Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
295 lines
8.8 KiB
295 lines
8.8 KiB
/*********************************************************************** |
|
* Software License Agreement (BSD License) |
|
* |
|
* Copyright 2008-2009 Marius Muja (mariusm@cs.ubc.ca). All rights reserved. |
|
* Copyright 2008-2009 David G. Lowe (lowe@cs.ubc.ca). All rights reserved. |
|
* |
|
* THE BSD LICENSE |
|
* |
|
* Redistribution and use in source and binary forms, with or without |
|
* modification, are permitted provided that the following conditions |
|
* are met: |
|
* |
|
* 1. Redistributions of source code must retain the above copyright |
|
* notice, this list of conditions and the following disclaimer. |
|
* 2. Redistributions in binary form must reproduce the above copyright |
|
* notice, this list of conditions and the following disclaimer in the |
|
* documentation and/or other materials provided with the distribution. |
|
* |
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR |
|
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES |
|
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. |
|
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, |
|
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT |
|
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
|
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
|
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF |
|
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
|
*************************************************************************/ |
|
|
|
#ifndef OPENCV_FLANN_BASE_HPP_ |
|
#define OPENCV_FLANN_BASE_HPP_ |
|
|
|
#include <vector> |
|
#include <cassert> |
|
#include <cstdio> |
|
|
|
#include "general.h" |
|
#include "matrix.h" |
|
#include "params.h" |
|
#include "saving.h" |
|
|
|
#include "all_indices.h" |
|
|
|
namespace cvflann |
|
{ |
|
|
|
/** |
|
* Sets the log level used for all flann functions |
|
* @param level Verbosity level |
|
*/ |
|
inline void log_verbosity(int level) |
|
{ |
|
if (level >= 0) { |
|
Logger::setLevel(level); |
|
} |
|
} |
|
|
|
/** |
|
* (Deprecated) Index parameters for creating a saved index. |
|
*/ |
|
struct SavedIndexParams : public IndexParams |
|
{ |
|
SavedIndexParams(cv::String filename) |
|
{ |
|
(* this)["algorithm"] = FLANN_INDEX_SAVED; |
|
(*this)["filename"] = filename; |
|
} |
|
}; |
|
|
|
|
|
template<typename Distance> |
|
NNIndex<Distance>* load_saved_index(const Matrix<typename Distance::ElementType>& dataset, const cv::String& filename, Distance distance) |
|
{ |
|
typedef typename Distance::ElementType ElementType; |
|
|
|
FILE* fin = fopen(filename.c_str(), "rb"); |
|
if (fin == NULL) { |
|
return NULL; |
|
} |
|
IndexHeader header = load_header(fin); |
|
if (header.data_type != Datatype<ElementType>::type()) { |
|
fclose(fin); |
|
throw FLANNException("Datatype of saved index is different than of the one to be created."); |
|
} |
|
if ((size_t(header.rows) != dataset.rows)||(size_t(header.cols) != dataset.cols)) { |
|
fclose(fin); |
|
throw FLANNException("The index saved belongs to a different dataset"); |
|
} |
|
|
|
IndexParams params; |
|
params["algorithm"] = header.index_type; |
|
NNIndex<Distance>* nnIndex = create_index_by_type<Distance>(dataset, params, distance); |
|
nnIndex->loadIndex(fin); |
|
fclose(fin); |
|
|
|
return nnIndex; |
|
} |
|
|
|
|
|
template<typename Distance> |
|
class Index : public NNIndex<Distance> |
|
{ |
|
public: |
|
typedef typename Distance::ElementType ElementType; |
|
typedef typename Distance::ResultType DistanceType; |
|
|
|
Index(const Matrix<ElementType>& features, const IndexParams& params, Distance distance = Distance() ) |
|
: index_params_(params) |
|
{ |
|
flann_algorithm_t index_type = get_param<flann_algorithm_t>(params,"algorithm"); |
|
loaded_ = false; |
|
|
|
if (index_type == FLANN_INDEX_SAVED) { |
|
nnIndex_ = load_saved_index<Distance>(features, get_param<cv::String>(params,"filename"), distance); |
|
loaded_ = true; |
|
} |
|
else { |
|
nnIndex_ = create_index_by_type<Distance>(features, params, distance); |
|
} |
|
} |
|
|
|
~Index() |
|
{ |
|
delete nnIndex_; |
|
} |
|
|
|
/** |
|
* Builds the index. |
|
*/ |
|
void buildIndex() |
|
{ |
|
if (!loaded_) { |
|
nnIndex_->buildIndex(); |
|
} |
|
} |
|
|
|
void save(cv::String filename) |
|
{ |
|
FILE* fout = fopen(filename.c_str(), "wb"); |
|
if (fout == NULL) { |
|
throw FLANNException("Cannot open file"); |
|
} |
|
save_header(fout, *nnIndex_); |
|
saveIndex(fout); |
