mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
2375 lines
103 KiB
2375 lines
103 KiB
/*M/////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// |
|
// License Agreement |
|
// For Open Source Computer Vision Library |
|
// |
|
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. |
|
// Copyright (C) 2009, Willow Garage Inc., all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
// |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistribution's of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistribution's in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other materials provided with the distribution. |
|
// |
|
// * The name of the copyright holders may not be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors "as is" and |
|
// any express or implied warranties, including, but not limited to, the implied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall the Intel Corporation or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
// |
|
//M*/ |
|
|
|
#ifndef __OPENCV_GPU_HPP__ |
|
#define __OPENCV_GPU_HPP__ |
|
|
|
#ifndef SKIP_INCLUDES |
|
#include <vector> |
|
#include <memory> |
|
#include <iosfwd> |
|
#endif |
|
|
|
#include "opencv2/core/gpumat.hpp" |
|
#include "opencv2/imgproc.hpp" |
|
#include "opencv2/objdetect.hpp" |
|
#include "opencv2/features2d.hpp" |
|
|
|
namespace cv { namespace gpu { |
|
//////////////////////////////// Filter Engine //////////////////////////////// |
|
|
|
/*! |
|
The Base Class for 1D or Row-wise Filters |
|
|
|
This is the base class for linear or non-linear filters that process 1D data. |
|
In particular, such filters are used for the "horizontal" filtering parts in separable filters. |
|
*/ |
|
class CV_EXPORTS BaseRowFilter_GPU |
|
{ |
|
public: |
|
BaseRowFilter_GPU(int ksize_, int anchor_) : ksize(ksize_), anchor(anchor_) {} |
|
virtual ~BaseRowFilter_GPU() {} |
|
virtual void operator()(const GpuMat& src, GpuMat& dst, Stream& stream = Stream::Null()) = 0; |
|
int ksize, anchor; |
|
}; |
|
|
|
/*! |
|
The Base Class for Column-wise Filters |
|
|
|
This is the base class for linear or non-linear filters that process columns of 2D arrays. |
|
Such filters are used for the "vertical" filtering parts in separable filters. |
|
*/ |
|
class CV_EXPORTS BaseColumnFilter_GPU |
|
{ |
|
public: |
|
BaseColumnFilter_GPU(int ksize_, int anchor_) : ksize(ksize_), anchor(anchor_) {} |
|
virtual ~BaseColumnFilter_GPU() {} |
|
virtual void operator()(const GpuMat& src, GpuMat& dst, Stream& stream = Stream::Null()) = 0; |
|
int ksize, anchor; |
|
}; |
|
|
|
/*! |
|
The Base Class for Non-Separable 2D Filters. |
|
|
|
This is the base class for linear or non-linear 2D filters. |
|
*/ |
|
class CV_EXPORTS BaseFilter_GPU |
|
{ |
|
public: |
|
BaseFilter_GPU(const Size& ksize_, const Point& anchor_) : ksize(ksize_), anchor(anchor_) {} |
|
virtual ~BaseFilter_GPU() {} |
|
virtual void operator()(const GpuMat& src, GpuMat& dst, Stream& stream = Stream::Null()) = 0; |
|
Size ksize; |
|
Point anchor; |
|
}; |
|
|
|
/*! |
|
The Base Class for Filter Engine. |
|
|
|
The class can be used to apply an arbitrary filtering operation to an image. |
|
It contains all the necessary intermediate buffers. |
|
*/ |
|
class CV_EXPORTS FilterEngine_GPU |
|
{ |
|
public: |
|
virtual ~FilterEngine_GPU() {} |
|
|
|
virtual void apply(const GpuMat& src, GpuMat& dst, Rect roi = Rect(0,0,-1,-1), Stream& stream = Stream::Null()) = 0; |
|
}; |
|
|
|
//! returns the non-separable filter engine with the specified filter |
|
CV_EXPORTS Ptr<FilterEngine_GPU> createFilter2D_GPU(const Ptr<BaseFilter_GPU>& filter2D, int srcType, int dstType); |
|
|
|
//! returns the separable filter engine with the specified filters |
|
CV_EXPORTS Ptr<FilterEngine_GPU> createSeparableFilter_GPU(const Ptr<BaseRowFilter_GPU>& rowFilter, |
|
const Ptr<BaseColumnFilter_GPU>& columnFilter, int srcType, int bufType, int dstType); |
|
CV_EXPORTS Ptr<FilterEngine_GPU> createSeparableFilter_GPU(const Ptr<BaseRowFilter_GPU>& rowFilter, |
|
const Ptr<BaseColumnFilter_GPU>& columnFilter, int srcType, int bufType, int dstType, GpuMat& buf); |
|
|
|
//! returns horizontal 1D box filter |
|
//! supports only CV_8UC1 source type and CV_32FC1 sum type |
|
CV_EXPORTS Ptr<BaseRowFilter_GPU> getRowSumFilter_GPU(int srcType, int sumType, int ksize, int anchor = -1); |
|
|
|
//! returns vertical 1D box filter |
|
//! supports only CV_8UC1 sum type and CV_32FC1 dst type |
|
CV_EXPORTS Ptr<BaseColumnFilter_GPU> getColumnSumFilter_GPU(int sumType, int dstType, int ksize, int anchor = -1); |
|
|
|
//! returns 2D box filter |
|
//! supports CV_8UC1 and CV_8UC4 source type, dst type must be the same as source type |
|
CV_EXPORTS Ptr<BaseFilter_GPU> getBoxFilter_GPU(int srcType, int dstType, const Size& ksize, Point anchor = Point(-1, -1)); |
|
|
|
//! returns box filter engine |
|
CV_EXPORTS Ptr<FilterEngine_GPU> createBoxFilter_GPU(int srcType, int dstType, const Size& ksize, |
|
const Point& anchor = Point(-1,-1)); |
|
|
|
//! returns 2D morphological filter |
|
//! only MORPH_ERODE and MORPH_DILATE are supported |
|
//! supports CV_8UC1 and CV_8UC4 types |
|
//! kernel must have CV_8UC1 type, one rows and cols == ksize.width * ksize.height |
|
CV_EXPORTS Ptr<BaseFilter_GPU> getMorphologyFilter_GPU(int op, int type, const Mat& kernel, const Size& ksize, |
|
Point anchor=Point(-1,-1)); |
|
|
|
//! returns morphological filter engine. Only MORPH_ERODE and MORPH_DILATE are supported. |
|
CV_EXPORTS Ptr<FilterEngine_GPU> createMorphologyFilter_GPU(int op, int type, const Mat& kernel, |
|
const Point& anchor = Point(-1,-1), int iterations = 1); |
|
CV_EXPORTS Ptr<FilterEngine_GPU> createMorphologyFilter_GPU(int op, int type, const Mat& kernel, GpuMat& buf, |
|
const Point& anchor = Point(-1,-1), int iterations = 1); |
|
|
|
//! returns 2D filter with the specified kernel |
|
//! supports CV_8U, CV_16U and CV_32F one and four channel image |
|
CV_EXPORTS Ptr<BaseFilter_GPU> getLinearFilter_GPU(int srcType, int dstType, const Mat& kernel, Point anchor = Point(-1, -1), int borderType = BORDER_DEFAULT); |
|
|
|
//! returns the non-separable linear filter engine |
|
CV_EXPORTS Ptr<FilterEngine_GPU> createLinearFilter_GPU(int srcType, int dstType, const Mat& kernel, |
|
Point anchor = Point(-1,-1), int borderType = BORDER_DEFAULT); |
|
|
|
//! returns the primitive row filter with the specified kernel. |
|
//! supports only CV_8UC1, CV_8UC4, CV_16SC1, CV_16SC2, CV_32SC1, CV_32FC1 source type. |
|
//! there are two version of algorithm: NPP and OpenCV. |
|
//! NPP calls when srcType == CV_8UC1 or srcType == CV_8UC4 and bufType == srcType, |
|
//! otherwise calls OpenCV version. |
|
//! NPP supports only BORDER_CONSTANT border type. |
|
//! OpenCV version supports only CV_32F as buffer depth and |
|
//! BORDER_REFLECT101, BORDER_REPLICATE and BORDER_CONSTANT border types. |
|
CV_EXPORTS Ptr<BaseRowFilter_GPU> getLinearRowFilter_GPU(int srcType, int bufType, const Mat& rowKernel, |
|
int anchor = -1, int borderType = BORDER_DEFAULT); |
|
|
|
//! returns the primitive column filter with the specified kernel. |
|
//! supports only CV_8UC1, CV_8UC4, CV_16SC1, CV_16SC2, CV_32SC1, CV_32FC1 dst type. |
|
//! there are two version of algorithm: NPP and OpenCV. |
|
//! NPP calls when dstType == CV_8UC1 or dstType == CV_8UC4 and bufType == dstType, |
|
//! otherwise calls OpenCV version. |
|
//! NPP supports only BORDER_CONSTANT border type. |
|
//! OpenCV version supports only CV_32F as buffer depth and |
|
//! BORDER_REFLECT101, BORDER_REPLICATE and BORDER_CONSTANT border types. |
|
CV_EXPORTS Ptr<BaseColumnFilter_GPU> getLinearColumnFilter_GPU(int bufType, int dstType, const Mat& columnKernel, |
|
int anchor = -1, int borderType = BORDER_DEFAULT); |
|
|
|
//! returns the separable linear filter engine |
|
CV_EXPORTS Ptr<FilterEngine_GPU> createSeparableLinearFilter_GPU(int srcType, int dstType, const Mat& rowKernel, |
|
const Mat& columnKernel, const Point& anchor = Point(-1,-1), int rowBorderType = BORDER_DEFAULT, |
|
int columnBorderType = -1); |
|
CV_EXPORTS Ptr<FilterEngine_GPU> createSeparableLinearFilter_GPU(int srcType, int dstType, const Mat& rowKernel, |
|
const Mat& columnKernel, GpuMat& buf, const Point& anchor = Point(-1,-1), int rowBorderType = BORDER_DEFAULT, |
|
int columnBorderType = -1); |
|
|
|
//! returns filter engine for the generalized Sobel operator |
|
CV_EXPORTS Ptr<FilterEngine_GPU> createDerivFilter_GPU(int srcType, int dstType, int dx, int dy, int ksize, |
|
int rowBorderType = BORDER_DEFAULT, int columnBorderType = -1); |
|
CV_EXPORTS Ptr<FilterEngine_GPU> createDerivFilter_GPU(int srcType, int dstType, int dx, int dy, int ksize, GpuMat& buf, |
|
int rowBorderType = BORDER_DEFAULT, int columnBorderType = -1); |
|
|
|
//! returns the Gaussian filter engine |
|
CV_EXPORTS Ptr<FilterEngine_GPU> createGaussianFilter_GPU(int type, Size ksize, double sigma1, double sigma2 = 0, |
|
int rowBorderType = BORDER_DEFAULT, int columnBorderType = -1); |
|
CV_EXPORTS Ptr<FilterEngine_GPU> createGaussianFilter_GPU(int type, Size ksize, GpuMat& buf, double sigma1, double sigma2 = 0, |
|
int rowBorderType = BORDER_DEFAULT, int columnBorderType = -1); |
|
|
|
//! returns maximum filter |
|
CV_EXPORTS Ptr<BaseFilter_GPU> getMaxFilter_GPU(int srcType, int dstType, const Size& ksize, Point anchor = Point(-1,-1)); |
|
|
|
//! returns minimum filter |
|
CV_EXPORTS Ptr<BaseFilter_GPU> getMinFilter_GPU(int srcType, int dstType, const Size& ksize, Point anchor = Point(-1,-1)); |
|
|
|
//! smooths the image using the normalized box filter |
|
//! supports CV_8UC1, CV_8UC4 types |
|
CV_EXPORTS void boxFilter(const GpuMat& src, GpuMat& dst, int ddepth, Size ksize, Point anchor = Point(-1,-1), Stream& stream = Stream::Null()); |
|
|
|
//! a synonym for normalized box filter |
|
static inline void blur(const GpuMat& src, GpuMat& dst, Size ksize, Point anchor = Point(-1,-1), Stream& stream = Stream::Null()) |
|
{ |
|
boxFilter(src, dst, -1, ksize, anchor, stream); |
|
} |
|
|
|
//! erodes the image (applies the local minimum operator) |
|
CV_EXPORTS void erode(const GpuMat& src, GpuMat& dst, const Mat& kernel, Point anchor = Point(-1, -1), int iterations = 1); |
|
CV_EXPORTS void erode(const GpuMat& src, GpuMat& dst, const Mat& kernel, GpuMat& buf, |
|
Point anchor = Point(-1, -1), int iterations = 1, |
|
Stream& stream = Stream::Null()); |
|
|
|
//! dilates the image (applies the local maximum operator) |
|
CV_EXPORTS void dilate(const GpuMat& src, GpuMat& dst, const Mat& kernel, Point anchor = Point(-1, -1), int iterations = 1); |
|
CV_EXPORTS void dilate(const GpuMat& src, GpuMat& dst, const Mat& kernel, GpuMat& buf, |
|
Point anchor = Point(-1, -1), int iterations = 1, |
|
Stream& stream = Stream::Null()); |
|
|
|
//! applies an advanced morphological operation to the image |
|
CV_EXPORTS void morphologyEx(const GpuMat& src, GpuMat& dst, int op, const Mat& kernel, Point anchor = Point(-1, -1), int iterations = 1); |
|
CV_EXPORTS void morphologyEx(const GpuMat& src, GpuMat& dst, int op, const Mat& kernel, GpuMat& buf1, GpuMat& buf2, |
|
Point anchor = Point(-1, -1), int iterations = 1, Stream& stream = Stream::Null()); |
|
|
|
//! applies non-separable 2D linear filter to the image |
|
CV_EXPORTS void filter2D(const GpuMat& src, GpuMat& dst, int ddepth, const Mat& kernel, Point anchor=Point(-1,-1), int borderType = BORDER_DEFAULT, Stream& stream = Stream::Null()); |
|
|
|
//! applies separable 2D linear filter to the image |
|
CV_EXPORTS void sepFilter2D(const GpuMat& src, GpuMat& dst, int ddepth, const Mat& kernelX, const Mat& kernelY, |
|
Point anchor = Point(-1,-1), int rowBorderType = BORDER_DEFAULT, int columnBorderType = -1); |
|
CV_EXPORTS void sepFilter2D(const GpuMat& src, GpuMat& dst, int ddepth, const Mat& kernelX, const Mat& kernelY, GpuMat& buf, |
|
Point anchor = Point(-1,-1), int rowBorderType = BORDER_DEFAULT, int columnBorderType = -1, |
|
Stream& stream = Stream::Null()); |
|
|
|
//! applies generalized Sobel operator to the image |
|
CV_EXPORTS void Sobel(const GpuMat& src, GpuMat& dst, int ddepth, int dx, int dy, int ksize = 3, double scale = 1, |
|
int rowBorderType = BORDER_DEFAULT, int columnBorderType = -1); |
|
CV_EXPORTS void Sobel(const GpuMat& src, GpuMat& dst, int ddepth, int dx, int dy, GpuMat& buf, int ksize = 3, double scale = 1, |
|
int rowBorderType = BORDER_DEFAULT, int columnBorderType = -1, Stream& stream = Stream::Null()); |
|
|
|
//! applies the vertical or horizontal Scharr operator to the image |
|
CV_EXPORTS void Scharr(const GpuMat& src, GpuMat& dst, int ddepth, int dx, int dy, double scale = 1, |
|
int rowBorderType = BORDER_DEFAULT, int columnBorderType = -1); |
|
CV_EXPORTS void Scharr(const GpuMat& src, GpuMat& dst, int ddepth, int dx, int dy, GpuMat& buf, double scale = 1, |
|
int rowBorderType = BORDER_DEFAULT, int columnBorderType = -1, Stream& stream = Stream::Null()); |
|
|
|
//! smooths the image using Gaussian filter. |
|
CV_EXPORTS void GaussianBlur(const GpuMat& src, GpuMat& dst, Size ksize, double sigma1, double sigma2 = 0, |
|
int rowBorderType = BORDER_DEFAULT, int columnBorderType = -1); |
