mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1586 lines
66 KiB
1586 lines
66 KiB
/*M/////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// |
|
// License Agreement |
|
// For Open Source Computer Vision Library |
|
// |
|
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. |
|
// Copyright (C) 2009, Willow Garage Inc., all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
// |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistribution's of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistribution's in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other materials provided with the distribution. |
|
// |
|
// * The name of the copyright holders may not be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors "as is" and |
|
// any express or implied warranties, including, but not limited to, the implied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall the Intel Corporation or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
// |
|
//M*/ |
|
|
|
#ifndef __OPENCV_IMGPROC_HPP__ |
|
#define __OPENCV_IMGPROC_HPP__ |
|
|
|
#include "opencv2/core.hpp" |
|
|
|
/*! \namespace cv |
|
Namespace where all the C++ OpenCV functionality resides |
|
*/ |
|
namespace cv |
|
{ |
|
|
|
//! type of the kernel |
|
enum { KERNEL_GENERAL = 0, // the kernel is generic. No any type of symmetry or other properties. |
|
KERNEL_SYMMETRICAL = 1, // kernel[i] == kernel[ksize-i-1] , and the anchor is at the center |
|
KERNEL_ASYMMETRICAL = 2, // kernel[i] == -kernel[ksize-i-1] , and the anchor is at the center |
|
KERNEL_SMOOTH = 4, // all the kernel elements are non-negative and summed to 1 |
|
KERNEL_INTEGER = 8 // all the kernel coefficients are integer numbers |
|
}; |
|
|
|
//! type of morphological operation |
|
enum { MORPH_ERODE = 0, |
|
MORPH_DILATE = 1, |
|
MORPH_OPEN = 2, |
|
MORPH_CLOSE = 3, |
|
MORPH_GRADIENT = 4, |
|
MORPH_TOPHAT = 5, |
|
MORPH_BLACKHAT = 6 |
|
}; |
|
|
|
//! shape of the structuring element |
|
enum { MORPH_RECT = 0, |
|
MORPH_CROSS = 1, |
|
MORPH_ELLIPSE = 2 |
|
}; |
|
|
|
//! interpolation algorithm |
|
enum { INTER_NEAREST = 0, //!< nearest neighbor interpolation |
|
INTER_LINEAR = 1, //!< bilinear interpolation |
|
INTER_CUBIC = 2, //!< bicubic interpolation |
|
INTER_AREA = 3, //!< area-based (or super) interpolation |
|
INTER_LANCZOS4 = 4, //!< Lanczos interpolation over 8x8 neighborhood |
|
|
|
INTER_MAX = 7, //!< mask for interpolation codes |
|
WARP_INVERSE_MAP = 16 |
|
}; |
|
|
|
enum { INTER_BITS = 5, |
|
INTER_BITS2 = INTER_BITS * 2, |
|
INTER_TAB_SIZE = 1 << INTER_BITS, |
|
INTER_TAB_SIZE2 = INTER_TAB_SIZE * INTER_TAB_SIZE |
