vector<string>::const_iterator a = filenames.begin(); a != filenames.end(); ++a) |
|
{ |
|
// read current image |
|
int aIndex = (int)(a - filenames.begin()); |
|
Mat currentQuery = imread(*a, IMREAD_GRAYSCALE); |
|
Mat flippedHQuery, flippedVQuery; |
|
flip(currentQuery, flippedHQuery, 0); |
|
flip(currentQuery, flippedVQuery, 1); |
|
// compute border of the query and its flipped versions |
|
contoursQuery1=convertContourType(currentQuery); |
|
contoursQuery2=convertContourType(flippedHQuery); |
|
contoursQuery3=convertContourType(flippedVQuery); |
|
// compare with all the rest of the images: testing |
|
for (vector<string>::const_iterator b = filenames.begin(); b != filenames.end(); ++b) |
|
{ |
|
int bIndex = (int)(b - filenames.begin()); |
|
float distance = 0; |
|
// skip self-comparisson |
|
if (a != b) |
|
{ |
|
// read testing image |
|
Mat currentTest = imread(*b, IMREAD_GRAYSCALE); |
|
// compute border of the testing |
|
contoursTesting=convertContourType(currentTest); |
|
// compute shape distance |
|
distance = cmp(contoursQuery1, contoursQuery2, |
|
contoursQuery3, contoursTesting); |
|
} |
|
distanceMat.at<float>(aIndex, bIndex) = distance; |
|
} |
|
} |
|
} |
|
|
|
void displayMPEGResults() |
|
{ |
|
const int FIRST_MANY=2*NSN; |
|
|
|
int corrects=0; |
|
int divi=0; |
|
for (int row=0; row<distanceMat.rows; row++) |
|
{ |
|
if (row%NSN==0) //another group |
|
{ |
|
divi+=NSN; |
|
} |
|
for (int col=divi-NSN; col<divi; col++) |
|
{ |
|
int nsmall=0; |
|
for (int i=0; i<distanceMat.cols; i++) |
|
{ |
|
if (distanceMat.at<float>(row,col) > distanceMat.at<float>(row,i)) |
|
{ |
|
nsmall++; |
|
} |
|
} |
|
if (nsmall<=FIRST_MANY) |
|
{ |
|
corrects++; |
|
} |
|
} |
|
} |
|
float porc = 100*float(corrects)/(NSN*distanceMat.rows); |
|
std::cout << "Test result: " << porc << "%" << std::endl; |
|
if (porc >= CURRENT_MAX_ACCUR) |
|
ts->set_failed_test_info(cvtest::TS::OK); |
|
else |
|
ts->set_failed_test_info(cvtest::TS::FAIL_BAD_ACCURACY); |
|
} |
|
|
|
protected: |
|
int NSN; |
|
int NP; |
|
float CURRENT_MAX_ACCUR; |
|
vector<string> filenames; |
|
Mat distanceMat; |
|
compute cmp; |
|
}; |
|
|
|
//------------------------------------------------------------------------ |
|
// Test Shape_SCD.regression |
|
//------------------------------------------------------------------------ |
|
|
|
class computeShapeDistance_Chi |
|
{ |
|
Ptr <ShapeContextDistanceExtractor> mysc; |
|
public: |
|
computeShapeDistance_Chi() |
|
{ |
|
const int angularBins=12; |
|
const int radialBins=4; |
|
const float minRad=0.2f; |
|
const float maxRad=2; |
|
mysc = createShapeContextDistanceExtractor(angularBins, radialBins, minRad, maxRad); |
|
mysc->setIterations(1); |
|
mysc->setCostExtractor(createChiHistogramCostExtractor(30,0.15f)); |
|
mysc->setTransformAlgorithm( createThinPlateSplineShapeTransformer() ); |
|
} |
|
float operator()(vector <Point2f>& query1, vector <Point2f>& query2, |
|
vector <Point2f>& query3, vector <Point2f>& testq) |
|
{ |
|
return std::min(mysc->computeDistance(query1, testq), |
|
std::min(mysc->computeDistance(query2, testq), |
|
mysc->computeDistance(query3, testq))); |
|
} |
|
}; |
|
|
|
TEST(Shape_SCD, regression) |
|
{ |
|
const int NSN_val=5;//10;//20; //number of shapes per class |
|
const int NP_val=120; //number of points simplifying the contour |
|
const float CURRENT_MAX_ACCUR_val=95; //99% and 100% reached in several tests, 95 is fixed as minimum boundary |