|
CV_EXPORTS void GaussianBlur(const GpuMat& src, GpuMat& dst, Size ksize, GpuMat& buf, double sigma1, double sigma2 = 0, |
|
int rowBorderType = BORDER_DEFAULT, int columnBorderType = -1, Stream& stream = Stream::Null()); |
|
|
|
//! applies Laplacian operator to the image |
|
//! supports only ksize = 1 and ksize = 3 |
|
CV_EXPORTS void Laplacian(const GpuMat& src, GpuMat& dst, int ddepth, int ksize = 1, double scale = 1, int borderType = BORDER_DEFAULT, Stream& stream = Stream::Null()); |
|
|
|
|
|
////////////////////////////// Arithmetics /////////////////////////////////// |
|
|
|
//! implements generalized matrix product algorithm GEMM from BLAS |
|
CV_EXPORTS void gemm(const GpuMat& src1, const GpuMat& src2, double alpha, |
|
const GpuMat& src3, double beta, GpuMat& dst, int flags = 0, Stream& stream = Stream::Null()); |
|
|
|
//! transposes the matrix |
|
//! supports matrix with element size = 1, 4 and 8 bytes (CV_8UC1, CV_8UC4, CV_16UC2, CV_32FC1, etc) |
|
CV_EXPORTS void transpose(const GpuMat& src1, GpuMat& dst, Stream& stream = Stream::Null()); |
|
|
|
//! reverses the order of the rows, columns or both in a matrix |
|
//! supports 1, 3 and 4 channels images with CV_8U, CV_16U, CV_32S or CV_32F depth |
|
CV_EXPORTS void flip(const GpuMat& a, GpuMat& b, int flipCode, Stream& stream = Stream::Null()); |
|
|
|
//! transforms 8-bit unsigned integers using lookup table: dst(i)=lut(src(i)) |
|
//! destination array will have the depth type as lut and the same channels number as source |
|
//! supports CV_8UC1, CV_8UC3 types |
|
CV_EXPORTS void LUT(const GpuMat& src, const Mat& lut, GpuMat& dst, Stream& stream = Stream::Null()); |
|
|
|
//! makes multi-channel array out of several single-channel arrays |
|
CV_EXPORTS void merge(const GpuMat* src, size_t n, GpuMat& dst, Stream& stream = Stream::Null()); |
|
|
|
//! makes multi-channel array out of several single-channel arrays |
|
CV_EXPORTS void merge(const std::vector<GpuMat>& src, GpuMat& dst, Stream& stream = Stream::Null()); |
|
|
|
//! copies each plane of a multi-channel array to a dedicated array |
|
CV_EXPORTS void split(const GpuMat& src, GpuMat* dst, Stream& stream = Stream::Null()); |
|
|
|
//! copies each plane of a multi-channel array to a dedicated array |
|
CV_EXPORTS void split(const GpuMat& src, std::vector<GpuMat>& dst, Stream& stream = Stream::Null()); |
|
|
|
//! computes magnitude of complex (x(i).re, x(i).im) vector |
|
//! supports only CV_32FC2 type |
|
CV_EXPORTS void magnitude(const GpuMat& xy, GpuMat& magnitude, Stream& stream = Stream::Null()); |
|
|
|
//! computes squared magnitude of complex (x(i).re, x(i).im) vector |
|
//! supports only CV_32FC2 type |
|
CV_EXPORTS void magnitudeSqr(const GpuMat& xy, GpuMat& magnitude, Stream& stream = Stream::Null()); |
|
|
|
//! computes magnitude of each (x(i), y(i)) vector |
|
//! supports only floating-point source |
|
CV_EXPORTS void magnitude(const GpuMat& x, const GpuMat& y, GpuMat& magnitude, Stream& stream = Stream::Null()); |
|
|
|
//! computes squared magnitude of each (x(i), y(i)) vector |
|
//! supports only floating-point source |
|
CV_EXPORTS void magnitudeSqr(const GpuMat& x, const GpuMat& y, GpuMat& magnitude, Stream& stream = Stream::Null()); |
|
|
|
//! computes angle (angle(i)) of each (x(i), y(i)) vector |
|
//! supports only floating-point source |
|
CV_EXPORTS void phase(const GpuMat& x, const GpuMat& y, GpuMat& angle, bool angleInDegrees = false, Stream& stream = Stream::Null()); |
|
|
|
//! converts Cartesian coordinates to polar |
|
//! supports only floating-point source |
|
CV_EXPORTS void cartToPolar(const GpuMat& x, const GpuMat& y, GpuMat& magnitude, GpuMat& angle, bool angleInDegrees = false, Stream& stream = Stream::Null()); |
|
|
|
//! converts polar coordinates to Cartesian |
|
//! supports only floating-point source |
|
CV_EXPORTS void polarToCart(const GpuMat& magnitude, const GpuMat& angle, GpuMat& x, GpuMat& y, bool angleInDegrees = false, Stream& stream = Stream::Null()); |
|
|
|
//! scales and shifts array elements so that either the specified norm (alpha) or the minimum (alpha) and maximum (beta) array values get the specified values |
|
CV_EXPORTS void normalize(const GpuMat& src, GpuMat& dst, double alpha = 1, double beta = 0, |
|
int norm_type = NORM_L2, int dtype = -1, const GpuMat& mask = GpuMat()); |
|
CV_EXPORTS void normalize(const GpuMat& src, GpuMat& dst, double a, double b, |
|
int norm_type, int dtype, const GpuMat& mask, GpuMat& norm_buf, GpuMat& cvt_buf); |
|
|
|
|
|
//////////////////////////// Per-element operations //////////////////////////////////// |
|
|
|
//! adds one matrix to another (c = a + b) |
|
CV_EXPORTS void add(const GpuMat& a, const GpuMat& b, GpuMat& c, const GpuMat& mask = GpuMat(), int dtype = -1, Stream& stream = Stream::Null()); |
|
//! adds scalar to a matrix (c = a + s) |
|
CV_EXPORTS void add(const GpuMat& a, const Scalar& sc, GpuMat& c, const GpuMat& mask = GpuMat(), int dtype = -1, Stream& stream = Stream::Null()); |
|
|
|
//! subtracts one matrix from another (c = a - b) |
|
CV_EXPORTS void subtract(const GpuMat& a, const GpuMat& b, GpuMat& c, const GpuMat& mask = GpuMat(), int dtype = -1, Stream& stream = Stream::Null()); |
|
//! subtracts scalar from a matrix (c = a - s) |
|
CV_EXPORTS void subtract(const GpuMat& a, const Scalar& sc, GpuMat& c, const GpuMat& mask = GpuMat(), int dtype = -1, Stream& stream = Stream::Null()); |
|
|
|
//! computes element-wise weighted product of the two arrays (c = scale * a * b) |
|
CV_EXPORTS void multiply(const GpuMat& a, const GpuMat& b, GpuMat& c, double scale = 1, int dtype = -1, Stream& stream = Stream::Null()); |
|
//! weighted multiplies matrix to a scalar (c = scale * a * s) |
|
CV_EXPORTS void multiply(const GpuMat& a, const Scalar& sc, GpuMat& c, double scale = 1, int dtype = -1, Stream& stream = Stream::Null()); |
|
|
|
//! computes element-wise weighted quotient of the two arrays (c = a / b) |
|
CV_EXPORTS void divide(const GpuMat& a, const GpuMat& b, GpuMat& c, double scale = 1, int dtype = -1, Stream& stream = Stream::Null()); |
|
//! computes element-wise weighted quotient of matrix and scalar (c = a / s) |
|
CV_EXPORTS void divide(const GpuMat& a, const Scalar& sc, GpuMat& c, double scale = 1, int dtype = -1, Stream& stream = Stream::Null()); |
|
//! computes element-wise weighted reciprocal of an array (dst = scale/src2) |
|
CV_EXPORTS void divide(double scale, const GpuMat& b, GpuMat& c, int dtype = -1, Stream& stream = Stream::Null()); |
|
|
|
//! computes the weighted sum of two arrays (dst = alpha*src1 + beta*src2 + gamma) |
|
CV_EXPORTS void addWeighted(const GpuMat& src1, double alpha, const GpuMat& src2, double beta, double gamma, GpuMat& dst, |
|
int dtype = -1, Stream& stream = Stream::Null()); |
|
|
|
//! adds scaled array to another one (dst = alpha*src1 + src2) |
|
static inline void scaleAdd(const GpuMat& src1, double alpha, const GpuMat& src2, GpuMat& dst, Stream& stream = Stream::Null()) |
|
{ |
|
addWeighted(src1, alpha, src2, 1.0, 0.0, dst, -1, stream); |
|
} |
|
|
|
//! computes element-wise absolute difference of two arrays (c = abs(a - b)) |
|
CV_EXPORTS void absdiff(const GpuMat& a, const GpuMat& b, GpuMat& c, Stream& stream = Stream::Null()); |
|
//! computes element-wise absolute difference of array and scalar (c = abs(a - s)) |
|
CV_EXPORTS void absdiff(const GpuMat& a, const Scalar& s, GpuMat& c, Stream& stream = Stream::Null()); |
|
|
|
//! computes absolute value of each matrix element |
|
//! supports CV_16S and CV_32F depth |
|
CV_EXPORTS void abs(const GpuMat& src, GpuMat& dst, Stream& stream = Stream::Null()); |
|
|
|
//! computes square of each pixel in an image |
|
//! supports CV_8U, CV_16U, CV_16S and CV_32F depth |
|
CV_EXPORTS void sqr(const GpuMat& src, GpuMat& dst, Stream& stream = Stream::Null()); |
|
|
|
//! computes square root of each pixel in an image |
|
//! supports CV_8U, CV_16U, CV_16S and CV_32F depth |
|
CV_EXPORTS void sqrt(const GpuMat& src, GpuMat& dst, Stream& stream = Stream::Null()); |
|
|
|
//! computes exponent of each matrix element (b = e**a) |
|
//! supports CV_8U, CV_16U, CV_16S and CV_32F depth |
|
CV_EXPORTS void exp(const GpuMat& a, GpuMat& b, Stream& stream = Stream::Null()); |
|
|
|
//! computes natural logarithm of absolute value of each matrix element: b = log(abs(a)) |
|
//! supports CV_8U, CV_16U, CV_16S and CV_32F depth |
|
CV_EXPORTS void log(const GpuMat& a, GpuMat& b, Stream& stream = Stream::Null()); |
|
|
|
//! computes power of each matrix element: |
|
// (dst(i,j) = pow( src(i,j) , power), if src.type() is integer |
|
// (dst(i,j) = pow(fabs(src(i,j)), power), otherwise |
|
//! supports all, except depth == CV_64F |
|
CV_EXPORTS void pow(const GpuMat& src, double power, GpuMat& dst, Stream& stream = Stream::Null()); |
|
|
|
//! compares elements of two arrays (c = a <cmpop> b) |
|
CV_EXPORTS void compare(const GpuMat& a, const GpuMat& b, GpuMat& c, int cmpop, Stream& stream = Stream::Null()); |
|
CV_EXPORTS void compare(const GpuMat& a, Scalar sc, GpuMat& c, int cmpop, Stream& stream = Stream::Null()); |
|
|
|
//! performs per-elements bit-wise inversion |
|
CV_EXPORTS void bitwise_not(const GpuMat& src, GpuMat& dst, const GpuMat& mask=GpuMat(), Stream& stream = Stream::Null()); |
|
|
|
//! calculates per-element bit-wise disjunction of two arrays |
|
CV_EXPORTS void bitwise_or(const GpuMat& src1, const GpuMat& src2, GpuMat& dst, const GpuMat& mask=GpuMat(), Stream& stream = Stream::Null()); |
|
//! calculates per-element bit-wise disjunction of array and scalar |
|
//! supports 1, 3 and 4 channels images with CV_8U, CV_16U or CV_32S depth |
|
CV_EXPORTS void bitwise_or(const GpuMat& src1, const Scalar& sc, GpuMat& dst, Stream& stream = Stream::Null()); |
|
|
|
//! calculates per-element bit-wise conjunction of two arrays |
|
CV_EXPORTS void bitwise_and(const GpuMat& src1, const GpuMat& src2, GpuMat& dst, const GpuMat& mask=GpuMat(), Stream& stream = Stream::Null()); |
|
//! calculates per-element bit-wise conjunction of array and scalar |
|
//! supports 1, 3 and 4 channels images with CV_8U, CV_16U or CV_32S depth |
|
CV_EXPORTS void bitwise_and(const GpuMat& src1, const Scalar& sc, GpuMat& dst, Stream& stream = Stream::Null()); |
|
|
|
//! calculates per-element bit-wise "exclusive or" operation |
|
CV_EXPORTS void bitwise_xor(const GpuMat& src1, const GpuMat& src2, GpuMat& dst, const GpuMat& mask=GpuMat(), Stream& stream = Stream::Null()); |
|
//! calculates per-element bit-wise "exclusive or" of array and scalar |
|
//! supports 1, 3 and 4 channels images with CV_8U, CV_16U or CV_32S depth |
|
CV_EXPORTS void bitwise_xor(const GpuMat& src1, const Scalar& sc, GpuMat& dst, Stream& stream = Stream::Null()); |
|
|
|
//! pixel by pixel right shift of an image by a constant value |
|
//! supports 1, 3 and 4 channels images with integers elements |
|
CV_EXPORTS void rshift(const GpuMat& src, Scalar_<int> sc, GpuMat& dst, Stream& stream = Stream::Null()); |
|
|
|
//! pixel by pixel left shift of an image by a constant value |
|
//! supports 1, 3 and 4 channels images with CV_8U, CV_16U or CV_32S depth |
|
CV_EXPORTS void lshift(const GpuMat& src, Scalar_<int> sc, GpuMat& dst, Stream& stream = Stream::Null()); |
|
|
|
//! computes per-element minimum of two arrays (dst = min(src1, src2)) |
|
CV_EXPORTS void min(const GpuMat& src1, const GpuMat& src2, GpuMat& dst, Stream& stream = Stream::Null()); |
|
|
|
//! computes per-element minimum of array and scalar (dst = min(src1, src2)) |
|
CV_EXPORTS void min(const GpuMat& src1, double src2, GpuMat& dst, Stream& stream = Stream::Null()); |
|
|
|
//! computes per-element maximum of two arrays (dst = max(src1, src2)) |
|
CV_EXPORTS void max(const GpuMat& src1, const GpuMat& src2, GpuMat& dst, Stream& stream = Stream::Null()); |
|
|
|
//! computes per-element maximum of array and scalar (dst = max(src1, src2)) |
|
CV_EXPORTS void max(const GpuMat& src1, double src2, GpuMat& dst, Stream& stream = Stream::Null()); |
|
|
|
enum { ALPHA_OVER, ALPHA_IN, ALPHA_OUT, ALPHA_ATOP, ALPHA_XOR, ALPHA_PLUS, ALPHA_OVER_PREMUL, ALPHA_IN_PREMUL, ALPHA_OUT_PREMUL, |
|
ALPHA_ATOP_PREMUL, ALPHA_XOR_PREMUL, ALPHA_PLUS_PREMUL, ALPHA_PREMUL}; |
|
|
|
//! Composite two images using alpha opacity values contained in each image |
|
//! Supports CV_8UC4, CV_16UC4, CV_32SC4 and CV_32FC4 types |
|
CV_EXPORTS void alphaComp(const GpuMat& img1, const GpuMat& img2, GpuMat& dst, int alpha_op, Stream& stream = Stream::Null()); |
|
|
|
|
|
////////////////////////////// Image processing ////////////////////////////// |
|
|
|
//! DST[x,y] = SRC[xmap[x,y],ymap[x,y]] |
|
//! supports only CV_32FC1 map type |
|
CV_EXPORTS void remap(const GpuMat& src, GpuMat& dst, const GpuMat& xmap, const GpuMat& ymap, |
|
int interpolation, int borderMode = BORDER_CONSTANT, Scalar borderValue = Scalar(), |
|
Stream& stream = Stream::Null()); |
|
|
|
//! Does mean shift filtering on GPU. |
|
CV_EXPORTS void meanShiftFiltering(const GpuMat& src, GpuMat& dst, int sp, int sr, |
|
TermCriteria criteria = TermCriteria(TermCriteria::MAX_ITER + TermCriteria::EPS, 5, 1), |
|
