mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
248 lines
7.7 KiB
248 lines
7.7 KiB
#include "opencv2/core.hpp" |
|
|
|
#include "HOGfeatures.h" |
|
#include "cascadeclassifier.h" |
|
|
|
using namespace std; |
|
|
|
CvHOGFeatureParams::CvHOGFeatureParams() |
|
{ |
|
maxCatCount = 0; |
|
name = HOGF_NAME; |
|
featSize = N_BINS * N_CELLS; |
|
} |
|
|
|
void CvHOGEvaluator::init(const CvFeatureParams *_featureParams, int _maxSampleCount, Size _winSize) |
|
{ |
|
CV_Assert( _maxSampleCount > 0); |
|
int cols = (_winSize.width + 1) * (_winSize.height + 1); |
|
for (int bin = 0; bin < N_BINS; bin++) |
|
{ |
|
hist.push_back(Mat(_maxSampleCount, cols, CV_32FC1)); |
|
} |
|
normSum.create( (int)_maxSampleCount, cols, CV_32FC1 ); |
|
CvFeatureEvaluator::init( _featureParams, _maxSampleCount, _winSize ); |
|
} |
|
|
|
void CvHOGEvaluator::setImage(const Mat &img, uchar clsLabel, int idx) |
|
{ |
|
CV_DbgAssert( !hist.empty()); |
|
CvFeatureEvaluator::setImage( img, clsLabel, idx ); |
|
vector<Mat> integralHist; |
|
for (int bin = 0; bin < N_BINS; bin++) |
|
{ |
|
integralHist.push_back( Mat(winSize.height + 1, winSize.width + 1, hist[bin].type(), hist[bin].ptr<float>((int)idx)) ); |
|
} |
|
Mat integralNorm(winSize.height + 1, winSize.width + 1, normSum.type(), normSum.ptr<float>((int)idx)); |
|
integralHistogram(img, integralHist, integralNorm, (int)N_BINS); |
|
} |
|
|
|
//void CvHOGEvaluator::writeFeatures( FileStorage &fs, const Mat& featureMap ) const |
|
//{ |
|
// _writeFeatures( features, fs, featureMap ); |
|
//} |
|
|
|
void CvHOGEvaluator::writeFeatures( FileStorage &fs, const Mat& featureMap ) const |
|
{ |
|
int featIdx; |
|
int componentIdx; |
|
const Mat_<int>& featureMap_ = (const Mat_<int>&)featureMap; |
|
fs << FEATURES << "["; |
|
for ( int fi = 0; fi < featureMap.cols; fi++ ) |
|
if ( featureMap_(0, fi) >= 0 ) |
|
{ |
|
fs << "{"; |
|
featIdx = fi / getFeatureSize(); |
|
componentIdx = fi % getFeatureSize(); |
|
features[featIdx].write( fs, componentIdx ); |
|
fs << "}"; |
|
} |
|
fs << "]"; |
|
} |
|
|
|
void CvHOGEvaluator::generateFeatures() |
|
{ |
|
int offset = winSize.width + 1; |
|
Size blockStep; |
|
int x, y, t, w, h; |
|
|
|
for (t = 8; t <= winSize.width/2; t+=8) //t = size of a cell. blocksize = 4*cellSize |
|
{ |
|
blockStep = Size(4,4); |
|
w = 2*t; //width of a block |
|
h = 2*t; //height of a block |
|
for (x = 0; x <= winSize.width - w; x += blockStep.width) |
|
{ |
|
for (y = 0; y <= winSize.height - h; y += blockStep.height) |
|
{ |
|
features.push_back(Feature(offset, x, y, t, t)); |
|
} |
|
} |
|
w = 2*t; |
|
h = 4*t; |
|
for (x = 0; x <= winSize.width - w; x += blockStep.width) |
|
{ |
|
for (y = 0; y <= winSize.height - h; y += blockStep.height) |
|
{ |
|
features.push_back(Feature(offset, x, y, t, 2*t)); |
|
} |
|
} |
|
w = 4*t; |
|
h = 2*t; |
|
for (x = 0; x <= winSize.width - w; x += blockStep.width) |
|
{ |
|
for (y = 0; y <= winSize.height - h; y += blockStep.height) |
|
{ |
|
features.push_back(Feature(offset, x, y, 2*t, t)); |
|
} |
|
} |
|
} |
|
|
|
numFeatures = (int)features.size(); |
|
} |
|
|
|
CvHOGEvaluator::Feature::Feature() |
|
{ |
|
for (int i = 0; i < N_CELLS; i++) |
|
{ |
|
rect[i] = Rect(0, 0, 0, 0); |
|
} |
|
} |
|
|
|
CvHOGEvaluator::Feature::Feature( int offset, int x, int y, int cellW, int cellH ) |
|
{ |
|
rect[0] = Rect(x, y, cellW, cellH); //cell0 |
|
rect[1] = Rect(x+cellW, y, cellW, cellH); //cell1 |
|
rect[2] = Rect(x, y+cellH, cellW, cellH); //cell2 |
|
rect[3] = Rect(x+cellW, y+cellH, cellW, cellH); //cell3 |
|
|
|
for (int i = 0; i < N_CELLS; i++) |
|
{ |
|
CV_SUM_OFFSETS(fastRect[i].p0, fastRect[i].p1, fastRect[i].p2, fastRect[i].p3, rect[i], offset); |
|
} |
|
} |
|
|
|
void CvHOGEvaluator::Feature::write(FileStorage &fs) const |
|
{ |
|
fs << CC_RECTS << "["; |
|
