Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
521 lines
17 KiB
521 lines
17 KiB
//============================================================================= |
|
// |
|
// nldiffusion_functions.cpp |
|
// Author: Pablo F. Alcantarilla |
|
// Institution: University d'Auvergne |
|
// Address: Clermont Ferrand, France |
|
// Date: 27/12/2011 |
|
// Email: pablofdezalc@gmail.com |
|
// |
|
// KAZE Features Copyright 2012, Pablo F. Alcantarilla |
|
// All Rights Reserved |
|
// See LICENSE for the license information |
|
//============================================================================= |
|
|
|
/** |
|
* @file nldiffusion_functions.cpp |
|
* @brief Functions for non-linear diffusion applications: |
|
* 2D Gaussian Derivatives |
|
* Perona and Malik conductivity equations |
|
* Perona and Malik evolution |
|
* @date Dec 27, 2011 |
|
* @author Pablo F. Alcantarilla |
|
*/ |
|
|
|
#include "../precomp.hpp" |
|
#include "nldiffusion_functions.h" |
|
#include <iostream> |
|
|
|
// Namespaces |
|
|
|
/* ************************************************************************* */ |
|
|
|
namespace cv |
|
{ |
|
using namespace std; |
|
|
|
/* ************************************************************************* */ |
|
/** |
|
* @brief This function smoothes an image with a Gaussian kernel |
|
* @param src Input image |
|
* @param dst Output image |
|
* @param ksize_x Kernel size in X-direction (horizontal) |
|
* @param ksize_y Kernel size in Y-direction (vertical) |
|
* @param sigma Kernel standard deviation |
|
*/ |
|
void gaussian_2D_convolution(const cv::Mat& src, cv::Mat& dst, int ksize_x, int ksize_y, float sigma) { |
|
|
|
int ksize_x_ = 0, ksize_y_ = 0; |
|
|
|
// Compute an appropriate kernel size according to the specified sigma |
|
if (sigma > ksize_x || sigma > ksize_y || ksize_x == 0 || ksize_y == 0) { |
|
ksize_x_ = (int)ceil(2.0f*(1.0f + (sigma - 0.8f) / (0.3f))); |
|
ksize_y_ = ksize_x_; |
|
} |
|
|
|
// The kernel size must be and odd number |
|
if ((ksize_x_ % 2) == 0) { |
|
ksize_x_ += 1; |
|
} |
|
|
|
if ((ksize_y_ % 2) == 0) { |
|
ksize_y_ += 1; |
|
} |
|
|
|
// Perform the Gaussian Smoothing with border replication |
|
GaussianBlur(src, dst, Size(ksize_x_, ksize_y_), sigma, sigma, BORDER_REPLICATE); |
|
} |
|
|
|
/* ************************************************************************* */ |
|
/** |
|
* @brief This function computes image derivatives with Scharr kernel |
|
* @param src Input image |
|
* @param dst Output image |
|
* @param xorder Derivative order in X-direction (horizontal) |
|
* @param yorder Derivative order in Y-direction (vertical) |
|
* @note Scharr operator approximates better rotation invariance than |
|
* other stencils such as Sobel. See Weickert and Scharr, |
|
* A Scheme for Coherence-Enhancing Diffusion Filtering with Optimized Rotation Invariance, |
|
* Journal of Visual Communication and Image Representation 2002 |
|
*/ |
|