Stream& stream = Stream::Null()); |
|
|
|
//! Does mean shift procedure on GPU. |
|
CV_EXPORTS void meanShiftProc(const GpuMat& src, GpuMat& dstr, GpuMat& dstsp, int sp, int sr, |
|
TermCriteria criteria = TermCriteria(TermCriteria::MAX_ITER + TermCriteria::EPS, 5, 1), |
|
Stream& stream = Stream::Null()); |
|
|
|
//! Does mean shift segmentation with elimination of small regions. |
|
CV_EXPORTS void meanShiftSegmentation(const GpuMat& src, Mat& dst, int sp, int sr, int minsize, |
|
TermCriteria criteria = TermCriteria(TermCriteria::MAX_ITER + TermCriteria::EPS, 5, 1)); |
|
|
|
//! Does coloring of disparity image: [0..ndisp) -> [0..240, 1, 1] in HSV. |
|
//! Supported types of input disparity: CV_8U, CV_16S. |
|
//! Output disparity has CV_8UC4 type in BGRA format (alpha = 255). |
|
CV_EXPORTS void drawColorDisp(const GpuMat& src_disp, GpuMat& dst_disp, int ndisp, Stream& stream = Stream::Null()); |
|
|
|
//! Reprojects disparity image to 3D space. |
|
//! Supports CV_8U and CV_16S types of input disparity. |
|
//! The output is a 3- or 4-channel floating-point matrix. |
|
//! Each element of this matrix will contain the 3D coordinates of the point (x,y,z,1), computed from the disparity map. |
|
//! Q is the 4x4 perspective transformation matrix that can be obtained with cvStereoRectify. |
|
CV_EXPORTS void reprojectImageTo3D(const GpuMat& disp, GpuMat& xyzw, const Mat& Q, int dst_cn = 4, Stream& stream = Stream::Null()); |
|
|
|
//! converts image from one color space to another |
|
CV_EXPORTS void cvtColor(const GpuMat& src, GpuMat& dst, int code, int dcn = 0, Stream& stream = Stream::Null()); |
|
|
|
enum |
|
{ |
|
// Bayer Demosaicing (Malvar, He, and Cutler) |
|
COLOR_BayerBG2BGR_MHT = 256, |
|
COLOR_BayerGB2BGR_MHT = 257, |
|
COLOR_BayerRG2BGR_MHT = 258, |
|
COLOR_BayerGR2BGR_MHT = 259, |
|
|
|
COLOR_BayerBG2RGB_MHT = COLOR_BayerRG2BGR_MHT, |
|
COLOR_BayerGB2RGB_MHT = COLOR_BayerGR2BGR_MHT, |
|
COLOR_BayerRG2RGB_MHT = COLOR_BayerBG2BGR_MHT, |
|
COLOR_BayerGR2RGB_MHT = COLOR_BayerGB2BGR_MHT, |
|
|
|
COLOR_BayerBG2GRAY_MHT = 260, |
|
COLOR_BayerGB2GRAY_MHT = 261, |
|
COLOR_BayerRG2GRAY_MHT = 262, |
|
COLOR_BayerGR2GRAY_MHT = 263 |
|
}; |
|
CV_EXPORTS void demosaicing(const GpuMat& src, GpuMat& dst, int code, int dcn = -1, Stream& stream = Stream::Null()); |
|
|
|
//! swap channels |
|
//! dstOrder - Integer array describing how channel values are permutated. The n-th entry |
|
//! of the array contains the number of the channel that is stored in the n-th channel of |
|
//! the output image. E.g. Given an RGBA image, aDstOrder = [3,2,1,0] converts this to ABGR |
|
//! channel order. |
|
CV_EXPORTS void swapChannels(GpuMat& image, const int dstOrder[4], Stream& stream = Stream::Null()); |
|
|
|
//! Routines for correcting image color gamma |
|
CV_EXPORTS void gammaCorrection(const GpuMat& src, GpuMat& dst, bool forward = true, Stream& stream = Stream::Null()); |
|
|
|
//! applies fixed threshold to the image |
|
CV_EXPORTS double threshold(const GpuMat& src, GpuMat& dst, double thresh, double maxval, int type, Stream& stream = Stream::Null()); |
|
|
|
//! resizes the image |
|
//! Supports INTER_NEAREST, INTER_LINEAR, INTER_CUBIC, INTER_AREA |
|
CV_EXPORTS void resize(const GpuMat& src, GpuMat& dst, Size dsize, double fx=0, double fy=0, int interpolation = INTER_LINEAR, Stream& stream = Stream::Null()); |
|
|
|
//! warps the image using affine transformation |
|
//! Supports INTER_NEAREST, INTER_LINEAR, INTER_CUBIC |
|
CV_EXPORTS void warpAffine(const GpuMat& src, GpuMat& dst, const Mat& M, Size dsize, int flags = INTER_LINEAR, |
|
int borderMode = BORDER_CONSTANT, Scalar borderValue = Scalar(), Stream& stream = Stream::Null()); |
|
|
|
CV_EXPORTS void buildWarpAffineMaps(const Mat& M, bool inverse, Size dsize, GpuMat& xmap, GpuMat& ymap, Stream& stream = Stream::Null()); |
|
|
|
//! warps the image using perspective transformation |
|
//! Supports INTER_NEAREST, INTER_LINEAR, INTER_CUBIC |
|
CV_EXPORTS void warpPerspective(const GpuMat& src, GpuMat& dst, const Mat& M, Size dsize, int flags = INTER_LINEAR, |
|
int borderMode = BORDER_CONSTANT, Scalar borderValue = Scalar(), Stream& stream = Stream::Null()); |
|
|
|
CV_EXPORTS void buildWarpPerspectiveMaps(const Mat& M, bool inverse, Size dsize, GpuMat& xmap, GpuMat& ymap, Stream& stream = Stream::Null()); |
|
|
|
//! builds plane warping maps |
|
CV_EXPORTS void buildWarpPlaneMaps(Size src_size, Rect dst_roi, const Mat &K, const Mat& R, const Mat &T, float scale, |
|
GpuMat& map_x, GpuMat& map_y, Stream& stream = Stream::Null()); |
|
|
|
//! builds cylindrical warping maps |
|
CV_EXPORTS void buildWarpCylindricalMaps(Size src_size, Rect dst_roi, const Mat &K, const Mat& R, float scale, |
|
GpuMat& map_x, GpuMat& map_y, Stream& stream = Stream::Null()); |
|
|
|
//! builds spherical warping maps |
|
CV_EXPORTS void buildWarpSphericalMaps(Size src_size, Rect dst_roi, const Mat &K, const Mat& R, float scale, |
|
GpuMat& map_x, GpuMat& map_y, Stream& stream = Stream::Null()); |
|
|
|
//! rotates an image around the origin (0,0) and then shifts it |
|
//! supports INTER_NEAREST, INTER_LINEAR, INTER_CUBIC |
|
//! supports 1, 3 or 4 channels images with CV_8U, CV_16U or CV_32F depth |
|
CV_EXPORTS void rotate(const GpuMat& src, GpuMat& dst, Size dsize, double angle, double xShift = 0, double yShift = 0, |
|
int interpolation = INTER_LINEAR, Stream& stream = Stream::Null()); |
|
|
|
//! copies 2D array to a larger destination array and pads borders with user-specifiable constant |
|
CV_EXPORTS void copyMakeBorder(const GpuMat& src, GpuMat& dst, int top, int bottom, int left, int right, int borderType, |
|
const Scalar& value = Scalar(), Stream& stream = Stream::Null()); |
|
|
|
//! computes the integral image |
|
//! sum will have CV_32S type, but will contain unsigned int values |
|
//! supports only CV_8UC1 source type |
|
CV_EXPORTS void integral(const GpuMat& src, GpuMat& sum, Stream& stream = Stream::Null()); |
|
//! buffered version |
|
CV_EXPORTS void integralBuffered(const GpuMat& src, GpuMat& sum, GpuMat& buffer, Stream& stream = Stream::Null()); |
|
|
|
//! computes squared integral image |
|
//! result matrix will have 64F type, but will contain 64U values |
|
//! supports source images of 8UC1 type only |
|
CV_EXPORTS void sqrIntegral(const GpuMat& src, GpuMat& sqsum, Stream& stream = Stream::Null()); |
|
|
|
//! computes vertical sum, supports only CV_32FC1 images |
|
CV_EXPORTS void columnSum(const GpuMat& src, GpuMat& sum); |
|
|
|
//! computes the standard deviation of integral images |
|
//! supports only CV_32SC1 source type and CV_32FC1 sqr type |
|
//! output will have CV_32FC1 type |
|
CV_EXPORTS void rectStdDev(const GpuMat& src, const GpuMat& sqr, GpuMat& dst, const Rect& rect, Stream& stream = Stream::Null()); |
|
|
|
//! computes Harris cornerness criteria at each image pixel |
|
CV_EXPORTS void cornerHarris(const GpuMat& src, GpuMat& dst, int blockSize, int ksize, double k, int borderType = BORDER_REFLECT101); |
|
CV_EXPORTS void cornerHarris(const GpuMat& src, GpuMat& dst, GpuMat& Dx, GpuMat& Dy, int blockSize, int ksize, double k, int borderType = BORDER_REFLECT101); |
|
CV_EXPORTS void cornerHarris(const GpuMat& src, GpuMat& dst, GpuMat& Dx, GpuMat& Dy, GpuMat& buf, int blockSize, int ksize, double k, |
|
int borderType = BORDER_REFLECT101, Stream& stream = Stream::Null()); |
|
|
|
//! computes minimum eigen value of 2x2 derivative covariation matrix at each pixel - the cornerness criteria |
|
CV_EXPORTS void cornerMinEigenVal(const GpuMat& src, GpuMat& dst, int blockSize, int ksize, int borderType=BORDER_REFLECT101); |
|
CV_EXPORTS void cornerMinEigenVal(const GpuMat& src, GpuMat& dst, GpuMat& Dx, GpuMat& Dy, int blockSize, int ksize, int borderType=BORDER_REFLECT101); |
|
CV_EXPORTS void cornerMinEigenVal(const GpuMat& src, GpuMat& dst, GpuMat& Dx, GpuMat& Dy, GpuMat& buf, int blockSize, int ksize, |
|
int borderType=BORDER_REFLECT101, Stream& stream = Stream::Null()); |
|
|
|
//! performs per-element multiplication of two full (not packed) Fourier spectrums |
|
//! supports 32FC2 matrixes only (interleaved format) |
|
CV_EXPORTS void mulSpectrums(const GpuMat& a, const GpuMat& b, GpuMat& c, int flags, bool conjB=false, Stream& stream = Stream::Null()); |
|
|
|
//! performs per-element multiplication of two full (not packed) Fourier spectrums |
|
//! supports 32FC2 matrixes only (interleaved format) |
|
CV_EXPORTS void mulAndScaleSpectrums(const GpuMat& a, const GpuMat& b, GpuMat& c, int flags, float scale, bool conjB=false, Stream& stream = Stream::Null()); |
|
|
|
//! Performs a forward or inverse discrete Fourier transform (1D or 2D) of floating point matrix. |
|
//! Param dft_size is the size of DFT transform. |
|
//! |
|
//! If the source matrix is not continous, then additional copy will be done, |
|
//! so to avoid copying ensure the source matrix is continous one. If you want to use |
|
//! preallocated output ensure it is continuous too, otherwise it will be reallocated. |
|
//! |
|
//! Being implemented via CUFFT real-to-complex transform result contains only non-redundant values |
|
//! in CUFFT's format. Result as full complex matrix for such kind of transform cannot be retrieved. |
|
//! |
|
//! For complex-to-real transform it is assumed that the source matrix is packed in CUFFT's format. |
|
CV_EXPORTS void dft(const GpuMat& src, GpuMat& dst, Size dft_size, int flags=0, Stream& stream = Stream::Null()); |
|
|
|
struct CV_EXPORTS ConvolveBuf |
|
{ |
|
Size result_size; |
|
Size block_size; |
|
Size user_block_size; |
|
Size dft_size; |
|
int spect_len; |
|
|
|
GpuMat image_spect, templ_spect, result_spect; |
|
GpuMat image_block, templ_block, result_data; |
|
|
|
void create(Size image_size, Size templ_size); |
|
static Size estimateBlockSize(Size result_size, Size templ_size); |
|
}; |
|
|
|
|
|
//! computes convolution (or cross-correlation) of two images using discrete Fourier transform |
|
//! supports source images of 32FC1 type only |
|
//! result matrix will have 32FC1 type |
|
CV_EXPORTS void convolve(const GpuMat& image, const GpuMat& templ, GpuMat& result, bool ccorr = false); |
|
CV_EXPORTS void convolve(const GpuMat& image, const GpuMat& templ, GpuMat& result, bool ccorr, ConvolveBuf& buf, Stream& stream = Stream::Null()); |
|
|
|
struct CV_EXPORTS MatchTemplateBuf |
|
{ |
|
Size user_block_size; |
|
GpuMat imagef, templf; |
|
std::vector<GpuMat> images; |
|
std::vector<GpuMat> image_sums; |
|
std::vector<GpuMat> image_sqsums; |
|
}; |
|
|
|
//! computes the proximity map for the raster template and the image where the template is searched for |
|
CV_EXPORTS void matchTemplate(const GpuMat& image, const GpuMat& templ, GpuMat& result, int method, Stream &stream = Stream::Null()); |
|
|
|
//! computes the proximity map for the raster template and the image where the template is searched for |
|
CV_EXPORTS void matchTemplate(const GpuMat& image, const GpuMat& templ, GpuMat& result, int method, MatchTemplateBuf &buf, Stream& stream = Stream::Null()); |
|
|
|
//! smoothes the source image and downsamples it |
|
CV_EXPORTS void pyrDown(const GpuMat& src, GpuMat& dst, Stream& stream = Stream::Null()); |
|
|
|
//! upsamples the source image and then smoothes it |
|
CV_EXPORTS void pyrUp(const GpuMat& src, GpuMat& dst, Stream& stream = Stream::Null()); |
|
|
|
//! performs linear blending of two images |
|
//! to avoid accuracy errors sum of weigths shouldn't be very close to zero |
|
CV_EXPORTS void blendLinear(const GpuMat& img1, const GpuMat& img2, const GpuMat& weights1, const GpuMat& weights2, |
|
GpuMat& result, Stream& stream = Stream::Null()); |
|
|
|
//! Performa bilateral filtering of passsed image |
|
CV_EXPORTS void bilateralFilter(const GpuMat& src, GpuMat& dst, int kernel_size, float sigma_color, float sigma_spatial, |
|
int borderMode = BORDER_DEFAULT, Stream& stream = Stream::Null()); |
|
|
|
//! Brute force non-local means algorith (slow but universal) |
|
CV_EXPORTS void nonLocalMeans(const GpuMat& src, GpuMat& dst, float h, int search_window = 21, int block_size = 7, int borderMode = BORDER_DEFAULT, Stream& s = Stream::Null()); |
|
|
|
//! Fast (but approximate)version of non-local means algorith similar to CPU function (running sums technique) |
|
class CV_EXPORTS FastNonLocalMeansDenoising |
|
{ |
|
public: |
|
//! Simple method, recommended for grayscale images (though it supports multichannel images) |
|
void simpleMethod(const GpuMat& src, GpuMat& dst, float h, int search_window = 21, int block_size = 7, Stream& s = Stream::Null()); |
|
|
|
//! Processes luminance and color components separatelly |
|
void labMethod(const GpuMat& src, GpuMat& dst, float h_luminance, float h_color, int search_window = 21, int block_size = 7, Stream& s = Stream::Null()); |
|
|
|
private: |
|
|
|
GpuMat buffer, extended_src_buffer; |
|
GpuMat lab, l, ab; |
|
}; |
|
|
|
struct CV_EXPORTS CannyBuf |
|
{ |
|
void create(const Size& image_size, int apperture_size = 3); |
|
void release(); |
|
|
|
GpuMat dx, dy; |
|
GpuMat mag; |
|
GpuMat map; |
|
GpuMat st1, st2; |
|
Ptr<FilterEngine_GPU> filterDX, filterDY; |
|
}; |
|
|
|