|
fclose(fout); |
|
} |
|
|
|
/** |
|
* \brief Saves the index to a stream |
|
* \param stream The stream to save the index to |
|
*/ |
|
virtual void saveIndex(FILE* stream) |
|
{ |
|
nnIndex_->saveIndex(stream); |
|
} |
|
|
|
/** |
|
* \brief Loads the index from a stream |
|
* \param stream The stream from which the index is loaded |
|
*/ |
|
virtual void loadIndex(FILE* stream) |
|
{ |
|
nnIndex_->loadIndex(stream); |
|
} |
|
|
|
/** |
|
* \returns number of features in this index. |
|
*/ |
|
size_t veclen() const |
|
{ |
|
return nnIndex_->veclen(); |
|
} |
|
|
|
/** |
|
* \returns The dimensionality of the features in this index. |
|
*/ |
|
size_t size() const |
|
{ |
|
return nnIndex_->size(); |
|
} |
|
|
|
/** |
|
* \returns The index type (kdtree, kmeans,...) |
|
*/ |
|
flann_algorithm_t getType() const |
|
{ |
|
return nnIndex_->getType(); |
|
} |
|
|
|
/** |
|
* \returns The amount of memory (in bytes) used by the index. |
|
*/ |
|
virtual int usedMemory() const |
|
{ |
|
return nnIndex_->usedMemory(); |
|
} |
|
|
|
|
|
/** |
|
* \returns The index parameters |
|
*/ |
|
IndexParams getParameters() const |
|
{ |
|
return nnIndex_->getParameters(); |
|
} |
|
|
|
/** |
|
* \brief Perform k-nearest neighbor search |
|
* \param[in] queries The query points for which to find the nearest neighbors |
|
* \param[out] indices The indices of the nearest neighbors found |
|
* \param[out] dists Distances to the nearest neighbors found |
|
* \param[in] knn Number of nearest neighbors to return |
|
* \param[in] params Search parameters |
|
*/ |
|
void knnSearch(const Matrix<ElementType>& queries, Matrix<int>& indices, Matrix<DistanceType>& dists, int knn, const SearchParams& params) |
|
{ |
|
nnIndex_->knnSearch(queries, indices, dists, knn, params); |
|
} |
|
|
|
/** |
|
* \brief Perform radius search |
|
* \param[in] query The query point |
|
* \param[out] indices The indinces of the neighbors found within the given radius |
|
* \param[out] dists The distances to the nearest neighbors found |
|
* \param[in] radius The radius used for search |
|
* \param[in] params Search parameters |
|
* \returns Number of neighbors found |
|
*/ |
|
int radiusSearch(const Matrix<ElementType>& query, Matrix<int>& indices, Matrix<DistanceType>& dists, float radius, const SearchParams& params) |
|
{ |
|
return nnIndex_->radiusSearch(query, indices, dists, radius, params); |
|
} |
|
|
|
/** |
|
* \brief Method that searches for nearest-neighbours |
|
*/ |
|
void findNeighbors(ResultSet<DistanceType>& result, const ElementType* vec, const SearchParams& searchParams) |
|
{ |
|
nnIndex_->findNeighbors(result, vec, searchParams); |
|
} |
|
|
|
/** |
|
* \brief Returns actual index |
|
*/ |
|
CV_DEPRECATED NNIndex<Distance>* getIndex() |
|
{ |
|
return nnIndex_; |
|
} |
|
|
|
/** |
|
* \brief Returns index parameters. |
|
* \deprecated use getParameters() instead. |
|
*/ |
|
CV_DEPRECATED const IndexParams* getIndexParameters() |
|
{ |
|
return &index_params_; |
|
} |
|
|
|
private: |
|
/** Pointer to actual index class */ |
|
NNIndex<Distance>* nnIndex_; |
|
/** Indices if the index was loaded from a file */ |
|
bool loaded_; |
|
/** Parameters passed to the index */ |
|
IndexParams index_params_; |
|
|
|
Index(const Index &); // copy disabled |
|
Index& operator=(const Index &); // assign disabled |
|
}; |
|
|
|
/** |
|
* Performs a hierarchical clustering of the points passed as argument and then takes a cut in the |
|
* the clustering tree to return a flat clustering. |
|
* @param[in] points Points to be clustered |
|
* @param centers The computed cluster centres. Matrix should be preallocated and centers.rows is the |
|
* number of clusters requested. |
|
* @param params Clustering parameters (The same as for cvflann::KMeansIndex) |
|
* @param d Distance to be used for clustering (eg: cvflann::L2) |
|
* @return number of clusters computed (can be different than clusters.rows and is the highest number |
|
* of the form (branching-1)*K+1 smaller than clusters.rows). |
|
*/ |
|
template <typename Distance> |
|
int hierarchicalClustering(const Matrix<typename Distance::ElementType>& points, Matrix<typename Distance::ResultType>& centers, |
|
const KMeansIndexParams& params, Distance d = Distance()) |
|
{ |
|
KMeansIndex<Distance> kmeans(points, params, d); |
|
kmeans.buildIndex(); |
|
|
|
int clusterNum = kmeans.getClusterCenters(centers); |
|
return clusterNum; |
|
} |
|
|
|
} |
|
#endif /* OPENCV_FLANN_BASE_HPP_ */
|
|
|