|
}; |
|
|
|
//! Distance types for Distance Transform and M-estimators |
|
enum { DIST_USER = -1, // User defined distance |
|
DIST_L1 = 1, // distance = |x1-x2| + |y1-y2| |
|
DIST_L2 = 2, // the simple euclidean distance |
|
DIST_C = 3, // distance = max(|x1-x2|,|y1-y2|) |
|
DIST_L12 = 4, // L1-L2 metric: distance = 2(sqrt(1+x*x/2) - 1)) |
|
DIST_FAIR = 5, // distance = c^2(|x|/c-log(1+|x|/c)), c = 1.3998 |
|
DIST_WELSCH = 6, // distance = c^2/2(1-exp(-(x/c)^2)), c = 2.9846 |
|
DIST_HUBER = 7 // distance = |x|<c ? x^2/2 : c(|x|-c/2), c=1.345 |
|
}; |
|
|
|
//! Mask size for distance transform |
|
enum { DIST_MASK_3 = 3, |
|
DIST_MASK_5 = 5, |
|
DIST_MASK_PRECISE = 0 |
|
}; |
|
|
|
//! type of the threshold operation |
|
enum { THRESH_BINARY = 0, // value = value > threshold ? max_value : 0 |
|
THRESH_BINARY_INV = 1, // value = value > threshold ? 0 : max_value |
|
THRESH_TRUNC = 2, // value = value > threshold ? threshold : value |
|
THRESH_TOZERO = 3, // value = value > threshold ? value : 0 |
|
THRESH_TOZERO_INV = 4, // value = value > threshold ? 0 : value |
|
THRESH_MASK = 7, |
|
THRESH_OTSU = 8 // use Otsu algorithm to choose the optimal threshold value |
|
}; |
|
|
|
//! adaptive threshold algorithm |
|
enum { ADAPTIVE_THRESH_MEAN_C = 0, |
|
ADAPTIVE_THRESH_GAUSSIAN_C = 1 |
|
}; |
|
|
|
enum { PROJ_SPHERICAL_ORTHO = 0, |
|
PROJ_SPHERICAL_EQRECT = 1 |
|
}; |
|
|
|
//! class of the pixel in GrabCut algorithm |
|
enum { GC_BGD = 0, //!< background |
|
GC_FGD = 1, //!< foreground |
|
GC_PR_BGD = 2, //!< most probably background |
|
GC_PR_FGD = 3 //!< most probably foreground |
|
}; |
|
|
|
//! GrabCut algorithm flags |
|
enum { GC_INIT_WITH_RECT = 0, |
|
GC_INIT_WITH_MASK = 1, |
|
GC_EVAL = 2 |
|
}; |
|
|
|
//! distanceTransform algorithm flags |
|
enum { DIST_LABEL_CCOMP = 0, |
|
DIST_LABEL_PIXEL = 1 |
|
}; |
|
|
|
//! floodfill algorithm flags |
|
enum { FLOODFILL_FIXED_RANGE = 1 << 16, |
|
FLOODFILL_MASK_ONLY = 1 << 17 |
|
}; |
|
|
|
//! type of the template matching operation |
|
enum { TM_SQDIFF = 0, |
|
TM_SQDIFF_NORMED = 1, |
|
TM_CCORR = 2, |
|
TM_CCORR_NORMED = 3, |
|
TM_CCOEFF = 4, |
|
TM_CCOEFF_NORMED = 5 |
|
}; |
|
|
|
//! connected components algorithm output formats |
|
enum { CC_STAT_LEFT = 0, |
|
CC_STAT_TOP = 1, |
|
CC_STAT_WIDTH = 2, |
|
CC_STAT_HEIGHT = 3, |
|
CC_STAT_AREA = 4, |
|
CC_STAT_MAX = 5 |
|
}; |
|
|
|
//! mode of the contour retrieval algorithm |
|
enum { RETR_EXTERNAL = 0, //!< retrieve only the most external (top-level) contours |
|
RETR_LIST = 1, //!< retrieve all the contours without any hierarchical information |
|