CV_EXPORTS void Canny(const GpuMat& image, GpuMat& edges, double low_thresh, double high_thresh, int apperture_size = 3, bool L2gradient = false); |
|
CV_EXPORTS void Canny(const GpuMat& image, CannyBuf& buf, GpuMat& edges, double low_thresh, double high_thresh, int apperture_size = 3, bool L2gradient = false); |
|
CV_EXPORTS void Canny(const GpuMat& dx, const GpuMat& dy, GpuMat& edges, double low_thresh, double high_thresh, bool L2gradient = false); |
|
CV_EXPORTS void Canny(const GpuMat& dx, const GpuMat& dy, CannyBuf& buf, GpuMat& edges, double low_thresh, double high_thresh, bool L2gradient = false); |
|
|
|
class CV_EXPORTS ImagePyramid |
|
{ |
|
public: |
|
inline ImagePyramid() : nLayers_(0) {} |
|
inline ImagePyramid(const GpuMat& img, int nLayers, Stream& stream = Stream::Null()) |
|
{ |
|
build(img, nLayers, stream); |
|
} |
|
|
|
void build(const GpuMat& img, int nLayers, Stream& stream = Stream::Null()); |
|
|
|
void getLayer(GpuMat& outImg, Size outRoi, Stream& stream = Stream::Null()) const; |
|
|
|
inline void release() |
|
{ |
|
layer0_.release(); |
|
pyramid_.clear(); |
|
nLayers_ = 0; |
|
} |
|
|
|
private: |
|
GpuMat layer0_; |
|
std::vector<GpuMat> pyramid_; |
|
int nLayers_; |
|
}; |
|
|
|
//! HoughLines |
|
|
|
struct HoughLinesBuf |
|
{ |
|
GpuMat accum; |
|
GpuMat list; |
|
}; |
|
|
|
CV_EXPORTS void HoughLines(const GpuMat& src, GpuMat& lines, float rho, float theta, int threshold, bool doSort = false, int maxLines = 4096); |
|
CV_EXPORTS void HoughLines(const GpuMat& src, GpuMat& lines, HoughLinesBuf& buf, float rho, float theta, int threshold, bool doSort = false, int maxLines = 4096); |
|
CV_EXPORTS void HoughLinesDownload(const GpuMat& d_lines, OutputArray h_lines, OutputArray h_votes = noArray()); |
|
|
|
//! HoughLinesP |
|
|
|
//! finds line segments in the black-n-white image using probabalistic Hough transform |
|
CV_EXPORTS void HoughLinesP(const GpuMat& image, GpuMat& lines, HoughLinesBuf& buf, float rho, float theta, int minLineLength, int maxLineGap, int maxLines = 4096); |
|
|
|
//! HoughCircles |
|
|
|
struct HoughCirclesBuf |
|
{ |
|
GpuMat edges; |
|
GpuMat accum; |
|
GpuMat list; |
|
CannyBuf cannyBuf; |
|
}; |
|
|
|
CV_EXPORTS void HoughCircles(const GpuMat& src, GpuMat& circles, int method, float dp, float minDist, int cannyThreshold, int votesThreshold, int minRadius, int maxRadius, int maxCircles = 4096); |
|
CV_EXPORTS void HoughCircles(const GpuMat& src, GpuMat& circles, HoughCirclesBuf& buf, int method, float dp, float minDist, int cannyThreshold, int votesThreshold, int minRadius, int maxRadius, int maxCircles = 4096); |
|
CV_EXPORTS void HoughCirclesDownload(const GpuMat& d_circles, OutputArray h_circles); |
|
|
|
//! finds arbitrary template in the grayscale image using Generalized Hough Transform |
|
//! Ballard, D.H. (1981). Generalizing the Hough transform to detect arbitrary shapes. Pattern Recognition 13 (2): 111-122. |
|
//! Guil, N., González-Linares, J.M. and Zapata, E.L. (1999). Bidimensional shape detection using an invariant approach. Pattern Recognition 32 (6): 1025-1038. |
|
class CV_EXPORTS GeneralizedHough_GPU : public cv::Algorithm |
|
{ |
|
public: |
|
static Ptr<GeneralizedHough_GPU> create(int method); |
|
|
|
virtual ~GeneralizedHough_GPU(); |
|
|
|
//! set template to search |
|
void setTemplate(const GpuMat& templ, int cannyThreshold = 100, Point templCenter = Point(-1, -1)); |
|
void setTemplate(const GpuMat& edges, const GpuMat& dx, const GpuMat& dy, Point templCenter = Point(-1, -1)); |
|
|
|
//! find template on image |
|
void detect(const GpuMat& image, GpuMat& positions, int cannyThreshold = 100); |
|
void detect(const GpuMat& edges, const GpuMat& dx, const GpuMat& dy, GpuMat& positions); |
|
|
|
void download(const GpuMat& d_positions, OutputArray h_positions, OutputArray h_votes = noArray()); |
|
|
|
void release(); |
|
|
|
protected: |
|
virtual void setTemplateImpl(const GpuMat& edges, const GpuMat& dx, const GpuMat& dy, Point templCenter) = 0; |
|
virtual void detectImpl(const GpuMat& edges, const GpuMat& dx, const GpuMat& dy, GpuMat& positions) = 0; |
|
virtual void releaseImpl() = 0; |
|
|
|
private: |
|
GpuMat edges_; |
|
CannyBuf cannyBuf_; |
|
}; |
|
|
|
////////////////////////////// Matrix reductions ////////////////////////////// |
|
|
|
//! computes mean value and standard deviation of all or selected array elements |
|
//! supports only CV_8UC1 type |
|
CV_EXPORTS void meanStdDev(const GpuMat& mtx, Scalar& mean, Scalar& stddev); |
|
//! buffered version |
|
CV_EXPORTS void meanStdDev(const GpuMat& mtx, Scalar& mean, Scalar& stddev, GpuMat& buf); |
|
|
|
//! computes norm of array |
|
//! supports NORM_INF, NORM_L1, NORM_L2 |
|
//! supports all matrices except 64F |
|
CV_EXPORTS double norm(const GpuMat& src1, int normType=NORM_L2); |
|
CV_EXPORTS double norm(const GpuMat& src1, int normType, GpuMat& buf); |
|
CV_EXPORTS double norm(const GpuMat& src1, int normType, const GpuMat& mask, GpuMat& buf); |
|
|
|
//! computes norm of the difference between two arrays |
|
//! supports NORM_INF, NORM_L1, NORM_L2 |
|
//! supports only CV_8UC1 type |
|
CV_EXPORTS double norm(const GpuMat& src1, const GpuMat& src2, int normType=NORM_L2); |
|
|
|
//! computes sum of array elements |
|
//! supports only single channel images |
|
CV_EXPORTS Scalar sum(const GpuMat& src); |
|
CV_EXPORTS Scalar sum(const GpuMat& src, GpuMat& buf); |
|
CV_EXPORTS Scalar sum(const GpuMat& src, const GpuMat& mask, GpuMat& buf); |
|
|
|
//! computes sum of array elements absolute values |
|
//! supports only single channel images |
|
CV_EXPORTS Scalar absSum(const GpuMat& src); |
|
CV_EXPORTS Scalar absSum(const GpuMat& src, GpuMat& buf); |
|
CV_EXPORTS Scalar absSum(const GpuMat& src, const GpuMat& mask, GpuMat& buf); |
|
|
|
//! computes squared sum of array elements |
|
//! supports only single channel images |
|
CV_EXPORTS Scalar sqrSum(const GpuMat& src); |
|
CV_EXPORTS Scalar sqrSum(const GpuMat& src, GpuMat& buf); |
|
CV_EXPORTS Scalar sqrSum(const GpuMat& src, const GpuMat& mask, GpuMat& buf); |
|
|
|
//! finds global minimum and maximum array elements and returns their values |
|
CV_EXPORTS void minMax(const GpuMat& src, double* minVal, double* maxVal=0, const GpuMat& mask=GpuMat()); |
|
CV_EXPORTS void minMax(const GpuMat& src, double* minVal, double* maxVal, const GpuMat& mask, GpuMat& buf); |
|
|
|
//! finds global minimum and maximum array elements and returns their values with locations |
|
CV_EXPORTS void minMaxLoc(const GpuMat& src, double* minVal, double* maxVal=0, Point* minLoc=0, Point* maxLoc=0, |
|
const GpuMat& mask=GpuMat()); |
|
CV_EXPORTS void minMaxLoc(const GpuMat& src, double* minVal, double* maxVal, Point* minLoc, Point* maxLoc, |
|
const GpuMat& mask, GpuMat& valbuf, GpuMat& locbuf); |
|
|
|
//! counts non-zero array elements |
|
CV_EXPORTS int countNonZero(const GpuMat& src); |
|
CV_EXPORTS int countNonZero(const GpuMat& src, GpuMat& buf); |
|
|
|
//! reduces a matrix to a vector |
|
CV_EXPORTS void reduce(const GpuMat& mtx, GpuMat& vec, int dim, int reduceOp, int dtype = -1, Stream& stream = Stream::Null()); |
|
|
|
|
|
///////////////////////////// Calibration 3D ////////////////////////////////// |
|
|
|
CV_EXPORTS void transformPoints(const GpuMat& src, const Mat& rvec, const Mat& tvec, |
|
GpuMat& dst, Stream& stream = Stream::Null()); |
|
|
|
CV_EXPORTS void projectPoints(const GpuMat& src, const Mat& rvec, const Mat& tvec, |
|
const Mat& camera_mat, const Mat& dist_coef, GpuMat& dst, |
|
Stream& stream = Stream::Null()); |
|
|
|
CV_EXPORTS void solvePnPRansac(const Mat& object, const Mat& image, const Mat& camera_mat, |
|
const Mat& dist_coef, Mat& rvec, Mat& tvec, bool use_extrinsic_guess=false, |
|
int num_iters=100, float max_dist=8.0, int min_inlier_count=100, |
|
std::vector<int>* inliers=NULL); |
|
|
|
//////////////////////////////// Image Labeling //////////////////////////////// |
|
|
|
//!performs labeling via graph cuts of a 2D regular 4-connected graph. |
|
CV_EXPORTS void graphcut(GpuMat& terminals, GpuMat& leftTransp, GpuMat& rightTransp, GpuMat& top, GpuMat& bottom, GpuMat& labels, |
|
GpuMat& buf, Stream& stream = Stream::Null()); |
|
|
|
//!performs labeling via graph cuts of a 2D regular 8-connected graph. |
|
CV_EXPORTS void graphcut(GpuMat& terminals, GpuMat& leftTransp, GpuMat& rightTransp, GpuMat& top, GpuMat& topLeft, GpuMat& topRight, |
|
GpuMat& bottom, GpuMat& bottomLeft, GpuMat& bottomRight, |
|
GpuMat& labels, |
|
GpuMat& buf, Stream& stream = Stream::Null()); |
|
|
|
//! compute mask for Generalized Flood fill componetns labeling. |
|
CV_EXPORTS void connectivityMask(const GpuMat& image, GpuMat& mask, const cv::Scalar& lo, const cv::Scalar& hi, Stream& stream = Stream::Null()); |
|
|
|
//! performs connected componnents labeling. |
|
CV_EXPORTS void labelComponents(const GpuMat& mask, GpuMat& components, int flags = 0, Stream& stream = Stream::Null()); |
|
|
|
////////////////////////////////// Histograms ////////////////////////////////// |
|
|
|
//! Compute levels with even distribution. levels will have 1 row and nLevels cols and CV_32SC1 type. |
|
CV_EXPORTS void evenLevels(GpuMat& levels, int nLevels, int lowerLevel, int upperLevel); |
|
//! Calculates histogram with evenly distributed bins for signle channel source. |
|
//! Supports CV_8UC1, CV_16UC1 and CV_16SC1 source types. |
|
//! Output hist will have one row and histSize cols and CV_32SC1 type. |
|
CV_EXPORTS void histEven(const GpuMat& src, GpuMat& hist, int histSize, int lowerLevel, int upperLevel, Stream& stream = Stream::Null()); |
|
CV_EXPORTS void histEven(const GpuMat& src, GpuMat& hist, GpuMat& buf, int histSize, int lowerLevel, int upperLevel, Stream& stream = Stream::Null()); |
|
//! Calculates histogram with evenly distributed bins for four-channel source. |
|
//! All channels of source are processed separately. |
|
//! Supports CV_8UC4, CV_16UC4 and CV_16SC4 source types. |
|
//! Output hist[i] will have one row and histSize[i] cols and CV_32SC1 type. |
|
CV_EXPORTS void histEven(const GpuMat& src, GpuMat hist[4], int histSize[4], int lowerLevel[4], int upperLevel[4], Stream& stream = Stream::Null()); |
|
CV_EXPORTS void histEven(const GpuMat& src, GpuMat hist[4], GpuMat& buf, int histSize[4], int lowerLevel[4], int upperLevel[4], Stream& stream = Stream::Null()); |
|
//! Calculates histogram with bins determined by levels array. |
|
//! levels must have one row and CV_32SC1 type if source has integer type or CV_32FC1 otherwise. |
|
//! Supports CV_8UC1, CV_16UC1, CV_16SC1 and CV_32FC1 source types. |
|
//! Output hist will have one row and (levels.cols-1) cols and CV_32SC1 type. |
|
CV_EXPORTS void histRange(const GpuMat& src, GpuMat& hist, const GpuMat& levels, Stream& stream = Stream::Null()); |
|
CV_EXPORTS void histRange(const GpuMat& src, GpuMat& hist, const GpuMat& levels, GpuMat& buf, Stream& stream = Stream::Null()); |
|
//! Calculates histogram with bins determined by levels array. |
|
//! All levels must have one row and CV_32SC1 type if source has integer type or CV_32FC1 otherwise. |
|
//! All channels of source are processed separately. |
|
//! Supports CV_8UC4, CV_16UC4, CV_16SC4 and CV_32FC4 source types. |
|
//! Output hist[i] will have one row and (levels[i].cols-1) cols and CV_32SC1 type. |
|
CV_EXPORTS void histRange(const GpuMat& src, GpuMat hist[4], const GpuMat levels[4], Stream& stream = Stream::Null()); |
|
CV_EXPORTS void histRange(const GpuMat& src, GpuMat hist[4], const GpuMat levels[4], GpuMat& buf, Stream& stream = Stream::Null()); |
|
|
|
//! Calculates histogram for 8u one channel image |
|
//! Output hist will have one row, 256 cols and CV32SC1 type. |
|
CV_EXPORTS void calcHist(const GpuMat& src, GpuMat& hist, Stream& stream = Stream::Null()); |
|
CV_EXPORTS void calcHist(const GpuMat& src, GpuMat& hist, GpuMat& buf, Stream& stream = Stream::Null()); |
|
|
|
//! normalizes the grayscale image brightness and contrast by normalizing its histogram |
|
CV_EXPORTS void equalizeHist(const GpuMat& src, GpuMat& dst, Stream& stream = Stream::Null()); |
|
CV_EXPORTS void equalizeHist(const GpuMat& src, GpuMat& dst, GpuMat& hist, Stream& stream = Stream::Null()); |
|
CV_EXPORTS void equalizeHist(const GpuMat& src, GpuMat& dst, GpuMat& hist, GpuMat& buf, Stream& stream = Stream::Null()); |
|
|
|
class CV_EXPORTS CLAHE : public cv::CLAHE |
|
{ |
|
public: |
|
using cv::CLAHE::apply; |
|
virtual void apply(InputArray src, OutputArray dst, Stream& stream) = 0; |
|
}; |
|
CV_EXPORTS Ptr<cv::gpu::CLAHE> createCLAHE(double clipLimit = 40.0, Size tileGridSize = Size(8, 8)); |
|
|
|
//////////////////////////////// StereoBM_GPU //////////////////////////////// |
|
|
|
class CV_EXPORTS StereoBM_GPU |
|
{ |
|
public: |
|
enum { BASIC_PRESET = 0, PREFILTER_XSOBEL = 1 }; |
|
|
|
enum { DEFAULT_NDISP = 64, DEFAULT_WINSZ = 19 }; |
|
|
|
//! the default constructor |
|
StereoBM_GPU(); |
|
//! the full constructor taking the camera-specific preset, number of disparities and the SAD window size. ndisparities must be multiple of 8. |
|
StereoBM_GPU(int preset, int ndisparities = DEFAULT_NDISP, int winSize = DEFAULT_WINSZ); |