|
ShapeBaseTest<float, computeShapeDistance_Chi> test(NSN_val, NP_val, CURRENT_MAX_ACCUR_val); |
|
test.safe_run(); |
|
} |
|
|
|
//------------------------------------------------------------------------ |
|
// Test ShapeEMD_SCD.regression |
|
//------------------------------------------------------------------------ |
|
|
|
class computeShapeDistance_EMD |
|
{ |
|
Ptr <ShapeContextDistanceExtractor> mysc; |
|
public: |
|
computeShapeDistance_EMD() |
|
{ |
|
const int angularBins=12; |
|
const int radialBins=4; |
|
const float minRad=0.2f; |
|
const float maxRad=2; |
|
mysc = createShapeContextDistanceExtractor(angularBins, radialBins, minRad, maxRad); |
|
mysc->setIterations(1); |
|
mysc->setCostExtractor( createEMDL1HistogramCostExtractor() ); |
|
mysc->setTransformAlgorithm( createThinPlateSplineShapeTransformer() ); |
|
} |
|
float operator()(vector <Point2f>& query1, vector <Point2f>& query2, |
|
vector <Point2f>& query3, vector <Point2f>& testq) |
|
{ |
|
return std::min(mysc->computeDistance(query1, testq), |
|
std::min(mysc->computeDistance(query2, testq), |
|
mysc->computeDistance(query3, testq))); |
|
} |
|
}; |
|
|
|
TEST(ShapeEMD_SCD, regression) |
|
{ |
|
const int NSN_val=5;//10;//20; //number of shapes per class |
|
const int NP_val=100; //number of points simplifying the contour |
|
const float CURRENT_MAX_ACCUR_val=95; //98% and 99% reached in several tests, 95 is fixed as minimum boundary |
|
ShapeBaseTest<float, computeShapeDistance_EMD> test(NSN_val, NP_val, CURRENT_MAX_ACCUR_val); |
|
test.safe_run(); |
|
} |
|
|
|
//------------------------------------------------------------------------ |
|
// Test Hauss.regression |
|
//------------------------------------------------------------------------ |
|
|
|
class computeShapeDistance_Haussdorf |
|
{ |
|
Ptr <HausdorffDistanceExtractor> haus; |
|
public: |
|
computeShapeDistance_Haussdorf() |
|
{ |
|
haus = createHausdorffDistanceExtractor(); |
|
} |
|
float operator()(vector<Point> &query1, vector<Point> &query2, |
|
vector<Point> &query3, vector<Point> &testq) |
|
{ |
|
return std::min(haus->computeDistance(query1,testq), |
|
std::min(haus->computeDistance(query2,testq), |
|
haus->computeDistance(query3,testq))); |
|
} |
|
}; |
|
|
|
TEST(Hauss, regression) |
|
{ |
|
const int NSN_val=5;//10;//20; //number of shapes per class |
|
const int NP_val = 180; //number of points simplifying the contour |
|
const float CURRENT_MAX_ACCUR_val=85; //90% and 91% reached in several tests, 85 is fixed as minimum boundary |
|
ShapeBaseTest<int, computeShapeDistance_Haussdorf> test(NSN_val, NP_val, CURRENT_MAX_ACCUR_val); |
|
test.safe_run(); |
|
} |
|
|
|
TEST(computeDistance, regression_4976) |
|
{ |
|
Mat a = imread(cvtest::findDataFile("shape/samples/1.png"), 0); |
|
Mat b = imread(cvtest::findDataFile("shape/samples/2.png"), 0); |
|
|
|
vector<vector<Point> > ca,cb; |
|
findContours(a, ca, cv::RETR_CCOMP, cv::CHAIN_APPROX_TC89_KCOS); |
|
findContours(b, cb, cv::RETR_CCOMP, cv::CHAIN_APPROX_TC89_KCOS); |
|
|
|
Ptr<HausdorffDistanceExtractor> hd = createHausdorffDistanceExtractor(); |
|
Ptr<ShapeContextDistanceExtractor> sd = createShapeContextDistanceExtractor(); |
|
|
|
double d1 = hd->computeDistance(ca[0],cb[0]); |
|
double d2 = sd->computeDistance(ca[0],cb[0]); |
|
|
|
EXPECT_NEAR(d1, 26.4196891785, 1e-3) << "HausdorffDistanceExtractor"; |
|
EXPECT_NEAR(d2, 0.25804194808, 1e-3) << "ShapeContextDistanceExtractor"; |
|
}
|
|
|