RETR_CCOMP = 2, //!< retrieve the connected components (that can possibly be nested) |
|
RETR_TREE = 3, //!< retrieve all the contours and the whole hierarchy |
|
RETR_FLOODFILL = 4 |
|
}; |
|
|
|
//! the contour approximation algorithm |
|
enum { CHAIN_APPROX_NONE = 1, |
|
CHAIN_APPROX_SIMPLE = 2, |
|
CHAIN_APPROX_TC89_L1 = 3, |
|
CHAIN_APPROX_TC89_KCOS = 4 |
|
}; |
|
|
|
//! Variants of a Hough transform |
|
enum { HOUGH_STANDARD = 0, |
|
HOUGH_PROBABILISTIC = 1, |
|
HOUGH_MULTI_SCALE = 2, |
|
HOUGH_GRADIENT = 3 |
|
}; |
|
|
|
//! Variants of Line Segment Detector |
|
enum lsd_refine_lvl |
|
{ LSD_REFINE_NONE = 0, |
|
LSD_REFINE_STD = 1, |
|
LSD_REFINE_ADV = 2 |
|
}; |
|
|
|
//! Histogram comparison methods |
|
enum { HISTCMP_CORREL = 0, |
|
HISTCMP_CHISQR = 1, |
|
HISTCMP_INTERSECT = 2, |
|
HISTCMP_BHATTACHARYYA = 3, |
|
HISTCMP_HELLINGER = HISTCMP_BHATTACHARYYA |
|
}; |
|
|
|
//! the color conversion code |
|
enum { COLOR_BGR2BGRA = 0, |
|
COLOR_RGB2RGBA = COLOR_BGR2BGRA, |
|
|
|
COLOR_BGRA2BGR = 1, |
|
COLOR_RGBA2RGB = COLOR_BGRA2BGR, |
|
|
|
COLOR_BGR2RGBA = 2, |
|
COLOR_RGB2BGRA = COLOR_BGR2RGBA, |
|
|
|
COLOR_RGBA2BGR = 3, |
|
COLOR_BGRA2RGB = COLOR_RGBA2BGR, |
|
|
|
COLOR_BGR2RGB = 4, |
|
COLOR_RGB2BGR = COLOR_BGR2RGB, |
|
|
|
COLOR_BGRA2RGBA = 5, |
|
COLOR_RGBA2BGRA = COLOR_BGRA2RGBA, |
|
|
|
COLOR_BGR2GRAY = 6, |
|
COLOR_RGB2GRAY = 7, |
|
COLOR_GRAY2BGR = 8, |
|
COLOR_GRAY2RGB = COLOR_GRAY2BGR, |
|
COLOR_GRAY2BGRA = 9, |
|
COLOR_GRAY2RGBA = COLOR_GRAY2BGRA, |
|
COLOR_BGRA2GRAY = 10, |
|
COLOR_RGBA2GRAY = 11, |
|
|
|
COLOR_BGR2BGR565 = 12, |
|
COLOR_RGB2BGR565 = 13, |
|
COLOR_BGR5652BGR = 14, |
|
COLOR_BGR5652RGB = 15, |
|
COLOR_BGRA2BGR565 = 16, |
|
COLOR_RGBA2BGR565 = 17, |
|
COLOR_BGR5652BGRA = 18, |
|
COLOR_BGR5652RGBA = 19, |
|
|
|
COLOR_GRAY2BGR565 = 20, |
|
COLOR_BGR5652GRAY = 21, |
|
|
|
COLOR_BGR2BGR555 = 22, |
|
COLOR_RGB2BGR555 = 23, |
|
COLOR_BGR5552BGR = 24, |
|
COLOR_BGR5552RGB = 25, |
|
COLOR_BGRA2BGR555 = 26, |
|
COLOR_RGBA2BGR555 = 27, |
|
COLOR_BGR5552BGRA = 28, |
|
COLOR_BGR5552RGBA = 29, |
|
|
|
COLOR_GRAY2BGR555 = 30, |
|
COLOR_BGR5552GRAY = 31, |
|
|
|
COLOR_BGR2XYZ = 32, |
|
COLOR_RGB2XYZ = 33, |
|
COLOR_XYZ2BGR = 34, |
|
COLOR_XYZ2RGB = 35, |
|
|
|
COLOR_BGR2YCrCb = 36, |
|
COLOR_RGB2YCrCb = 37, |
|
COLOR_YCrCb2BGR = 38, |
|
COLOR_YCrCb2RGB = 39, |
|
|
|
COLOR_BGR2HSV = 40, |
|
COLOR_RGB2HSV = 41, |
|
|
|
COLOR_BGR2Lab = 44, |
|
COLOR_RGB2Lab = 45, |
|
|
|
COLOR_BGR2Luv = 50, |
|
COLOR_RGB2Luv = 51, |
|
COLOR_BGR2HLS = 52, |
|
COLOR_RGB2HLS = 53, |
|
|
|
COLOR_HSV2BGR = 54, |
|
COLOR_HSV2RGB = 55, |
|
|
|
COLOR_Lab2BGR = 56, |
|
COLOR_Lab2RGB = 57, |
|