|
|
|
//! the stereo correspondence operator. Finds the disparity for the specified rectified stereo pair |
|
//! Output disparity has CV_8U type. |
|
void operator()(const GpuMat& left, const GpuMat& right, GpuMat& disparity, Stream& stream = Stream::Null()); |
|
|
|
//! Some heuristics that tries to estmate |
|
// if current GPU will be faster than CPU in this algorithm. |
|
// It queries current active device. |
|
static bool checkIfGpuCallReasonable(); |
|
|
|
int preset; |
|
int ndisp; |
|
int winSize; |
|
|
|
// If avergeTexThreshold == 0 => post procesing is disabled |
|
// If avergeTexThreshold != 0 then disparity is set 0 in each point (x,y) where for left image |
|
// SumOfHorizontalGradiensInWindow(x, y, winSize) < (winSize * winSize) * avergeTexThreshold |
|
// i.e. input left image is low textured. |
|
float avergeTexThreshold; |
|
|
|
private: |
|
GpuMat minSSD, leBuf, riBuf; |
|
}; |
|
|
|
////////////////////////// StereoBeliefPropagation /////////////////////////// |
|
// "Efficient Belief Propagation for Early Vision" |
|
// P.Felzenszwalb |
|
|
|
class CV_EXPORTS StereoBeliefPropagation |
|
{ |
|
public: |
|
enum { DEFAULT_NDISP = 64 }; |
|
enum { DEFAULT_ITERS = 5 }; |
|
enum { DEFAULT_LEVELS = 5 }; |
|
|
|
static void estimateRecommendedParams(int width, int height, int& ndisp, int& iters, int& levels); |
|
|
|
//! the default constructor |
|
explicit StereoBeliefPropagation(int ndisp = DEFAULT_NDISP, |
|
int iters = DEFAULT_ITERS, |
|
int levels = DEFAULT_LEVELS, |
|
int msg_type = CV_32F); |
|
|
|
//! the full constructor taking the number of disparities, number of BP iterations on each level, |
|
//! number of levels, truncation of data cost, data weight, |
|
//! truncation of discontinuity cost and discontinuity single jump |
|
//! DataTerm = data_weight * min(fabs(I2-I1), max_data_term) |
|
//! DiscTerm = min(disc_single_jump * fabs(f1-f2), max_disc_term) |
|
//! please see paper for more details |
|
StereoBeliefPropagation(int ndisp, int iters, int levels, |
|
float max_data_term, float data_weight, |
|
float max_disc_term, float disc_single_jump, |
|
int msg_type = CV_32F); |
|
|
|
//! the stereo correspondence operator. Finds the disparity for the specified rectified stereo pair, |
|
//! if disparity is empty output type will be CV_16S else output type will be disparity.type(). |
|
void operator()(const GpuMat& left, const GpuMat& right, GpuMat& disparity, Stream& stream = Stream::Null()); |
|
|
|
|
|
//! version for user specified data term |
|
void operator()(const GpuMat& data, GpuMat& disparity, Stream& stream = Stream::Null()); |
|
|
|
int ndisp; |
|
|
|
int iters; |
|
int levels; |
|
|
|
float max_data_term; |
|
float data_weight; |
|
float max_disc_term; |
|
float disc_single_jump; |
|
|
|
int msg_type; |
|
private: |
|
GpuMat u, d, l, r, u2, d2, l2, r2; |
|
std::vector<GpuMat> datas; |
|
GpuMat out; |
|
}; |
|
|
|
/////////////////////////// StereoConstantSpaceBP /////////////////////////// |
|
// "A Constant-Space Belief Propagation Algorithm for Stereo Matching" |
|
// Qingxiong Yang, Liang Wang, Narendra Ahuja |
|
// http://vision.ai.uiuc.edu/~qyang6/ |
|
|
|
class CV_EXPORTS StereoConstantSpaceBP |
|
{ |
|
public: |
|
enum { DEFAULT_NDISP = 128 }; |
|
enum { DEFAULT_ITERS = 8 }; |
|
enum { DEFAULT_LEVELS = 4 }; |
|
enum { DEFAULT_NR_PLANE = 4 }; |
|
|
|
static void estimateRecommendedParams(int width, int height, int& ndisp, int& iters, int& levels, int& nr_plane); |
|
|
|
//! the default constructor |
|
explicit StereoConstantSpaceBP(int ndisp = DEFAULT_NDISP, |
|
int iters = DEFAULT_ITERS, |
|
int levels = DEFAULT_LEVELS, |
|
int nr_plane = DEFAULT_NR_PLANE, |
|
int msg_type = CV_32F); |
|
|
|
//! the full constructor taking the number of disparities, number of BP iterations on each level, |
|
//! number of levels, number of active disparity on the first level, truncation of data cost, data weight, |
|
//! truncation of discontinuity cost, discontinuity single jump and minimum disparity threshold |
|
StereoConstantSpaceBP(int ndisp, int iters, int levels, int nr_plane, |
|
float max_data_term, float data_weight, float max_disc_term, float disc_single_jump, |
|
int min_disp_th = 0, |
|
int msg_type = CV_32F); |
|
|
|
//! the stereo correspondence operator. Finds the disparity for the specified rectified stereo pair, |
|
//! if disparity is empty output type will be CV_16S else output type will be disparity.type(). |
|
void operator()(const GpuMat& left, const GpuMat& right, GpuMat& disparity, Stream& stream = Stream::Null()); |
|
|
|
int ndisp; |
|
|
|
int iters; |
|
int levels; |
|
|
|
int nr_plane; |
|
|
|
float max_data_term; |
|
float data_weight; |
|
float max_disc_term; |
|
float disc_single_jump; |
|
|
|
int min_disp_th; |
|
|
|
int msg_type; |
|
|
|
bool use_local_init_data_cost; |
|
private: |
|
GpuMat messages_buffers; |
|
|
|
GpuMat temp; |
|
GpuMat out; |
|
}; |
|
|
|
/////////////////////////// DisparityBilateralFilter /////////////////////////// |
|
// Disparity map refinement using joint bilateral filtering given a single color image. |
|
// Qingxiong Yang, Liang Wang, Narendra Ahuja |
|
// http://vision.ai.uiuc.edu/~qyang6/ |
|
|
|
class CV_EXPORTS DisparityBilateralFilter |
|
{ |
|
public: |
|
enum { DEFAULT_NDISP = 64 }; |
|
enum { DEFAULT_RADIUS = 3 }; |
|
enum { DEFAULT_ITERS = 1 }; |
|
|
|
//! the default constructor |
|
explicit DisparityBilateralFilter(int ndisp = DEFAULT_NDISP, int radius = DEFAULT_RADIUS, int iters = DEFAULT_ITERS); |
|
|
|
//! the full constructor taking the number of disparities, filter radius, |
|
//! number of iterations, truncation of data continuity, truncation of disparity continuity |
|
//! and filter range sigma |
|
DisparityBilateralFilter(int ndisp, int radius, int iters, float edge_threshold, float max_disc_threshold, float sigma_range); |
|
|
|
//! the disparity map refinement operator. Refine disparity map using joint bilateral filtering given a single color image. |
|
//! disparity must have CV_8U or CV_16S type, image must have CV_8UC1 or CV_8UC3 type. |
|
void operator()(const GpuMat& disparity, const GpuMat& image, GpuMat& dst, Stream& stream = Stream::Null()); |
|
|
|
private: |
|
int ndisp; |
|
int radius; |
|
int iters; |
|
|
|
float edge_threshold; |
|
float max_disc_threshold; |
|
float sigma_range; |
|
|
|
GpuMat table_color; |
|
GpuMat table_space; |
|
}; |
|
|
|
|
|
//////////////// HOG (Histogram-of-Oriented-Gradients) Descriptor and Object Detector ////////////// |
|
struct CV_EXPORTS HOGConfidence |
|
{ |
|
double scale; |
|
std::vector<Point> locations; |
|
std::vector<double> confidences; |
|
std::vector<double> part_scores[4]; |
|
}; |
|
|
|
struct CV_EXPORTS HOGDescriptor |
|
{ |
|
enum { DEFAULT_WIN_SIGMA = -1 }; |
|
enum { DEFAULT_NLEVELS = 64 }; |
|
enum { DESCR_FORMAT_ROW_BY_ROW, DESCR_FORMAT_COL_BY_COL }; |
|
|
|
HOGDescriptor(Size win_size=Size(64, 128), Size block_size=Size(16, 16), |
|
Size block_stride=Size(8, 8), Size cell_size=Size(8, 8), |
|
int nbins=9, double win_sigma=DEFAULT_WIN_SIGMA, |
|
double threshold_L2hys=0.2, bool gamma_correction=true, |
|
int nlevels=DEFAULT_NLEVELS); |
|
|
|
size_t getDescriptorSize() const; |
|
size_t getBlockHistogramSize() const; |
|
|
|
void setSVMDetector(const std::vector<float>& detector); |
|
|
|
static std::vector<float> getDefaultPeopleDetector(); |
|
static std::vector<float> getPeopleDetector48x96(); |
|
static std::vector<float> getPeopleDetector64x128(); |
|
|
|
void detect(const GpuMat& img, std::vector<Point>& found_locations, |
|
double hit_threshold=0, Size win_stride=Size(), |
|
Size padding=Size()); |
|
|
|
void detectMultiScale(const GpuMat& img, std::vector<Rect>& found_locations, |
|
double hit_threshold=0, Size win_stride=Size(), |
|
Size padding=Size(), double scale0=1.05, |
|
int group_threshold=2); |
|
|
|
void computeConfidence(const GpuMat& img, std::vector<Point>& hits, double hit_threshold, |
|
Size win_stride, Size padding, std::vector<Point>& locations, std::vector<double>& confidences); |
|
|
|
void computeConfidenceMultiScale(const GpuMat& img, std::vector<Rect>& found_locations, |
|
double hit_threshold, Size win_stride, Size padding, |
|
std::vector<HOGConfidence> &conf_out, int group_threshold); |
|
|
|
void getDescriptors(const GpuMat& img, Size win_stride, |
|
GpuMat& descriptors, |
|
int descr_format=DESCR_FORMAT_COL_BY_COL); |
|
|
|
Size win_size; |
|
Size block_size; |
|
Size block_stride; |
|
Size cell_size; |
|
int nbins; |
|
double win_sigma; |
|
double threshold_L2hys; |
|
bool gamma_correction; |
|
int nlevels; |
|
|
|
protected: |
|
void computeBlockHistograms(const GpuMat& img); |
|
void computeGradient(const GpuMat& img, GpuMat& grad, GpuMat& qangle); |
|
|
|
double getWinSigma() const; |
|
bool checkDetectorSize() const; |
|
|
|
static int numPartsWithin(int size, int part_size, int stride); |
|
static Size numPartsWithin(Size size, Size part_size, Size stride); |
|
|
|
// Coefficients of the separating plane |
|
float free_coef; |
|
GpuMat detector; |
|
|
|
// Results of the last classification step |
|
GpuMat labels, labels_buf; |
|
Mat labels_host; |
|
|
|
// Results of the last histogram evaluation step |
|
GpuMat block_hists, block_hists_buf; |
|
|
|
// Gradients conputation results |
|
GpuMat grad, qangle, grad_buf, qangle_buf; |
|
|
|
// returns subbuffer with required size, reallocates buffer if nessesary. |
|
static GpuMat getBuffer(const Size& sz, int type, GpuMat& buf); |
|
static GpuMat getBuffer(int rows, int cols, int type, GpuMat& buf); |
|
|
|
std::vector<GpuMat> image_scales; |
|
}; |
|
|
|
|
|
////////////////////////////////// BruteForceMatcher ////////////////////////////////// |
|
|
|
class CV_EXPORTS BFMatcher_GPU |
|
{ |
|
public: |
|
explicit BFMatcher_GPU(int norm = cv::NORM_L2); |
|
|
|
// Add descriptors to train descriptor collection |
|
void add(const std::vector<GpuMat>& descCollection); |
|
|
|
// Get train descriptors collection |
|
const std::vector<GpuMat>& getTrainDescriptors() const; |
|
|
|
// Clear train descriptors collection |
|
void clear(); |
|
|
|
// Return true if there are not train descriptors in collection |
|
bool empty() const; |
|
|
|
// Return true if the matcher supports mask in match methods |
|
bool isMaskSupported() const; |
|
|
|
// Find one best match for each query descriptor |
|
void matchSingle(const GpuMat& query, const GpuMat& train, |
|
GpuMat& trainIdx, GpuMat& distance, |
|
const GpuMat& mask = GpuMat(), Stream& stream = Stream::Null()); |
|
|
|
// Download trainIdx and distance and convert it to CPU vector with DMatch |
|
static void matchDownload(const GpuMat& trainIdx, const GpuMat& distance, std::vector<DMatch>& matches); |
|
// Convert trainIdx and distance to vector with DMatch |
|
static void matchConvert(const Mat& trainIdx, const Mat& distance, std::vector<DMatch>& matches); |
|
|
|
// Find one best match for each query descriptor |
|
void match(const GpuMat& query, const GpuMat& train, std::vector<DMatch>& matches, const GpuMat& mask = GpuMat()); |
|
|
|
// Make gpu collection of trains and masks in suitable format for matchCollection function |
|
void makeGpuCollection(GpuMat& trainCollection, GpuMat& maskCollection, const std::vector<GpuMat>& masks = std::vector<GpuMat>()); |
|
|
|
// Find one best match from train collection for each query descriptor |
|
void matchCollection(const GpuMat& query, const GpuMat& trainCollection, |
|
GpuMat& trainIdx, GpuMat& imgIdx, GpuMat& distance, |
|
const GpuMat& masks = GpuMat(), Stream& stream = Stream::Null()); |
|
|
|
// Download trainIdx, imgIdx and distance and convert it to vector with DMatch |
|
static void matchDownload(const GpuMat& trainIdx, const GpuMat& imgIdx, const GpuMat& distance, std::vector<DMatch>& matches); |
|
// Convert trainIdx, imgIdx and distance to vector with DMatch |
|
static void matchConvert(const Mat& trainIdx, const Mat& imgIdx, const Mat& distance, std::vector<DMatch>& matches); |
|
|
|
// Find one best match from train collection for each query descriptor. |
|
void match(const GpuMat& query, std::vector<DMatch>& matches, const std::vector<GpuMat>& masks = std::vector<GpuMat>()); |
|
|
|
// Find k best matches for each query descriptor (in increasing order of distances) |
|
void knnMatchSingle(const GpuMat& query, const GpuMat& train, |
|
GpuMat& trainIdx, GpuMat& distance, GpuMat& allDist, int k, |
|
const GpuMat& mask = GpuMat(), Stream& stream = Stream::Null()); |
|
|
|
// Download trainIdx and distance and convert it to vector with DMatch |
|
// compactResult is used when mask is not empty. If compactResult is false matches |
|
// vector will have the same size as queryDescriptors rows. If compactResult is true |
|
// matches vector will not contain matches for fully masked out query descriptors. |
|
static void knnMatchDownload(const GpuMat& trainIdx, const GpuMat& distance, |
|
std::vector< std::vector<DMatch> >& matches, bool compactResult = false); |
|
// Convert trainIdx and distance to vector with DMatch |
|
static void knnMatchConvert(const Mat& trainIdx, const Mat& distance, |
|
std::vector< std::vector<DMatch> >& matches, bool compactResult = false); |