void image_derivatives_scharr(const cv::Mat& src, cv::Mat& dst, int xorder, int yorder) { |
|
Scharr(src, dst, CV_32F, xorder, yorder, 1.0, 0, BORDER_DEFAULT); |
|
} |
|
|
|
/* ************************************************************************* */ |
|
/** |
|
* @brief This function computes the Perona and Malik conductivity coefficient g1 |
|
* g1 = exp(-|dL|^2/k^2) |
|
* @param Lx First order image derivative in X-direction (horizontal) |
|
* @param Ly First order image derivative in Y-direction (vertical) |
|
* @param dst Output image |
|
* @param k Contrast factor parameter |
|
*/ |
|
void pm_g1(const cv::Mat& Lx, const cv::Mat& Ly, cv::Mat& dst, float k) { |
|
|
|
Size sz = Lx.size(); |
|
float inv_k = 1.0f / (k*k); |
|
for (int y = 0; y < sz.height; y++) { |
|
|
|
const float* Lx_row = Lx.ptr<float>(y); |
|
const float* Ly_row = Ly.ptr<float>(y); |
|
float* dst_row = dst.ptr<float>(y); |
|
|
|
for (int x = 0; x < sz.width; x++) { |
|
dst_row[x] = (-inv_k*(Lx_row[x]*Lx_row[x] + Ly_row[x]*Ly_row[x])); |
|
} |
|
} |
|
|
|
exp(dst, dst); |
|
} |
|
|
|
/* ************************************************************************* */ |
|
/** |
|
* @brief This function computes the Perona and Malik conductivity coefficient g2 |
|
* g2 = 1 / (1 + dL^2 / k^2) |
|
* @param Lx First order image derivative in X-direction (horizontal) |
|
* @param Ly First order image derivative in Y-direction (vertical) |
|
* @param dst Output image |
|
* @param k Contrast factor parameter |
|
*/ |
|
void pm_g2(const cv::Mat &Lx, const cv::Mat& Ly, cv::Mat& dst, float k) { |
|
|
|
Size sz = Lx.size(); |
|
dst.create(sz, Lx.type()); |
|
float k2inv = 1.0f / (k * k); |
|
|
|
for(int y = 0; y < sz.height; y++) { |
|
const float *Lx_row = Lx.ptr<float>(y); |
|
const float *Ly_row = Ly.ptr<float>(y); |
|
float* dst_row = dst.ptr<float>(y); |
|
for(int x = 0; x < sz.width; x++) { |
|
dst_row[x] = 1.0f / (1.0f + ((Lx_row[x] * Lx_row[x] + Ly_row[x] * Ly_row[x]) * k2inv)); |
|
} |
|
} |
|
} |
|
/* ************************************************************************* */ |
|
/** |
|
* @brief This function computes Weickert conductivity coefficient gw |
|
* @param Lx First order image derivative in X-direction (horizontal) |
|
* @param Ly First order image derivative in Y-direction (vertical) |
|
* @param dst Output image |
|
* @param k Contrast factor parameter |
|
* @note For more information check the following paper: J. Weickert |
|
* Applications of nonlinear diffusion in image processing and computer vision, |
|
* Proceedings of Algorithmy 2000 |
|
*/ |
|
void weickert_diffusivity(const cv::Mat& Lx, const cv::Mat& Ly, cv::Mat& dst, float k) { |
|
|
|
Size sz = Lx.size(); |
|
float inv_k = 1.0f / (k*k); |
|
for (int y = 0; y < sz.height; y++) { |
|
|
|
const float* Lx_row = Lx.ptr<float>(y); |
|
const float* Ly_row = Ly.ptr<float>(y); |
|
float* dst_row = dst.ptr<float>(y); |
|
|
|
for (int x = 0; x < sz.width; x++) { |
|
float dL = inv_k*(Lx_row[x]*Lx_row[x] + Ly_row[x]*Ly_row[x]); |
|