for( int i = 0; i < N_CELLS; i++ ) |
|
{ |
|
fs << "[:" << rect[i].x << rect[i].y << rect[i].width << rect[i].height << "]"; |
|
} |
|
fs << "]"; |
|
} |
|
|
|
//cell and bin idx writing |
|
//void CvHOGEvaluator::Feature::write(FileStorage &fs, int varIdx) const |
|
//{ |
|
// int featComponent = varIdx % (N_CELLS * N_BINS); |
|
// int cellIdx = featComponent / N_BINS; |
|
// int binIdx = featComponent % N_BINS; |
|
// |
|
// fs << CC_RECTS << "[:" << rect[cellIdx].x << rect[cellIdx].y << |
|
// rect[cellIdx].width << rect[cellIdx].height << binIdx << "]"; |
|
//} |
|
|
|
//cell[0] and featComponent idx writing. By cell[0] it's possible to recover all block |
|
//All block is nessesary for block normalization |
|
void CvHOGEvaluator::Feature::write(FileStorage &fs, int featComponentIdx) const |
|
{ |
|
fs << CC_RECT << "[:" << rect[0].x << rect[0].y << |
|
rect[0].width << rect[0].height << featComponentIdx << "]"; |
|
} |
|
|
|
|
|
void CvHOGEvaluator::integralHistogram(const Mat &img, vector<Mat> &histogram, Mat &norm, int nbins) const |
|
{ |
|
CV_Assert( img.type() == CV_8U || img.type() == CV_8UC3 ); |
|
int x, y, binIdx; |
|
|
|
Size gradSize(img.size()); |
|
Size histSize(histogram[0].size()); |
|
Mat grad(gradSize, CV_32F); |
|
Mat qangle(gradSize, CV_8U); |
|
|
|
AutoBuffer<int> mapbuf(gradSize.width + gradSize.height + 4); |
|
int* xmap = (int*)mapbuf + 1; |
|
int* ymap = xmap + gradSize.width + 2; |
|
|
|
const int borderType = (int)BORDER_REPLICATE; |
|
|
|
for( x = -1; x < gradSize.width + 1; x++ ) |
|
xmap[x] = borderInterpolate(x, gradSize.width, borderType); |
|
for( y = -1; y < gradSize.height + 1; y++ ) |
|
ymap[y] = borderInterpolate(y, gradSize.height, borderType); |
|
|
|
int width = gradSize.width; |
|
AutoBuffer<float> _dbuf(width*4); |
|
float* dbuf = _dbuf; |
|
Mat Dx(1, width, CV_32F, dbuf); |
|
Mat Dy(1, width, CV_32F, dbuf + width); |
|
Mat Mag(1, width, CV_32F, dbuf + width*2); |
|
Mat Angle(1, width, CV_32F, dbuf + width*3); |
|
|
|
float angleScale = (float)(nbins/CV_PI); |
|
|
|
for( y = 0; y < gradSize.height; y++ ) |
|
{ |
|
const uchar* currPtr = img.data + img.step*ymap[y]; |
|
const uchar* prevPtr = img.data + img.step*ymap[y-1]; |
|
const uchar* nextPtr = img.data + img.step*ymap[y+1]; |
|
float* gradPtr = (float*)grad.ptr(y); |
|
uchar* qanglePtr = (uchar*)qangle.ptr(y); |
|
|
|
for( x = 0; x < width; x++ ) |
|
{ |
|
dbuf[x] = (float)(currPtr[xmap[x+1]] - currPtr[xmap[x-1]]); |
|
dbuf[width + x] = (float)(nextPtr[xmap[x]] - prevPtr[xmap[x]]); |
|
} |
|
cartToPolar( Dx, Dy, Mag, Angle, false ); |
|
for( x = 0; x < width; x++ ) |
|
{ |
|
float mag = dbuf[x+width*2]; |
|
float angle = dbuf[x+width*3]; |
|
angle = angle*angleScale - 0.5f; |
|
int bidx = cvFloor(angle); |
|
angle -= bidx; |
|
if( bidx < 0 ) |
|
bidx += nbins; |
|
else if( bidx >= nbins ) |
|
bidx -= nbins; |
|
|
|
qanglePtr[x] = (uchar)bidx; |
|
gradPtr[x] = mag; |
|
} |
|
} |
|
integral(grad, norm, grad.depth()); |
|
|
|
float* histBuf; |
|
const float* magBuf; |
|
const uchar* binsBuf; |
|
|
|
int binsStep = (int)( qangle.step / sizeof(uchar) ); |
|
int histStep = (int)( histogram[0].step / sizeof(float) ); |
|
int magStep = (int)( grad.step / sizeof(float) ); |
|
for( binIdx = 0; binIdx < nbins; binIdx++ ) |
|
{ |
|
histBuf = (float*)histogram[binIdx].data; |
|
magBuf = (const float*)grad.data; |
|
binsBuf = (const uchar*)qangle.data; |
|
|
|
memset( histBuf, 0, histSize.width * sizeof(histBuf[0]) ); |
|
histBuf += histStep + 1; |
|
for( y = 0; y < qangle.rows; y++ ) |
|
{ |
|
histBuf[-1] = 0.f; |
|
float strSum = 0.f; |
|
for( x = 0; x < qangle.cols; x++ ) |
|
{ |
|
if( binsBuf[x] == binIdx ) |
|
strSum += magBuf[x]; |
|
histBuf[x] = histBuf[-histStep + x] + strSum; |
|
} |
|
histBuf += histStep; |
|
binsBuf += binsStep; |
|
magBuf += magStep; |
|
} |
|
} |
|
}
|
|
|