COLOR_Luv2BGR = 58, |
|
COLOR_Luv2RGB = 59, |
|
COLOR_HLS2BGR = 60, |
|
COLOR_HLS2RGB = 61, |
|
|
|
COLOR_BGR2HSV_FULL = 66, |
|
COLOR_RGB2HSV_FULL = 67, |
|
COLOR_BGR2HLS_FULL = 68, |
|
COLOR_RGB2HLS_FULL = 69, |
|
|
|
COLOR_HSV2BGR_FULL = 70, |
|
COLOR_HSV2RGB_FULL = 71, |
|
COLOR_HLS2BGR_FULL = 72, |
|
COLOR_HLS2RGB_FULL = 73, |
|
|
|
COLOR_LBGR2Lab = 74, |
|
COLOR_LRGB2Lab = 75, |
|
COLOR_LBGR2Luv = 76, |
|
COLOR_LRGB2Luv = 77, |
|
|
|
COLOR_Lab2LBGR = 78, |
|
COLOR_Lab2LRGB = 79, |
|
COLOR_Luv2LBGR = 80, |
|
COLOR_Luv2LRGB = 81, |
|
|
|
COLOR_BGR2YUV = 82, |
|
COLOR_RGB2YUV = 83, |
|
COLOR_YUV2BGR = 84, |
|
COLOR_YUV2RGB = 85, |
|
|
|
// YUV 4:2:0 family to RGB |
|
COLOR_YUV2RGB_NV12 = 90, |
|
COLOR_YUV2BGR_NV12 = 91, |
|
COLOR_YUV2RGB_NV21 = 92, |
|
COLOR_YUV2BGR_NV21 = 93, |
|
COLOR_YUV420sp2RGB = COLOR_YUV2RGB_NV21, |
|
COLOR_YUV420sp2BGR = COLOR_YUV2BGR_NV21, |
|
|
|
COLOR_YUV2RGBA_NV12 = 94, |
|
COLOR_YUV2BGRA_NV12 = 95, |
|
COLOR_YUV2RGBA_NV21 = 96, |
|
COLOR_YUV2BGRA_NV21 = 97, |
|
COLOR_YUV420sp2RGBA = COLOR_YUV2RGBA_NV21, |
|
COLOR_YUV420sp2BGRA = COLOR_YUV2BGRA_NV21, |
|
|
|
COLOR_YUV2RGB_YV12 = 98, |
|
COLOR_YUV2BGR_YV12 = 99, |
|
COLOR_YUV2RGB_IYUV = 100, |
|
COLOR_YUV2BGR_IYUV = 101, |
|
COLOR_YUV2RGB_I420 = COLOR_YUV2RGB_IYUV, |
|
COLOR_YUV2BGR_I420 = COLOR_YUV2BGR_IYUV, |
|
COLOR_YUV420p2RGB = COLOR_YUV2RGB_YV12, |
|
COLOR_YUV420p2BGR = COLOR_YUV2BGR_YV12, |
|
|
|
COLOR_YUV2RGBA_YV12 = 102, |
|
COLOR_YUV2BGRA_YV12 = 103, |
|
COLOR_YUV2RGBA_IYUV = 104, |
|
COLOR_YUV2BGRA_IYUV = 105, |
|
COLOR_YUV2RGBA_I420 = COLOR_YUV2RGBA_IYUV, |
|
COLOR_YUV2BGRA_I420 = COLOR_YUV2BGRA_IYUV, |
|
COLOR_YUV420p2RGBA = COLOR_YUV2RGBA_YV12, |
|
COLOR_YUV420p2BGRA = COLOR_YUV2BGRA_YV12, |
|
|
|
COLOR_YUV2GRAY_420 = 106, |
|
COLOR_YUV2GRAY_NV21 = COLOR_YUV2GRAY_420, |
|
COLOR_YUV2GRAY_NV12 = COLOR_YUV2GRAY_420, |
|
COLOR_YUV2GRAY_YV12 = COLOR_YUV2GRAY_420, |
|
COLOR_YUV2GRAY_IYUV = COLOR_YUV2GRAY_420, |
|
COLOR_YUV2GRAY_I420 = COLOR_YUV2GRAY_420, |
|
COLOR_YUV420sp2GRAY = COLOR_YUV2GRAY_420, |
|
COLOR_YUV420p2GRAY = COLOR_YUV2GRAY_420, |
|
|
|
// YUV 4:2:2 family to RGB |
|
COLOR_YUV2RGB_UYVY = 107, |
|
COLOR_YUV2BGR_UYVY = 108, |
|
//COLOR_YUV2RGB_VYUY = 109, |
|
//COLOR_YUV2BGR_VYUY = 110, |
|
COLOR_YUV2RGB_Y422 = COLOR_YUV2RGB_UYVY, |
|
COLOR_YUV2BGR_Y422 = COLOR_YUV2BGR_UYVY, |
|
COLOR_YUV2RGB_UYNV = COLOR_YUV2RGB_UYVY, |
|
COLOR_YUV2BGR_UYNV = COLOR_YUV2BGR_UYVY, |
|
|
|
COLOR_YUV2RGBA_UYVY = 111, |
|
COLOR_YUV2BGRA_UYVY = 112, |
|
//COLOR_YUV2RGBA_VYUY = 113, |
|
//COLOR_YUV2BGRA_VYUY = 114, |
|
COLOR_YUV2RGBA_Y422 = COLOR_YUV2RGBA_UYVY, |
|
COLOR_YUV2BGRA_Y422 = COLOR_YUV2BGRA_UYVY, |