dst_row[x] = -3.315f/(dL*dL*dL*dL); |
|
} |
|
} |
|
|
|
exp(dst, dst); |
|
dst = 1.0 - dst; |
|
} |
|
|
|
|
|
/* ************************************************************************* */ |
|
/** |
|
* @brief This function computes Charbonnier conductivity coefficient gc |
|
* gc = 1 / sqrt(1 + dL^2 / k^2) |
|
* @param Lx First order image derivative in X-direction (horizontal) |
|
* @param Ly First order image derivative in Y-direction (vertical) |
|
* @param dst Output image |
|
* @param k Contrast factor parameter |
|
* @note For more information check the following paper: J. Weickert |
|
* Applications of nonlinear diffusion in image processing and computer vision, |
|
* Proceedings of Algorithmy 2000 |
|
*/ |
|
void charbonnier_diffusivity(const cv::Mat& Lx, const cv::Mat& Ly, cv::Mat& dst, float k) { |
|
|
|
Size sz = Lx.size(); |
|
float inv_k = 1.0f / (k*k); |
|
for (int y = 0; y < sz.height; y++) { |
|
|
|
const float* Lx_row = Lx.ptr<float>(y); |
|
const float* Ly_row = Ly.ptr<float>(y); |
|
float* dst_row = dst.ptr<float>(y); |
|
|
|
for (int x = 0; x < sz.width; x++) { |
|
float den = sqrt(1.0f+inv_k*(Lx_row[x]*Lx_row[x] + Ly_row[x]*Ly_row[x])); |
|
dst_row[x] = 1.0f / den; |
|
} |
|
} |
|
} |
|
|
|
|
|
/* ************************************************************************* */ |
|
/** |
|
* @brief This function computes a good empirical value for the k contrast factor |
|
* given an input image, the percentile (0-1), the gradient scale and the number of |
|
* bins in the histogram |
|
* @param img Input image |
|
* @param perc Percentile of the image gradient histogram (0-1) |
|
* @param gscale Scale for computing the image gradient histogram |
|
* @param nbins Number of histogram bins |
|
* @param ksize_x Kernel size in X-direction (horizontal) for the Gaussian smoothing kernel |
|
* @param ksize_y Kernel size in Y-direction (vertical) for the Gaussian smoothing kernel |
|
* @return k contrast factor |
|
*/ |
|
float compute_k_percentile(const cv::Mat& img, float perc, float gscale, int nbins, int ksize_x, int ksize_y) { |
|
|
|
int nbin = 0, nelements = 0, nthreshold = 0, k = 0; |
|
float kperc = 0.0, modg = 0.0; |
|
float npoints = 0.0; |
|
float hmax = 0.0; |
|
|
|
// Create the array for the histogram |
|
std::vector<int> hist(nbins, 0); |
|
|
|
// Create the matrices |
|
Mat gaussian = Mat::zeros(img.rows, img.cols, CV_32F); |
|
Mat Lx = Mat::zeros(img.rows, img.cols, CV_32F); |
|
Mat Ly = Mat::zeros(img.rows, img.cols, CV_32F); |
|
|
|
// Perform the Gaussian convolution |
|
gaussian_2D_convolution(img, gaussian, ksize_x, ksize_y, gscale); |
|
|
|
// Compute the Gaussian derivatives Lx and Ly |
|
Scharr(gaussian, Lx, CV_32F, 1, 0, 1, 0, cv::BORDER_DEFAULT); |
|
Scharr(gaussian, Ly, CV_32F, 0, 1, 1, 0, cv::BORDER_DEFAULT); |
|
|
|
// Skip the borders for computing the histogram |
|
for (int i = 1; i < gaussian.rows - 1; i++) { |
|
const float *lx = Lx.ptr<float>(i); |
|
const float *ly = Ly.ptr<float>(i); |
|