|
|
|
// Find k best matches for each query descriptor (in increasing order of distances). |
|
// compactResult is used when mask is not empty. If compactResult is false matches |
|
// vector will have the same size as queryDescriptors rows. If compactResult is true |
|
// matches vector will not contain matches for fully masked out query descriptors. |
|
void knnMatch(const GpuMat& query, const GpuMat& train, |
|
std::vector< std::vector<DMatch> >& matches, int k, const GpuMat& mask = GpuMat(), |
|
bool compactResult = false); |
|
|
|
// Find k best matches from train collection for each query descriptor (in increasing order of distances) |
|
void knnMatch2Collection(const GpuMat& query, const GpuMat& trainCollection, |
|
GpuMat& trainIdx, GpuMat& imgIdx, GpuMat& distance, |
|
const GpuMat& maskCollection = GpuMat(), Stream& stream = Stream::Null()); |
|
|
|
// Download trainIdx and distance and convert it to vector with DMatch |
|
// compactResult is used when mask is not empty. If compactResult is false matches |
|
// vector will have the same size as queryDescriptors rows. If compactResult is true |
|
// matches vector will not contain matches for fully masked out query descriptors. |
|
static void knnMatch2Download(const GpuMat& trainIdx, const GpuMat& imgIdx, const GpuMat& distance, |
|
std::vector< std::vector<DMatch> >& matches, bool compactResult = false); |
|
// Convert trainIdx and distance to vector with DMatch |
|
static void knnMatch2Convert(const Mat& trainIdx, const Mat& imgIdx, const Mat& distance, |
|
std::vector< std::vector<DMatch> >& matches, bool compactResult = false); |
|
|
|
// Find k best matches for each query descriptor (in increasing order of distances). |
|
// compactResult is used when mask is not empty. If compactResult is false matches |
|
// vector will have the same size as queryDescriptors rows. If compactResult is true |
|
// matches vector will not contain matches for fully masked out query descriptors. |
|
void knnMatch(const GpuMat& query, std::vector< std::vector<DMatch> >& matches, int k, |
|
const std::vector<GpuMat>& masks = std::vector<GpuMat>(), bool compactResult = false); |
|
|
|
// Find best matches for each query descriptor which have distance less than maxDistance. |
|
// nMatches.at<int>(0, queryIdx) will contain matches count for queryIdx. |
|
// carefully nMatches can be greater than trainIdx.cols - it means that matcher didn't find all matches, |
|
// because it didn't have enough memory. |
|
// If trainIdx is empty, then trainIdx and distance will be created with size nQuery x max((nTrain / 100), 10), |
|
// otherwize user can pass own allocated trainIdx and distance with size nQuery x nMaxMatches |
|
// Matches doesn't sorted. |
|
void radiusMatchSingle(const GpuMat& query, const GpuMat& train, |
|
GpuMat& trainIdx, GpuMat& distance, GpuMat& nMatches, float maxDistance, |
|
const GpuMat& mask = GpuMat(), Stream& stream = Stream::Null()); |
|
|
|
// Download trainIdx, nMatches and distance and convert it to vector with DMatch. |
|
// matches will be sorted in increasing order of distances. |
|
// compactResult is used when mask is not empty. If compactResult is false matches |
|
// vector will have the same size as queryDescriptors rows. If compactResult is true |
|
// matches vector will not contain matches for fully masked out query descriptors. |
|
static void radiusMatchDownload(const GpuMat& trainIdx, const GpuMat& distance, const GpuMat& nMatches, |
|
std::vector< std::vector<DMatch> >& matches, bool compactResult = false); |
|
// Convert trainIdx, nMatches and distance to vector with DMatch. |
|
static void radiusMatchConvert(const Mat& trainIdx, const Mat& distance, const Mat& nMatches, |
|
std::vector< std::vector<DMatch> >& matches, bool compactResult = false); |
|
|
|
// Find best matches for each query descriptor which have distance less than maxDistance |
|
// in increasing order of distances). |
|
void radiusMatch(const GpuMat& query, const GpuMat& train, |
|
std::vector< std::vector<DMatch> >& matches, float maxDistance, |
|
const GpuMat& mask = GpuMat(), bool compactResult = false); |
|
|
|
// Find best matches for each query descriptor which have distance less than maxDistance. |
|
// If trainIdx is empty, then trainIdx and distance will be created with size nQuery x max((nQuery / 100), 10), |
|
// otherwize user can pass own allocated trainIdx and distance with size nQuery x nMaxMatches |
|
// Matches doesn't sorted. |
|
void radiusMatchCollection(const GpuMat& query, GpuMat& trainIdx, GpuMat& imgIdx, GpuMat& distance, GpuMat& nMatches, float maxDistance, |
|
const std::vector<GpuMat>& masks = std::vector<GpuMat>(), Stream& stream = Stream::Null()); |
|
|
|
// Download trainIdx, imgIdx, nMatches and distance and convert it to vector with DMatch. |
|
// matches will be sorted in increasing order of distances. |
|
// compactResult is used when mask is not empty. If compactResult is false matches |
|
// vector will have the same size as queryDescriptors rows. If compactResult is true |
|
// matches vector will not contain matches for fully masked out query descriptors. |
|
static void radiusMatchDownload(const GpuMat& trainIdx, const GpuMat& imgIdx, const GpuMat& distance, const GpuMat& nMatches, |
|
std::vector< std::vector<DMatch> >& matches, bool compactResult = false); |
|
// Convert trainIdx, nMatches and distance to vector with DMatch. |
|
static void radiusMatchConvert(const Mat& trainIdx, const Mat& imgIdx, const Mat& distance, const Mat& nMatches, |
|
std::vector< std::vector<DMatch> >& matches, bool compactResult = false); |
|
|
|
// Find best matches from train collection for each query descriptor which have distance less than |
|
// maxDistance (in increasing order of distances). |
|
void radiusMatch(const GpuMat& query, std::vector< std::vector<DMatch> >& matches, float maxDistance, |
|
const std::vector<GpuMat>& masks = std::vector<GpuMat>(), bool compactResult = false); |
|
|
|
int norm; |
|
|
|
private: |
|
std::vector<GpuMat> trainDescCollection; |
|
}; |
|
|
|
template <class Distance> |
|
class CV_EXPORTS BruteForceMatcher_GPU; |
|
|
|
template <typename T> |
|
class CV_EXPORTS BruteForceMatcher_GPU< L1<T> > : public BFMatcher_GPU |
|
{ |
|
public: |
|
explicit BruteForceMatcher_GPU() : BFMatcher_GPU(NORM_L1) {} |
|
explicit BruteForceMatcher_GPU(L1<T> /*d*/) : BFMatcher_GPU(NORM_L1) {} |
|
}; |
|
template <typename T> |
|
class CV_EXPORTS BruteForceMatcher_GPU< L2<T> > : public BFMatcher_GPU |
|
{ |
|
public: |
|
explicit BruteForceMatcher_GPU() : BFMatcher_GPU(NORM_L2) {} |
|
explicit BruteForceMatcher_GPU(L2<T> /*d*/) : BFMatcher_GPU(NORM_L2) {} |
|
}; |
|
template <> class CV_EXPORTS BruteForceMatcher_GPU< Hamming > : public BFMatcher_GPU |
|
{ |
|
public: |
|
explicit BruteForceMatcher_GPU() : BFMatcher_GPU(NORM_HAMMING) {} |
|
explicit BruteForceMatcher_GPU(Hamming /*d*/) : BFMatcher_GPU(NORM_HAMMING) {} |
|
}; |
|
|
|
////////////////////////////////// CascadeClassifier_GPU ////////////////////////////////////////// |
|
// The cascade classifier class for object detection: supports old haar and new lbp xlm formats and nvbin for haar cascades olny. |
|
class CV_EXPORTS CascadeClassifier_GPU |
|
{ |
|
public: |
|
CascadeClassifier_GPU(); |
|
CascadeClassifier_GPU(const String& filename); |
|
~CascadeClassifier_GPU(); |
|
|
|
bool empty() const; |
|
bool load(const String& filename); |
|
void release(); |
|
|
|
/* returns number of detected objects */ |
|
int detectMultiScale(const GpuMat& image, GpuMat& objectsBuf, double scaleFactor = 1.2, int minNeighbors = 4, Size minSize = Size()); |
|
int detectMultiScale(const GpuMat& image, GpuMat& objectsBuf, Size maxObjectSize, Size minSize = Size(), double scaleFactor = 1.1, int minNeighbors = 4); |
|
|
|
bool findLargestObject; |
|
bool visualizeInPlace; |
|
|
|
Size getClassifierSize() const; |
|
|
|
private: |
|
struct CascadeClassifierImpl; |
|
CascadeClassifierImpl* impl; |
|
struct HaarCascade; |
|
struct LbpCascade; |
|
friend class CascadeClassifier_GPU_LBP; |
|
}; |
|
|
|
////////////////////////////////// FAST ////////////////////////////////////////// |
|
|
|
class CV_EXPORTS FAST_GPU |
|
{ |
|
public: |
|
enum |
|
{ |
|
LOCATION_ROW = 0, |
|
RESPONSE_ROW, |
|
ROWS_COUNT |
|
}; |
|
|
|
// all features have same size |
|
static const int FEATURE_SIZE = 7; |
|
|
|
explicit FAST_GPU(int threshold, bool nonmaxSupression = true, double keypointsRatio = 0.05); |
|
|
|
//! finds the keypoints using FAST detector |
|
//! supports only CV_8UC1 images |
|
void operator ()(const GpuMat& image, const GpuMat& mask, GpuMat& keypoints); |
|
void operator ()(const GpuMat& image, const GpuMat& mask, std::vector<KeyPoint>& keypoints); |
|
|
|
//! download keypoints from device to host memory |
|
static void downloadKeypoints(const GpuMat& d_keypoints, std::vector<KeyPoint>& keypoints); |
|
|
|
//! convert keypoints to KeyPoint vector |
|
static void convertKeypoints(const Mat& h_keypoints, std::vector<KeyPoint>& keypoints); |
|
|
|
//! release temporary buffer's memory |
|
void release(); |
|
|
|
bool nonmaxSupression; |
|
|
|
int threshold; |
|
|
|
//! max keypoints = keypointsRatio * img.size().area() |
|
double keypointsRatio; |
|
|
|
//! find keypoints and compute it's response if nonmaxSupression is true |
|
//! return count of detected keypoints |
|
int calcKeyPointsLocation(const GpuMat& image, const GpuMat& mask); |
|
|
|
//! get final array of keypoints |
|
//! performs nonmax supression if needed |
|
//! return final count of keypoints |
|
int getKeyPoints(GpuMat& keypoints); |
|
|
|
private: |
|
GpuMat kpLoc_; |
|
int count_; |
|
|
|
GpuMat score_; |
|
|
|
GpuMat d_keypoints_; |
|
}; |
|
|
|
////////////////////////////////// ORB ////////////////////////////////////////// |
|
|
|
class CV_EXPORTS ORB_GPU |
|
{ |
|
public: |
|
enum |
|
{ |
|
X_ROW = 0, |
|
Y_ROW, |
|
RESPONSE_ROW, |
|
ANGLE_ROW, |
|
OCTAVE_ROW, |
|
SIZE_ROW, |
|
ROWS_COUNT |
|
}; |
|
|
|
enum |
|
{ |
|
DEFAULT_FAST_THRESHOLD = 20 |
|
}; |
|
|
|
//! Constructor |
|
explicit ORB_GPU(int nFeatures = 500, float scaleFactor = 1.2f, int nLevels = 8, int edgeThreshold = 31, |
|
int firstLevel = 0, int WTA_K = 2, int scoreType = 0, int patchSize = 31); |
|
|
|
//! Compute the ORB features on an image |
|
//! image - the image to compute the features (supports only CV_8UC1 images) |
|
//! mask - the mask to apply |
|
//! keypoints - the resulting keypoints |
|
void operator()(const GpuMat& image, const GpuMat& mask, std::vector<KeyPoint>& keypoints); |
|
void operator()(const GpuMat& image, const GpuMat& mask, GpuMat& keypoints); |
|
|
|
//! Compute the ORB features and descriptors on an image |
|
//! image - the image to compute the features (supports only CV_8UC1 images) |
|
//! mask - the mask to apply |
|
//! keypoints - the resulting keypoints |
|
//! descriptors - descriptors array |
|
void operator()(const GpuMat& image, const GpuMat& mask, std::vector<KeyPoint>& keypoints, GpuMat& descriptors); |
|
void operator()(const GpuMat& image, const GpuMat& mask, GpuMat& keypoints, GpuMat& descriptors); |
|
|
|
//! download keypoints from device to host memory |
|
static void downloadKeyPoints(const GpuMat& d_keypoints, std::vector<KeyPoint>& keypoints); |
|
//! convert keypoints to KeyPoint vector |
|
static void convertKeyPoints(const Mat& d_keypoints, std::vector<KeyPoint>& keypoints); |
|
|
|
//! returns the descriptor size in bytes |
|
inline int descriptorSize() const { return kBytes; } |
|
|
|
inline void setFastParams(int threshold, bool nonmaxSupression = true) |
|
{ |
|
fastDetector_.threshold = threshold; |
|
fastDetector_.nonmaxSupression = nonmaxSupression; |
|
} |
|
|
|
//! release temporary buffer's memory |
|
void release(); |
|
|
|
//! if true, image will be blurred before descriptors calculation |
|
bool blurForDescriptor; |
|
|
|
private: |
|
enum { kBytes = 32 }; |
|
|
|
void buildScalePyramids(const GpuMat& image, const GpuMat& mask); |
|
|
|
void computeKeyPointsPyramid(); |
|
|
|
void computeDescriptors(GpuMat& descriptors); |
|
|
|
void mergeKeyPoints(GpuMat& keypoints); |
|
|
|
int nFeatures_; |
|
float scaleFactor_; |
|
int nLevels_; |
|
int edgeThreshold_; |
|
int firstLevel_; |
|
int WTA_K_; |
|
int scoreType_; |
|
int patchSize_; |
|
|
|
// The number of desired features per scale |
|
std::vector<size_t> n_features_per_level_; |
|
|
|
// Points to compute BRIEF descriptors from |
|
GpuMat pattern_; |
|
|
|
std::vector<GpuMat> imagePyr_; |
|
std::vector<GpuMat> maskPyr_; |
|
|
|
GpuMat buf_; |
|
|
|
std::vector<GpuMat> keyPointsPyr_; |
|
std::vector<int> keyPointsCount_; |
|
|
|
FAST_GPU fastDetector_; |
|
|
|
Ptr<FilterEngine_GPU> blurFilter; |
|
|
|
GpuMat d_keypoints_; |
|
}; |
|
|
|
////////////////////////////////// Optical Flow ////////////////////////////////////////// |
|
|
|
class CV_EXPORTS BroxOpticalFlow |
|
{ |
|
public: |
|
BroxOpticalFlow(float alpha_, float gamma_, float scale_factor_, int inner_iterations_, int outer_iterations_, int solver_iterations_) : |
|
alpha(alpha_), gamma(gamma_), scale_factor(scale_factor_), |
|
