mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
181 lines
5.9 KiB
181 lines
5.9 KiB
/*M/////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// |
|
// Intel License Agreement |
|
// |
|
// Copyright (C) 2000, Intel Corporation, all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
// |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistribution's of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistribution's in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other materials provided with the distribution. |
|
// |
|
// * The name of Intel Corporation may not be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors "as is" and |
|
// any express or implied warranties, including, but not limited to, the implied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall the Intel Corporation or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
// |
|
//M*/ |
|
|
|
#include "precomp.hpp" |
|
|
|
namespace cv { namespace ml { |
|
|
|
ParamGrid::ParamGrid() { minVal = maxVal = 0.; logStep = 1; } |
|
ParamGrid::ParamGrid(double _minVal, double _maxVal, double _logStep) |
|
{ |
|
minVal = std::min(_minVal, _maxVal); |
|
maxVal = std::max(_minVal, _maxVal); |
|
logStep = std::max(_logStep, 1.); |
|
} |
|
|
|
bool StatModel::empty() const { return !isTrained(); } |
|
|
|
int StatModel::getVarCount() const { return 0; } |
|
|
|
bool StatModel::train( const Ptr<TrainData>&, int ) |
|
{ |
|
CV_Error(CV_StsNotImplemented, ""); |
|
return false; |
|
} |
|
|
|
bool StatModel::train( InputArray samples, int layout, InputArray responses ) |
|
{ |
|
return train(TrainData::create(samples, layout, responses)); |
|
} |
|
|
|
float StatModel::calcError( const Ptr<TrainData>& data, bool testerr, OutputArray _resp ) const |
|
{ |
|
Mat samples = data->getSamples(); |
|
int layout = data->getLayout(); |
|
Mat sidx = testerr ? data->getTestSampleIdx() : data->getTrainSampleIdx(); |
|
const int* sidx_ptr = sidx.ptr<int>(); |
|
int i, n = (int)sidx.total(); |
|
bool isclassifier = isClassifier(); |
|
Mat responses = data->getResponses(); |
|
|
|
if( n == 0 ) |
|
n = data->getNSamples(); |
|
|
|
if( n == 0 ) |
|
return -FLT_MAX; |
|
|
|
Mat resp; |
|
if( _resp.needed() ) |
|
resp.create(n, 1, CV_32F); |
|
|
|
double err = 0; |
|
for( i = 0; i < n; i++ ) |
|
{ |
|
int si = sidx_ptr ? sidx_ptr[i] : i; |
|
Mat sample = layout == ROW_SAMPLE ? samples.row(si) : samples.col(si); |
|
float val = predict(sample); |
|
float val0 = responses.at<float>(si); |
|
|
|
if( isclassifier ) |
|
err += fabs(val - val0) > FLT_EPSILON; |
|
else |
|
err += (val - val0)*(val - val0); |
|
if( !resp.empty() ) |
|
resp.at<float>(i) = val; |
|
/*if( i < 100 ) |
|
{ |
|
printf("%d. ref %.1f vs pred %.1f\n", i, val0, val); |
|
}*/ |
|
} |
|
|
|
if( _resp.needed() ) |
|
resp.copyTo(_resp); |
|
|
|
return (float)(err / n * (isclassifier ? 100 : 1)); |
|
} |
|
|
|
/* Calculates upper triangular matrix S, where A is a symmetrical matrix A=S'*S */ |
|
static void Cholesky( const Mat& A, Mat& S ) |
|
{ |
|
CV_Assert(A.type() == CV_32F); |
|
|
|
int dim = A.rows; |
|
S.create(dim, dim, CV_32F); |
|
|
|
int i, j, k; |
|
|
|
for( i = 0; i < dim; i++ ) |
|
{ |
|
for( j = 0; j < i; j++ ) |
|
S.at<float>(i,j) = 0.f; |
|
|
|
float sum = 0.f; |
|
for( k = 0; k < i; k++ ) |
|
{ |
|
float val = S.at<float>(k,i); |
|
sum += val*val; |
|
} |
|
|
|
S.at<float>(i,i) = std::sqrt(std::max(A.at<float>(i,i) - sum, 0.f)); |
|
float ival = 1.f/S.at<float>(i, i); |
|
|
|
for( j = i + 1; j < dim; j++ ) |
|
{ |
|
sum = 0; |
|
for( k = 0; k < i; k++ ) |
|
sum += S.at<float>(k, i) * S.at<float>(k, j); |
|
|
|
S.at<float>(i, j) = (A.at<float>(i, j) - sum)*ival; |
|
} |
|
} |
|
} |
|
|
|
/* Generates <sample> from multivariate normal distribution, where <mean> - is an |
|
average row vector, <cov> - symmetric covariation matrix */ |
|
void randMVNormal( InputArray _mean, InputArray _cov, int nsamples, OutputArray _samples ) |
|
{ |
|
// check mean vector and covariance matrix |
|
Mat mean = _mean.getMat(), cov = _cov.getMat(); |
|
int dim = (int)mean.total(); // dimensionality |
|
CV_Assert(mean.rows == 1 || mean.cols == 1); |
|
CV_Assert(cov.rows == dim && cov.cols == dim); |
|
mean = mean.reshape(1,1); // ensure a row vector |
|
|
|
// generate n-samples of the same dimension, from ~N(0,1) |
|
_samples.create(nsamples, dim, CV_32F); |
|
Mat samples = _samples.getMat(); |
|
randn(samples, Scalar::all(0), Scalar::all(1)); |
|
|
|
// decompose covariance using Cholesky: cov = U'*U |
|
// (cov must be square, symmetric, and positive semi-definite matrix) |
|
Mat utmat; |
|
Cholesky(cov, utmat); |
|
|
|
// transform random numbers using specified mean and covariance |
|
for( int i = 0; i < nsamples; i++ ) |
|
{ |
|
Mat sample = samples.row(i); |
|
sample = sample * utmat + mean; |
|
} |
|
} |
|
|
|
}} |
|
|
|
/* End of file */
|
|
|