for (int j = 1; j < gaussian.cols - 1; j++) { |
|
modg = lx[j]*lx[j] + ly[j]*ly[j]; |
|
|
|
// Get the maximum |
|
if (modg > hmax) { |
|
hmax = modg; |
|
} |
|
} |
|
} |
|
hmax = sqrt(hmax); |
|
// Skip the borders for computing the histogram |
|
for (int i = 1; i < gaussian.rows - 1; i++) { |
|
const float *lx = Lx.ptr<float>(i); |
|
const float *ly = Ly.ptr<float>(i); |
|
for (int j = 1; j < gaussian.cols - 1; j++) { |
|
modg = lx[j]*lx[j] + ly[j]*ly[j]; |
|
|
|
// Find the correspondent bin |
|
if (modg != 0.0) { |
|
nbin = (int)floor(nbins*(sqrt(modg) / hmax)); |
|
|
|
if (nbin == nbins) { |
|
nbin--; |
|
} |
|
|
|
hist[nbin]++; |
|
npoints++; |
|
} |
|
} |
|
} |
|
|
|
// Now find the perc of the histogram percentile |
|
nthreshold = (int)(npoints*perc); |
|
|
|
for (k = 0; nelements < nthreshold && k < nbins; k++) { |
|
nelements = nelements + hist[k]; |
|
} |
|
|
|
if (nelements < nthreshold) { |
|
kperc = 0.03f; |
|
} |
|
else { |
|
kperc = hmax*((float)(k) / (float)nbins); |
|
} |
|
|
|
return kperc; |
|
} |
|
|
|
/* ************************************************************************* */ |
|
/** |
|
* @brief This function computes Scharr image derivatives |
|
* @param src Input image |
|
* @param dst Output image |
|
* @param xorder Derivative order in X-direction (horizontal) |
|
* @param yorder Derivative order in Y-direction (vertical) |
|
* @param scale Scale factor for the derivative size |
|
*/ |
|
void compute_scharr_derivatives(const cv::Mat& src, cv::Mat& dst, int xorder, int yorder, int scale) { |
|
Mat kx, ky; |
|
compute_derivative_kernels(kx, ky, xorder, yorder, scale); |
|
sepFilter2D(src, dst, CV_32F, kx, ky); |
|
} |
|
|
|
/* ************************************************************************* */ |
|
/** |
|
* @brief Compute derivative kernels for sizes different than 3 |
|
* @param _kx Horizontal kernel ues |
|
* @param _ky Vertical kernel values |
|
* @param dx Derivative order in X-direction (horizontal) |
|
* @param dy Derivative order in Y-direction (vertical) |
|
* @param scale_ Scale factor or derivative size |
|
*/ |
|
void compute_derivative_kernels(cv::OutputArray _kx, cv::OutputArray _ky, int dx, int dy, int scale) { |
|
|
|
int ksize = 3 + 2 * (scale - 1); |
|
|
|
// The standard Scharr kernel |
|
if (scale == 1) { |
|
getDerivKernels(_kx, _ky, dx, dy, 0, true, CV_32F); |
|
return; |
|
} |
|
|
|
_kx.create(ksize, 1, CV_32F, -1, true); |
|
_ky.create(ksize, 1, CV_32F, -1, true); |
|
Mat kx = _kx.getMat(); |
|
Mat ky = _ky.getMat(); |
|
|
|
float w = 10.0f / 3.0f; |
|
float norm = 1.0f / (2.0f*scale*(w + 2.0f)); |
|
|
|
for (int k = 0; k < 2; k++) { |
|
Mat* kernel = k == 0 ? &kx : &ky; |
|
int order = k == 0 ? dx : dy; |
|
std::vector<float> kerI(ksize, 0.0f); |
|
|
|
if (order == 0) { |
|
kerI[0] = norm, kerI[ksize / 2] = w*norm, kerI[ksize - 1] = norm; |
|
} |
|
else if (order == 1) { |
|
kerI[0] = -1, kerI[ksize / 2] = 0, kerI[ksize - 1] = 1; |
|
} |
|
|
|