inner_iterations(inner_iterations_), outer_iterations(outer_iterations_), solver_iterations(solver_iterations_) |
|
{ |
|
} |
|
|
|
//! Compute optical flow |
|
//! frame0 - source frame (supports only CV_32FC1 type) |
|
//! frame1 - frame to track (with the same size and type as frame0) |
|
//! u - flow horizontal component (along x axis) |
|
//! v - flow vertical component (along y axis) |
|
void operator ()(const GpuMat& frame0, const GpuMat& frame1, GpuMat& u, GpuMat& v, Stream& stream = Stream::Null()); |
|
|
|
//! flow smoothness |
|
float alpha; |
|
|
|
//! gradient constancy importance |
|
float gamma; |
|
|
|
//! pyramid scale factor |
|
float scale_factor; |
|
|
|
//! number of lagged non-linearity iterations (inner loop) |
|
int inner_iterations; |
|
|
|
//! number of warping iterations (number of pyramid levels) |
|
int outer_iterations; |
|
|
|
//! number of linear system solver iterations |
|
int solver_iterations; |
|
|
|
GpuMat buf; |
|
}; |
|
|
|
class CV_EXPORTS GoodFeaturesToTrackDetector_GPU |
|
{ |
|
public: |
|
explicit GoodFeaturesToTrackDetector_GPU(int maxCorners = 1000, double qualityLevel = 0.01, double minDistance = 0.0, |
|
int blockSize = 3, bool useHarrisDetector = false, double harrisK = 0.04); |
|
|
|
//! return 1 rows matrix with CV_32FC2 type |
|
void operator ()(const GpuMat& image, GpuMat& corners, const GpuMat& mask = GpuMat()); |
|
|
|
int maxCorners; |
|
double qualityLevel; |
|
double minDistance; |
|
|
|
int blockSize; |
|
bool useHarrisDetector; |
|
double harrisK; |
|
|
|
void releaseMemory() |
|
{ |
|
Dx_.release(); |
|
Dy_.release(); |
|
buf_.release(); |
|
eig_.release(); |
|
minMaxbuf_.release(); |
|
tmpCorners_.release(); |
|
} |
|
|
|
private: |
|
GpuMat Dx_; |
|
GpuMat Dy_; |
|
GpuMat buf_; |
|
GpuMat eig_; |
|
GpuMat minMaxbuf_; |
|
GpuMat tmpCorners_; |
|
}; |
|
|
|
inline GoodFeaturesToTrackDetector_GPU::GoodFeaturesToTrackDetector_GPU(int maxCorners_, double qualityLevel_, double minDistance_, |
|
int blockSize_, bool useHarrisDetector_, double harrisK_) |
|
{ |
|
maxCorners = maxCorners_; |
|
qualityLevel = qualityLevel_; |
|
minDistance = minDistance_; |
|
blockSize = blockSize_; |
|
useHarrisDetector = useHarrisDetector_; |
|
harrisK = harrisK_; |
|
} |
|
|
|
|
|
class CV_EXPORTS PyrLKOpticalFlow |
|
{ |
|
public: |
|
PyrLKOpticalFlow(); |
|
|
|
void sparse(const GpuMat& prevImg, const GpuMat& nextImg, const GpuMat& prevPts, GpuMat& nextPts, |
|
GpuMat& status, GpuMat* err = 0); |
|
|
|
void dense(const GpuMat& prevImg, const GpuMat& nextImg, GpuMat& u, GpuMat& v, GpuMat* err = 0); |
|
|
|
void releaseMemory(); |
|
|
|
Size winSize; |
|
int maxLevel; |
|
int iters; |
|
bool useInitialFlow; |
|
|
|
private: |
|
std::vector<GpuMat> prevPyr_; |
|
std::vector<GpuMat> nextPyr_; |
|
|
|
GpuMat buf_; |
|
|
|
GpuMat uPyr_[2]; |
|
GpuMat vPyr_[2]; |
|
}; |
|
|
|
|
|
class CV_EXPORTS FarnebackOpticalFlow |
|
{ |
|
public: |
|
FarnebackOpticalFlow() |
|
{ |
|
numLevels = 5; |
|
pyrScale = 0.5; |
|
fastPyramids = false; |
|
winSize = 13; |
|
numIters = 10; |
|
polyN = 5; |
|
polySigma = 1.1; |
|
flags = 0; |
|
} |
|
|
|
int numLevels; |
|
double pyrScale; |
|
bool fastPyramids; |
|
int winSize; |
|
int numIters; |
|
int polyN; |
|
double polySigma; |
|
int flags; |
|
|
|
void operator ()(const GpuMat &frame0, const GpuMat &frame1, GpuMat &flowx, GpuMat &flowy, Stream &s = Stream::Null()); |
|
|
|
void releaseMemory() |
|
{ |
|
frames_[0].release(); |
|
frames_[1].release(); |
|
pyrLevel_[0].release(); |
|
pyrLevel_[1].release(); |
|
M_.release(); |
|
bufM_.release(); |
|
R_[0].release(); |
|
R_[1].release(); |
|
blurredFrame_[0].release(); |
|
blurredFrame_[1].release(); |
|
pyramid0_.clear(); |
|
pyramid1_.clear(); |
|
} |
|
|
|
private: |
|
void prepareGaussian( |
|
int n, double sigma, float *g, float *xg, float *xxg, |
|
double &ig11, double &ig03, double &ig33, double &ig55); |
|
|
|
void setPolynomialExpansionConsts(int n, double sigma); |
|
|
|
void updateFlow_boxFilter( |
|
const GpuMat& R0, const GpuMat& R1, GpuMat& flowx, GpuMat &flowy, |
|
GpuMat& M, GpuMat &bufM, int blockSize, bool updateMatrices, Stream streams[]); |
|
|
|
void updateFlow_gaussianBlur( |
|
const GpuMat& R0, const GpuMat& R1, GpuMat& flowx, GpuMat& flowy, |
|
GpuMat& M, GpuMat &bufM, int blockSize, bool updateMatrices, Stream streams[]); |
|
|
|
GpuMat frames_[2]; |
|
GpuMat pyrLevel_[2], M_, bufM_, R_[2], blurredFrame_[2]; |
|
std::vector<GpuMat> pyramid0_, pyramid1_; |
|
}; |
|
|
|
|
|
// Implementation of the Zach, Pock and Bischof Dual TV-L1 Optical Flow method |
|
// |
|
// see reference: |
|
// [1] C. Zach, T. Pock and H. Bischof, "A Duality Based Approach for Realtime TV-L1 Optical Flow". |
|
// [2] Javier Sanchez, Enric Meinhardt-Llopis and Gabriele Facciolo. "TV-L1 Optical Flow Estimation". |
|
class CV_EXPORTS OpticalFlowDual_TVL1_GPU |
|
{ |
|
public: |
|
OpticalFlowDual_TVL1_GPU(); |
|
|
|
void operator ()(const GpuMat& I0, const GpuMat& I1, GpuMat& flowx, GpuMat& flowy); |
|
|
|
void collectGarbage(); |
|
|
|
/** |
|
* Time step of the numerical scheme. |
|
*/ |
|
double tau; |
|
|
|
/** |
|
* Weight parameter for the data term, attachment parameter. |
|
* This is the most relevant parameter, which determines the smoothness of the output. |
|
* The smaller this parameter is, the smoother the solutions we obtain. |
|
* It depends on the range of motions of the images, so its value should be adapted to each image sequence. |
|
*/ |
|
double lambda; |
|
|
|
/** |
|
* Weight parameter for (u - v)^2, tightness parameter. |
|
* It serves as a link between the attachment and the regularization terms. |
|
* In theory, it should have a small value in order to maintain both parts in correspondence. |
|
* The method is stable for a large range of values of this parameter. |
|
*/ |
|
double theta; |
|
|
|
/** |
|
* Number of scales used to create the pyramid of images. |
|
*/ |
|
int nscales; |
|
|
|
/** |
|
* Number of warpings per scale. |
|
* Represents the number of times that I1(x+u0) and grad( I1(x+u0) ) are computed per scale. |
|
* This is a parameter that assures the stability of the method. |
|
* It also affects the running time, so it is a compromise between speed and accuracy. |
|
*/ |
|
int warps; |
|
|
|
/** |
|
* Stopping criterion threshold used in the numerical scheme, which is a trade-off between precision and running time. |
|
* A small value will yield more accurate solutions at the expense of a slower convergence. |
|
*/ |
|
double epsilon; |
|
|
|
/** |
|
* Stopping criterion iterations number used in the numerical scheme. |
|
*/ |
|
int iterations; |
|
|
|
double scaleStep; |
|
|
|
bool useInitialFlow; |
|
|
|
private: |
|
void procOneScale(const GpuMat& I0, const GpuMat& I1, GpuMat& u1, GpuMat& u2); |
|
|
|
std::vector<GpuMat> I0s; |
|
std::vector<GpuMat> I1s; |
|
std::vector<GpuMat> u1s; |
|
std::vector<GpuMat> u2s; |
|
|
|
GpuMat I1x_buf; |
|
GpuMat I1y_buf; |
|
|
|
GpuMat I1w_buf; |
|
GpuMat I1wx_buf; |
|
GpuMat I1wy_buf; |
|
|
|
GpuMat grad_buf; |
|
GpuMat rho_c_buf; |
|
|
|
GpuMat p11_buf; |
|
GpuMat p12_buf; |
|
GpuMat p21_buf; |
|
GpuMat p22_buf; |
|
|
|
GpuMat diff_buf; |
|
GpuMat norm_buf; |
|
}; |
|
|
|
|
|
//! Calculates optical flow for 2 images using block matching algorithm */ |
|
CV_EXPORTS void calcOpticalFlowBM(const GpuMat& prev, const GpuMat& curr, |
|
Size block_size, Size shift_size, Size max_range, bool use_previous, |
|
GpuMat& velx, GpuMat& vely, GpuMat& buf, |
|
Stream& stream = Stream::Null()); |
|
|
|
class CV_EXPORTS FastOpticalFlowBM |
|
{ |
|
public: |
|
void operator ()(const GpuMat& I0, const GpuMat& I1, GpuMat& flowx, GpuMat& flowy, int search_window = 21, int block_window = 7, Stream& s = Stream::Null()); |
|
|
|
private: |
|
GpuMat buffer; |
|
GpuMat extended_I0; |
|
GpuMat extended_I1; |
|
}; |
|
|
|
|
|
//! Interpolate frames (images) using provided optical flow (displacement field). |
|
//! frame0 - frame 0 (32-bit floating point images, single channel) |
|
//! frame1 - frame 1 (the same type and size) |
|
//! fu - forward horizontal displacement |
|
//! fv - forward vertical displacement |
|
//! bu - backward horizontal displacement |
|
//! bv - backward vertical displacement |
|
//! pos - new frame position |
|
//! newFrame - new frame |
|
//! buf - temporary buffer, will have width x 6*height size, CV_32FC1 type and contain 6 GpuMat; |
|
//! occlusion masks 0, occlusion masks 1, |
|
//! interpolated forward flow 0, interpolated forward flow 1, |
|
//! interpolated backward flow 0, interpolated backward flow 1 |
|
//! |
|
CV_EXPORTS void interpolateFrames(const GpuMat& frame0, const GpuMat& frame1, |
|
const GpuMat& fu, const GpuMat& fv, |
|
const GpuMat& bu, const GpuMat& bv, |
|
float pos, GpuMat& newFrame, GpuMat& buf, |
|
Stream& stream = Stream::Null()); |
|
|
|
CV_EXPORTS void createOpticalFlowNeedleMap(const GpuMat& u, const GpuMat& v, GpuMat& vertex, GpuMat& colors); |
|
|
|
|
|
//////////////////////// Background/foreground segmentation //////////////////////// |
|
|
|
// Foreground Object Detection from Videos Containing Complex Background. |
|
// Liyuan Li, Weimin Huang, Irene Y.H. Gu, and Qi Tian. |
|
// ACM MM2003 9p |
|
class CV_EXPORTS FGDStatModel |
|
{ |
|
public: |
|
struct CV_EXPORTS Params |
|
{ |
|
int Lc; // Quantized levels per 'color' component. Power of two, typically 32, 64 or 128. |
|
int N1c; // Number of color vectors used to model normal background color variation at a given pixel. |
|
int N2c; // Number of color vectors retained at given pixel. Must be > N1c, typically ~ 5/3 of N1c. |
|
// Used to allow the first N1c vectors to adapt over time to changing background. |
|
|
|
int Lcc; // Quantized levels per 'color co-occurrence' component. Power of two, typically 16, 32 or 64. |
|
int N1cc; // Number of color co-occurrence vectors used to model normal background color variation at a given pixel. |
|
int N2cc; // Number of color co-occurrence vectors retained at given pixel. Must be > N1cc, typically ~ 5/3 of N1cc. |
|
// Used to allow the first N1cc vectors to adapt over time to changing background. |
|
|
|
bool is_obj_without_holes; // If TRUE we ignore holes within foreground blobs. Defaults to TRUE. |
|
int perform_morphing; // Number of erode-dilate-erode foreground-blob cleanup iterations. |
|
// These erase one-pixel junk blobs and merge almost-touching blobs. Default value is 1. |
|
|
|
float alpha1; // How quickly we forget old background pixel values seen. Typically set to 0.1. |
|
float alpha2; // "Controls speed of feature learning". Depends on T. Typical value circa 0.005. |
|
float alpha3; // Alternate to alpha2, used (e.g.) for quicker initial convergence. Typical value 0.1. |
|
|
|
float delta; // Affects color and color co-occurrence quantization, typically set to 2. |
|
float T; // A percentage value which determines when new features can be recognized as new background. (Typically 0.9). |
|
float minArea; // Discard foreground blobs whose bounding box is smaller than this threshold. |
|
|
|
// default Params |
|
Params(); |
|
}; |
|
|
|
// out_cn - channels count in output result (can be 3 or 4) |
|
// 4-channels require more memory, but a bit faster |
|
explicit FGDStatModel(int out_cn = 3); |
|
explicit FGDStatModel(const cv::gpu::GpuMat& firstFrame, const Params& params = Params(), int out_cn = 3); |
|
|
|
~FGDStatModel(); |
|
|
|
void create(const cv::gpu::GpuMat& firstFrame, const Params& params = Params()); |
|
void release(); |
|
|
|
int update(const cv::gpu::GpuMat& curFrame); |
|
|
|
//8UC3 or 8UC4 reference background image |
|
cv::gpu::GpuMat background; |
|
|
|
//8UC1 foreground image |
|
cv::gpu::GpuMat foreground; |
|
|
|
std::vector< std::vector<cv::Point> > foreground_regions; |
|
|
|
private: |
|
FGDStatModel(const FGDStatModel&); |
|
FGDStatModel& operator=(const FGDStatModel&); |
|
|
|
class Impl; |
|
std::auto_ptr<Impl> impl_; |
|
}; |
|
|
|
/*! |
|
Gaussian Mixture-based Backbround/Foreground Segmentation Algorithm |
|
|
|
The class implements the following algorithm: |
|
"An improved adaptive background mixture model for real-time tracking with shadow detection" |
|
P. KadewTraKuPong and R. Bowden, |
|
Proc. 2nd European Workshp on Advanced Video-Based Surveillance Systems, 2001." |
|
http://personal.ee.surrey.ac.uk/Personal/R.Bowden/publications/avbs01/avbs01.pdf |
|
*/ |
|
class CV_EXPORTS MOG_GPU |
|
{ |
|
public: |
|
//! the default constructor |
|
MOG_GPU(int nmixtures = -1); |
|
|
|
//! re-initiaization method |
|
void initialize(Size frameSize, int frameType); |
|
|
|
//! the update operator |
|
void operator()(const GpuMat& frame, GpuMat& fgmask, float learningRate = 0.0f, Stream& stream = Stream::Null()); |
|
|
|
//! computes a background image which are the mean of all background gaussians |
|
void getBackgroundImage(GpuMat& backgroundImage, Stream& stream = Stream::Null()) const; |
|
|
|
//! releases all inner buffers |
|
void release(); |
|
|
|
int history; |
|
float varThreshold; |
|
float backgroundRatio; |
|
float noiseSigma; |
|
|
|
private: |
|
int nmixtures_; |
|
|
|
Size frameSize_; |
|
int frameType_; |
|
int nframes_; |
|
|
|
GpuMat weight_; |
|