|
COLOR_YUV2RGBA_UYNV = COLOR_YUV2RGBA_UYVY, |
|
COLOR_YUV2BGRA_UYNV = COLOR_YUV2BGRA_UYVY, |
|
|
|
COLOR_YUV2RGB_YUY2 = 115, |
|
COLOR_YUV2BGR_YUY2 = 116, |
|
COLOR_YUV2RGB_YVYU = 117, |
|
COLOR_YUV2BGR_YVYU = 118, |
|
COLOR_YUV2RGB_YUYV = COLOR_YUV2RGB_YUY2, |
|
COLOR_YUV2BGR_YUYV = COLOR_YUV2BGR_YUY2, |
|
COLOR_YUV2RGB_YUNV = COLOR_YUV2RGB_YUY2, |
|
COLOR_YUV2BGR_YUNV = COLOR_YUV2BGR_YUY2, |
|
|
|
COLOR_YUV2RGBA_YUY2 = 119, |
|
COLOR_YUV2BGRA_YUY2 = 120, |
|
COLOR_YUV2RGBA_YVYU = 121, |
|
COLOR_YUV2BGRA_YVYU = 122, |
|
COLOR_YUV2RGBA_YUYV = COLOR_YUV2RGBA_YUY2, |
|
COLOR_YUV2BGRA_YUYV = COLOR_YUV2BGRA_YUY2, |
|
COLOR_YUV2RGBA_YUNV = COLOR_YUV2RGBA_YUY2, |
|
COLOR_YUV2BGRA_YUNV = COLOR_YUV2BGRA_YUY2, |
|
|
|
COLOR_YUV2GRAY_UYVY = 123, |
|
COLOR_YUV2GRAY_YUY2 = 124, |
|
//CV_YUV2GRAY_VYUY = CV_YUV2GRAY_UYVY, |
|
COLOR_YUV2GRAY_Y422 = COLOR_YUV2GRAY_UYVY, |
|
COLOR_YUV2GRAY_UYNV = COLOR_YUV2GRAY_UYVY, |
|
COLOR_YUV2GRAY_YVYU = COLOR_YUV2GRAY_YUY2, |
|
COLOR_YUV2GRAY_YUYV = COLOR_YUV2GRAY_YUY2, |
|
COLOR_YUV2GRAY_YUNV = COLOR_YUV2GRAY_YUY2, |
|
|
|
// alpha premultiplication |
|
COLOR_RGBA2mRGBA = 125, |
|
COLOR_mRGBA2RGBA = 126, |
|
|
|
// RGB to YUV 4:2:0 family |
|
COLOR_RGB2YUV_I420 = 127, |
|
COLOR_BGR2YUV_I420 = 128, |
|
COLOR_RGB2YUV_IYUV = COLOR_RGB2YUV_I420, |
|
COLOR_BGR2YUV_IYUV = COLOR_BGR2YUV_I420, |
|
|
|
COLOR_RGBA2YUV_I420 = 129, |
|
COLOR_BGRA2YUV_I420 = 130, |
|
COLOR_RGBA2YUV_IYUV = COLOR_RGBA2YUV_I420, |
|
COLOR_BGRA2YUV_IYUV = COLOR_BGRA2YUV_I420, |
|
COLOR_RGB2YUV_YV12 = 131, |
|
COLOR_BGR2YUV_YV12 = 132, |
|
COLOR_RGBA2YUV_YV12 = 133, |
|
COLOR_BGRA2YUV_YV12 = 134, |
|
|
|
// Demosaicing |
|
COLOR_BayerBG2BGR = 46, |
|
COLOR_BayerGB2BGR = 47, |
|
COLOR_BayerRG2BGR = 48, |
|
COLOR_BayerGR2BGR = 49, |
|
|
|
COLOR_BayerBG2RGB = COLOR_BayerRG2BGR, |
|
COLOR_BayerGB2RGB = COLOR_BayerGR2BGR, |
|
COLOR_BayerRG2RGB = COLOR_BayerBG2BGR, |
|
COLOR_BayerGR2RGB = COLOR_BayerGB2BGR, |
|
|
|
COLOR_BayerBG2GRAY = 86, |
|
COLOR_BayerGB2GRAY = 87, |
|
COLOR_BayerRG2GRAY = 88, |
|
COLOR_BayerGR2GRAY = 89, |
|
|
|
// Demosaicing using Variable Number of Gradients |
|
COLOR_BayerBG2BGR_VNG = 62, |
|
COLOR_BayerGB2BGR_VNG = 63, |
|
COLOR_BayerRG2BGR_VNG = 64, |
|
COLOR_BayerGR2BGR_VNG = 65, |
|
|
|
COLOR_BayerBG2RGB_VNG = COLOR_BayerRG2BGR_VNG, |
|
COLOR_BayerGB2RGB_VNG = COLOR_BayerGR2BGR_VNG, |
|
COLOR_BayerRG2RGB_VNG = COLOR_BayerBG2BGR_VNG, |
|
COLOR_BayerGR2RGB_VNG = COLOR_BayerGB2BGR_VNG, |
|
|
|
// Edge-Aware Demosaicing |
|
COLOR_BayerBG2BGR_EA = 135, |
|
COLOR_BayerGB2BGR_EA = 136, |
|
COLOR_BayerRG2BGR_EA = 137, |
|
COLOR_BayerGR2BGR_EA = 138, |
|
|
|