Mat temp(kernel->rows, kernel->cols, CV_32F, &kerI[0]); |
|
temp.copyTo(*kernel); |
|
} |
|
} |
|
|
|
class Nld_Step_Scalar_Invoker : public cv::ParallelLoopBody |
|
{ |
|
public: |
|
Nld_Step_Scalar_Invoker(cv::Mat& Ld, const cv::Mat& c, cv::Mat& Lstep, float _stepsize) |
|
: _Ld(&Ld) |
|
, _c(&c) |
|
, _Lstep(&Lstep) |
|
, stepsize(_stepsize) |
|
{ |
|
} |
|
|
|
virtual ~Nld_Step_Scalar_Invoker() |
|
{ |
|
|
|
} |
|
|
|
void operator()(const cv::Range& range) const |
|
{ |
|
cv::Mat& Ld = *_Ld; |
|
const cv::Mat& c = *_c; |
|
cv::Mat& Lstep = *_Lstep; |
|
|
|
for (int i = range.start; i < range.end; i++) |
|
{ |
|
const float *c_prev = c.ptr<float>(i - 1); |
|
const float *c_curr = c.ptr<float>(i); |
|
const float *c_next = c.ptr<float>(i + 1); |
|
const float *ld_prev = Ld.ptr<float>(i - 1); |
|
const float *ld_curr = Ld.ptr<float>(i); |
|
const float *ld_next = Ld.ptr<float>(i + 1); |
|
|
|
float *dst = Lstep.ptr<float>(i); |
|
|
|
for (int j = 1; j < Lstep.cols - 1; j++) |
|
{ |
|
float xpos = (c_curr[j] + c_curr[j+1])*(ld_curr[j+1] - ld_curr[j]); |
|
float xneg = (c_curr[j-1] + c_curr[j]) *(ld_curr[j] - ld_curr[j-1]); |
|
float ypos = (c_curr[j] + c_next[j]) *(ld_next[j] - ld_curr[j]); |
|
float yneg = (c_prev[j] + c_curr[j]) *(ld_curr[j] - ld_prev[j]); |
|
dst[j] = 0.5f*stepsize*(xpos - xneg + ypos - yneg); |
|
} |
|
} |
|
} |
|
private: |
|
cv::Mat * _Ld; |
|
const cv::Mat * _c; |
|
cv::Mat * _Lstep; |
|
float stepsize; |
|
}; |
|
|
|
/* ************************************************************************* */ |
|
/** |
|
* @brief This function performs a scalar non-linear diffusion step |
|
* @param Ld2 Output image in the evolution |
|
* @param c Conductivity image |
|
* @param Lstep Previous image in the evolution |
|
* @param stepsize The step size in time units |
|
* @note Forward Euler Scheme 3x3 stencil |
|
* The function c is a scalar value that depends on the gradient norm |
|
* dL_by_ds = d(c dL_by_dx)_by_dx + d(c dL_by_dy)_by_dy |
|
*/ |
|
void nld_step_scalar(cv::Mat& Ld, const cv::Mat& c, cv::Mat& Lstep, float stepsize) { |
|
|
|
cv::parallel_for_(cv::Range(1, Lstep.rows - 1), Nld_Step_Scalar_Invoker(Ld, c, Lstep, stepsize), (double)Ld.total()/(1 << 16)); |
|
|
|
float xneg, xpos, yneg, ypos; |
|
float* dst = Lstep.ptr<float>(0); |
|
const float* cprv = NULL; |
|
const float* ccur = c.ptr<float>(0); |
|
const float* cnxt = c.ptr<float>(1); |
|
const float* ldprv = NULL; |
|
const float* ldcur = Ld.ptr<float>(0); |
|
const float* ldnxt = Ld.ptr<float>(1); |
|
for (int j = 1; j < Lstep.cols - 1; j++) { |
|
xpos = (ccur[j] + ccur[j+1]) * (ldcur[j+1] - ldcur[j]); |
|
xneg = (ccur[j-1] + ccur[j]) * (ldcur[j] - ldcur[j-1]); |
|
ypos = (ccur[j] + cnxt[j]) * (ldnxt[j] - ldcur[j]); |
|
dst[j] = 0.5f*stepsize*(xpos - xneg + ypos); |
|
} |
|
|
|
dst = Lstep.ptr<float>(Lstep.rows - 1); |
|
ccur = c.ptr<float>(Lstep.rows - 1); |
|
cprv = c.ptr<float>(Lstep.rows - 2); |
|
ldcur = Ld.ptr<float>(Lstep.rows - 1); |
|
ldprv = Ld.ptr<float>(Lstep.rows - 2); |