GpuMat sortKey_; |
|
GpuMat mean_; |
|
GpuMat var_; |
|
}; |
|
|
|
/*! |
|
The class implements the following algorithm: |
|
"Improved adaptive Gausian mixture model for background subtraction" |
|
Z.Zivkovic |
|
International Conference Pattern Recognition, UK, August, 2004. |
|
http://www.zoranz.net/Publications/zivkovic2004ICPR.pdf |
|
*/ |
|
class CV_EXPORTS MOG2_GPU |
|
{ |
|
public: |
|
//! the default constructor |
|
MOG2_GPU(int nmixtures = -1); |
|
|
|
//! re-initiaization method |
|
void initialize(Size frameSize, int frameType); |
|
|
|
//! the update operator |
|
void operator()(const GpuMat& frame, GpuMat& fgmask, float learningRate = -1.0f, Stream& stream = Stream::Null()); |
|
|
|
//! computes a background image which are the mean of all background gaussians |
|
void getBackgroundImage(GpuMat& backgroundImage, Stream& stream = Stream::Null()) const; |
|
|
|
//! releases all inner buffers |
|
void release(); |
|
|
|
// parameters |
|
// you should call initialize after parameters changes |
|
|
|
int history; |
|
|
|
//! here it is the maximum allowed number of mixture components. |
|
//! Actual number is determined dynamically per pixel |
|
float varThreshold; |
|
// threshold on the squared Mahalanobis distance to decide if it is well described |
|
// by the background model or not. Related to Cthr from the paper. |
|
// This does not influence the update of the background. A typical value could be 4 sigma |
|
// and that is varThreshold=4*4=16; Corresponds to Tb in the paper. |
|
|
|
///////////////////////// |
|
// less important parameters - things you might change but be carefull |
|
//////////////////////// |
|
|
|
float backgroundRatio; |
|
// corresponds to fTB=1-cf from the paper |
|
// TB - threshold when the component becomes significant enough to be included into |
|
// the background model. It is the TB=1-cf from the paper. So I use cf=0.1 => TB=0. |
|
// For alpha=0.001 it means that the mode should exist for approximately 105 frames before |
|
// it is considered foreground |
|
// float noiseSigma; |
|
float varThresholdGen; |
|
|
|
//correspondts to Tg - threshold on the squared Mahalan. dist. to decide |
|
//when a sample is close to the existing components. If it is not close |
|
//to any a new component will be generated. I use 3 sigma => Tg=3*3=9. |
|
//Smaller Tg leads to more generated components and higher Tg might make |
|
//lead to small number of components but they can grow too large |
|
float fVarInit; |
|
float fVarMin; |
|
float fVarMax; |
|
|
|
//initial variance for the newly generated components. |
|
//It will will influence the speed of adaptation. A good guess should be made. |
|
//A simple way is to estimate the typical standard deviation from the images. |
|
//I used here 10 as a reasonable value |
|
// min and max can be used to further control the variance |
|
float fCT; //CT - complexity reduction prior |
|
//this is related to the number of samples needed to accept that a component |
|
//actually exists. We use CT=0.05 of all the samples. By setting CT=0 you get |
|
//the standard Stauffer&Grimson algorithm (maybe not exact but very similar) |
|
|
|
//shadow detection parameters |
|
bool bShadowDetection; //default 1 - do shadow detection |
|
unsigned char nShadowDetection; //do shadow detection - insert this value as the detection result - 127 default value |
|
float fTau; |
|
// Tau - shadow threshold. The shadow is detected if the pixel is darker |
|
//version of the background. Tau is a threshold on how much darker the shadow can be. |
|
//Tau= 0.5 means that if pixel is more than 2 times darker then it is not shadow |
|
//See: Prati,Mikic,Trivedi,Cucchiarra,"Detecting Moving Shadows...",IEEE PAMI,2003. |
|
|
|
private: |
|
int nmixtures_; |
|
|
|
Size frameSize_; |
|
int frameType_; |
|
int nframes_; |
|
|
|
GpuMat weight_; |
|
GpuMat variance_; |
|
GpuMat mean_; |
|
|
|
GpuMat bgmodelUsedModes_; //keep track of number of modes per pixel |
|
}; |
|
|
|
/** |
|
* Background Subtractor module. Takes a series of images and returns a sequence of mask (8UC1) |
|
* images of the same size, where 255 indicates Foreground and 0 represents Background. |
|
* This class implements an algorithm described in "Visual Tracking of Human Visitors under |
|
* Variable-Lighting Conditions for a Responsive Audio Art Installation," A. Godbehere, |
|
* A. Matsukawa, K. Goldberg, American Control Conference, Montreal, June 2012. |
|
*/ |
|
class CV_EXPORTS GMG_GPU |
|
{ |
|
public: |
|
GMG_GPU(); |
|
|
|
/** |
|
* Validate parameters and set up data structures for appropriate frame size. |
|
* @param frameSize Input frame size |
|
* @param min Minimum value taken on by pixels in image sequence. Usually 0 |
|
* @param max Maximum value taken on by pixels in image sequence. e.g. 1.0 or 255 |
|
*/ |
|
void initialize(Size frameSize, float min = 0.0f, float max = 255.0f); |
|
|
|
/** |
|
* Performs single-frame background subtraction and builds up a statistical background image |
|
* model. |
|
* @param frame Input frame |
|
* @param fgmask Output mask image representing foreground and background pixels |
|
* @param stream Stream for the asynchronous version |
|
*/ |
|
void operator ()(const GpuMat& frame, GpuMat& fgmask, float learningRate = -1.0f, Stream& stream = Stream::Null()); |
|
|
|
//! Releases all inner buffers |
|
void release(); |
|
|
|
//! Total number of distinct colors to maintain in histogram. |
|
int maxFeatures; |
|
|
|
//! Set between 0.0 and 1.0, determines how quickly features are "forgotten" from histograms. |
|
float learningRate; |
|
|
|
//! Number of frames of video to use to initialize histograms. |
|
int numInitializationFrames; |
|
|
|
//! Number of discrete levels in each channel to be used in histograms. |
|
int quantizationLevels; |
|
|
|
//! Prior probability that any given pixel is a background pixel. A sensitivity parameter. |
|
float backgroundPrior; |
|
|
|
//! Value above which pixel is determined to be FG. |
|
float decisionThreshold; |
|
|
|
//! Smoothing radius, in pixels, for cleaning up FG image. |
|
int smoothingRadius; |
|
|
|
//! Perform background model update. |
|
bool updateBackgroundModel; |
|
|
|
private: |
|
float maxVal_, minVal_; |
|
|
|
Size frameSize_; |
|
|
|
int frameNum_; |
|
|
|
GpuMat nfeatures_; |
|
GpuMat colors_; |
|
GpuMat weights_; |
|
|
|
Ptr<FilterEngine_GPU> boxFilter_; |
|
GpuMat buf_; |
|
}; |
|
|
|
////////////////////////////////// Video Encoding ////////////////////////////////// |
|
|
|
// Works only under Windows |
|
// Supports olny H264 video codec and AVI files |
|
class CV_EXPORTS VideoWriter_GPU |
|
{ |
|
public: |
|
struct EncoderParams; |
|
|
|
// Callbacks for video encoder, use it if you want to work with raw video stream |
|
class EncoderCallBack; |
|
|
|
enum SurfaceFormat |
|
{ |
|
SF_UYVY = 0, |
|
SF_YUY2, |
|
SF_YV12, |
|
SF_NV12, |
|
SF_IYUV, |
|
SF_BGR, |
|
SF_GRAY = SF_BGR |
|
}; |
|
|
|
VideoWriter_GPU(); |
|
VideoWriter_GPU(const String& fileName, cv::Size frameSize, double fps, SurfaceFormat format = SF_BGR); |
|
VideoWriter_GPU(const String& fileName, cv::Size frameSize, double fps, const EncoderParams& params, SurfaceFormat format = SF_BGR); |
|
VideoWriter_GPU(const cv::Ptr<EncoderCallBack>& encoderCallback, cv::Size frameSize, double fps, SurfaceFormat format = SF_BGR); |
|
VideoWriter_GPU(const cv::Ptr<EncoderCallBack>& encoderCallback, cv::Size frameSize, double fps, const EncoderParams& params, SurfaceFormat format = SF_BGR); |
|
~VideoWriter_GPU(); |
|
|
|
// all methods throws cv::Exception if error occurs |
|
void open(const String& fileName, cv::Size frameSize, double fps, SurfaceFormat format = SF_BGR); |
|
void open(const String& fileName, cv::Size frameSize, double fps, const EncoderParams& params, SurfaceFormat format = SF_BGR); |
|
void open(const cv::Ptr<EncoderCallBack>& encoderCallback, cv::Size frameSize, double fps, SurfaceFormat format = SF_BGR); |
|
void open(const cv::Ptr<EncoderCallBack>& encoderCallback, cv::Size frameSize, double fps, const EncoderParams& params, SurfaceFormat format = SF_BGR); |
|
|
|
bool isOpened() const; |
|
void close(); |
|
|
|
void write(const cv::gpu::GpuMat& image, bool lastFrame = false); |
|
|
|
struct CV_EXPORTS EncoderParams |
|
{ |
|
int P_Interval; // NVVE_P_INTERVAL, |
|
int IDR_Period; // NVVE_IDR_PERIOD, |
|
int DynamicGOP; // NVVE_DYNAMIC_GOP, |
|
int RCType; // NVVE_RC_TYPE, |
|
int AvgBitrate; // NVVE_AVG_BITRATE, |
|
int PeakBitrate; // NVVE_PEAK_BITRATE, |
|
int QP_Level_Intra; // NVVE_QP_LEVEL_INTRA, |
|
int QP_Level_InterP; // NVVE_QP_LEVEL_INTER_P, |
|
int QP_Level_InterB; // NVVE_QP_LEVEL_INTER_B, |
|
int DeblockMode; // NVVE_DEBLOCK_MODE, |
|
int ProfileLevel; // NVVE_PROFILE_LEVEL, |
|
int ForceIntra; // NVVE_FORCE_INTRA, |
|
int ForceIDR; // NVVE_FORCE_IDR, |
|
int ClearStat; // NVVE_CLEAR_STAT, |
|
int DIMode; // NVVE_SET_DEINTERLACE, |
|
int Presets; // NVVE_PRESETS, |
|
int DisableCabac; // NVVE_DISABLE_CABAC, |
|
int NaluFramingType; // NVVE_CONFIGURE_NALU_FRAMING_TYPE |
|
int DisableSPSPPS; // NVVE_DISABLE_SPS_PPS |
|
|
|
EncoderParams(); |
|
explicit EncoderParams(const String& configFile); |
|
|
|
void load(const String& configFile); |
|
void save(const String& configFile) const; |
|
}; |
|
|
|
EncoderParams getParams() const; |
|
|
|
class CV_EXPORTS EncoderCallBack |
|
{ |
|
public: |
|
enum PicType |
|
{ |
|
IFRAME = 1, |
|
PFRAME = 2, |
|
BFRAME = 3 |
|
}; |
|
|
|
virtual ~EncoderCallBack() {} |
|
|
|
// callback function to signal the start of bitstream that is to be encoded |
|
// must return pointer to buffer |
|
virtual uchar* acquireBitStream(int* bufferSize) = 0; |
|
|
|
// callback function to signal that the encoded bitstream is ready to be written to file |
|
virtual void releaseBitStream(unsigned char* data, int size) = 0; |
|
|
|
// callback function to signal that the encoding operation on the frame has started |
|
virtual void onBeginFrame(int frameNumber, PicType picType) = 0; |
|
|
|
// callback function signals that the encoding operation on the frame has finished |
|
virtual void onEndFrame(int frameNumber, PicType picType) = 0; |
|
}; |
|
|
|
private: |
|
VideoWriter_GPU(const VideoWriter_GPU&); |
|
VideoWriter_GPU& operator=(const VideoWriter_GPU&); |
|
|
|
class Impl; |
|
std::auto_ptr<Impl> impl_; |
|
}; |
|
|
|
|
|
////////////////////////////////// Video Decoding ////////////////////////////////////////// |
|
|
|
namespace detail |
|
{ |
|
class FrameQueue; |
|
class VideoParser; |
|
} |
|
|
|
class CV_EXPORTS VideoReader_GPU |
|
{ |
|
public: |
|
enum Codec |
|
{ |
|
MPEG1 = 0, |
|
MPEG2, |
|
MPEG4, |
|
VC1, |
|
H264, |
|
JPEG, |
|
H264_SVC, |
|
H264_MVC, |
|
|
|
Uncompressed_YUV420 = (('I'<<24)|('Y'<<16)|('U'<<8)|('V')), // Y,U,V (4:2:0) |
|
Uncompressed_YV12 = (('Y'<<24)|('V'<<16)|('1'<<8)|('2')), // Y,V,U (4:2:0) |
|
Uncompressed_NV12 = (('N'<<24)|('V'<<16)|('1'<<8)|('2')), // Y,UV (4:2:0) |
|
Uncompressed_YUYV = (('Y'<<24)|('U'<<16)|('Y'<<8)|('V')), // YUYV/YUY2 (4:2:2) |
|
Uncompressed_UYVY = (('U'<<24)|('Y'<<16)|('V'<<8)|('Y')), // UYVY (4:2:2) |
|
}; |
|
|
|
enum ChromaFormat |
|
{ |
|
Monochrome=0, |
|
YUV420, |
|
YUV422, |
|
YUV444, |
|
}; |
|
|
|
struct FormatInfo |
|
{ |
|
Codec codec; |
|
ChromaFormat chromaFormat; |
|
int width; |
|
int height; |
|
}; |
|
|
|
class VideoSource; |
|
|
|
VideoReader_GPU(); |
|
explicit VideoReader_GPU(const String& filename); |
|
explicit VideoReader_GPU(const cv::Ptr<VideoSource>& source); |
|
|
|
~VideoReader_GPU(); |
|
|
|
void open(const String& filename); |
|
void open(const cv::Ptr<VideoSource>& source); |
|
bool isOpened() const; |
|
|
|
void close(); |
|
|
|
bool read(GpuMat& image); |
|
|
|
FormatInfo format() const; |
|
void dumpFormat(std::ostream& st); |
|
|
|
class CV_EXPORTS VideoSource |
|
{ |
|
public: |
|
VideoSource() : frameQueue_(0), videoParser_(0) {} |
|
virtual ~VideoSource() {} |
|
|
|
virtual FormatInfo format() const = 0; |
|
virtual void start() = 0; |
|
virtual void stop() = 0; |
|
virtual bool isStarted() const = 0; |
|
virtual bool hasError() const = 0; |
|
|
|
void setFrameQueue(detail::FrameQueue* frameQueue) { frameQueue_ = frameQueue; } |
|
void setVideoParser(detail::VideoParser* videoParser) { videoParser_ = videoParser; } |
|
|
|
protected: |
|
bool parseVideoData(const uchar* data, size_t size, bool endOfStream = false); |
|
|
|
private: |
|
VideoSource(const VideoSource&); |
|
VideoSource& operator =(const VideoSource&); |
|
|
|
detail::FrameQueue* frameQueue_; |
|
detail::VideoParser* videoParser_; |
|
}; |
|
|
|
private: |
|
VideoReader_GPU(const VideoReader_GPU&); |
|
VideoReader_GPU& operator =(const VideoReader_GPU&); |
|
|
|
class Impl; |
|
std::auto_ptr<Impl> impl_; |
|
}; |
|
|
|
//! removes points (CV_32FC2, single row matrix) with zero mask value |
|
CV_EXPORTS void compactPoints(GpuMat &points0, GpuMat &points1, const GpuMat &mask); |
|
|
|
CV_EXPORTS void calcWobbleSuppressionMaps( |
|
int left, int idx, int right, Size size, const Mat &ml, const Mat &mr, |
|
GpuMat &mapx, GpuMat &mapy); |
|
|
|
} // namespace gpu |
|
|
|
} // namespace cv |
|
|
|
#endif /* __OPENCV_GPU_HPP__ */
|
|
|