|
|
|
for (int j = 1; j < Lstep.cols - 1; j++) { |
|
xpos = (ccur[j] + ccur[j+1]) * (ldcur[j+1] - ldcur[j]); |
|
xneg = (ccur[j-1] + ccur[j]) * (ldcur[j] - ldcur[j-1]); |
|
yneg = (cprv[j] + ccur[j]) * (ldcur[j] - ldprv[j]); |
|
dst[j] = 0.5f*stepsize*(xpos - xneg - yneg); |
|
} |
|
|
|
ccur = c.ptr<float>(1); |
|
ldcur = Ld.ptr<float>(1); |
|
cprv = c.ptr<float>(0); |
|
ldprv = Ld.ptr<float>(0); |
|
|
|
int r0 = Lstep.cols - 1; |
|
int r1 = Lstep.cols - 2; |
|
|
|
for (int i = 1; i < Lstep.rows - 1; i++) { |
|
cnxt = c.ptr<float>(i + 1); |
|
ldnxt = Ld.ptr<float>(i + 1); |
|
dst = Lstep.ptr<float>(i); |
|
|
|
xpos = (ccur[0] + ccur[1]) * (ldcur[1] - ldcur[0]); |
|
ypos = (ccur[0] + cnxt[0]) * (ldnxt[0] - ldcur[0]); |
|
yneg = (cprv[0] + ccur[0]) * (ldcur[0] - ldprv[0]); |
|
dst[0] = 0.5f*stepsize*(xpos + ypos - yneg); |
|
|
|
xneg = (ccur[r1] + ccur[r0]) * (ldcur[r0] - ldcur[r1]); |
|
ypos = (ccur[r0] + cnxt[r0]) * (ldnxt[r0] - ldcur[r0]); |
|
yneg = (cprv[r0] + ccur[r0]) * (ldcur[r0] - ldprv[r0]); |
|
dst[r0] = 0.5f*stepsize*(-xneg + ypos - yneg); |
|
|
|
cprv = ccur; |
|
ccur = cnxt; |
|
ldprv = ldcur; |
|
ldcur = ldnxt; |
|
} |
|
Ld += Lstep; |
|
} |
|
|
|
/* ************************************************************************* */ |
|
/** |
|
* @brief This function downsamples the input image using OpenCV resize |
|
* @param img Input image to be downsampled |
|
* @param dst Output image with half of the resolution of the input image |
|
*/ |
|
void halfsample_image(const cv::Mat& src, cv::Mat& dst) { |
|
|
|
// Make sure the destination image is of the right size |
|
CV_Assert(src.cols / 2 == dst.cols); |
|
CV_Assert(src.rows / 2 == dst.rows); |
|
resize(src, dst, dst.size(), 0, 0, cv::INTER_AREA); |
|
} |
|
|
|
/* ************************************************************************* */ |
|
/** |
|
* @brief This function checks if a given pixel is a maximum in a local neighbourhood |
|
* @param img Input image where we will perform the maximum search |
|
* @param dsize Half size of the neighbourhood |
|
* @param value Response value at (x,y) position |
|
* @param row Image row coordinate |
|
* @param col Image column coordinate |
|
* @param same_img Flag to indicate if the image value at (x,y) is in the input image |
|
* @return 1->is maximum, 0->otherwise |
|
*/ |
|
bool check_maximum_neighbourhood(const cv::Mat& img, int dsize, float value, int row, int col, bool same_img) { |
|
|
|
bool response = true; |
|
|
|
for (int i = row - dsize; i <= row + dsize; i++) { |
|
for (int j = col - dsize; j <= col + dsize; j++) { |
|
if (i >= 0 && i < img.rows && j >= 0 && j < img.cols) { |
|
if (same_img == true) { |
|
if (i != row || j != col) { |
|
if ((*(img.ptr<float>(i)+j)) > value) { |
|
response = false; |
|
return response; |
|
} |
|
} |
|
} |
|
else { |
|
if ((*(img.ptr<float>(i)+j)) > value) { |
|
response = false; |
|
return response; |
|
} |
|
} |
|
} |
|
} |
|
} |
|
|
|
return response; |
|
} |
|
|
|
}
|
|
|