COLOR_BayerBG2RGB_EA = COLOR_BayerRG2BGR_EA, |
|
COLOR_BayerGB2RGB_EA = COLOR_BayerGR2BGR_EA, |
|
COLOR_BayerRG2RGB_EA = COLOR_BayerBG2BGR_EA, |
|
COLOR_BayerGR2RGB_EA = COLOR_BayerGB2BGR_EA, |
|
|
|
|
|
COLOR_COLORCVT_MAX = 139 |
|
}; |
|
|
|
|
|
|
|
/*! |
|
The Base Class for 1D or Row-wise Filters |
|
|
|
This is the base class for linear or non-linear filters that process 1D data. |
|
In particular, such filters are used for the "horizontal" filtering parts in separable filters. |
|
|
|
Several functions in OpenCV return Ptr<BaseRowFilter> for the specific types of filters, |
|
and those pointers can be used directly or within cv::FilterEngine. |
|
*/ |
|
class CV_EXPORTS BaseRowFilter |
|
{ |
|
public: |
|
//! the default constructor |
|
BaseRowFilter(); |
|
//! the destructor |
|
virtual ~BaseRowFilter(); |
|
//! the filtering operator. Must be overrided in the derived classes. The horizontal border interpolation is done outside of the class. |
|
virtual void operator()(const uchar* src, uchar* dst, int width, int cn) = 0; |
|
|
|
int ksize; |
|
int anchor; |
|
}; |
|
|
|
|
|
/*! |
|
The Base Class for Column-wise Filters |
|
|
|
This is the base class for linear or non-linear filters that process columns of 2D arrays. |
|
Such filters are used for the "vertical" filtering parts in separable filters. |
|
|
|
Several functions in OpenCV return Ptr<BaseColumnFilter> for the specific types of filters, |
|
and those pointers can be used directly or within cv::FilterEngine. |
|
|
|
Unlike cv::BaseRowFilter, cv::BaseColumnFilter may have some context information, |
|
i.e. box filter keeps the sliding sum of elements. To reset the state BaseColumnFilter::reset() |
|
must be called (e.g. the method is called by cv::FilterEngine) |
|
*/ |
|
class CV_EXPORTS BaseColumnFilter |
|
{ |
|
public: |
|
//! the default constructor |
|
BaseColumnFilter(); |
|
//! the destructor |
|
virtual ~BaseColumnFilter(); |
|
//! the filtering operator. Must be overrided in the derived classes. The vertical border interpolation is done outside of the class. |
|
virtual void operator()(const uchar** src, uchar* dst, int dststep, int dstcount, int width) = 0; |
|
//! resets the internal buffers, if any |
|
virtual void reset(); |
|
|
|
int ksize; |
|
int anchor; |
|
}; |
|
|
|
|
|
/*! |
|
The Base Class for Non-Separable 2D Filters. |
|
|
|
This is the base class for linear or non-linear 2D filters. |
|
|
|
Several functions in OpenCV return Ptr<BaseFilter> for the specific types of filters, |
|
and those pointers can be used directly or within cv::FilterEngine. |
|
|
|
Similar to cv::BaseColumnFilter, the class may have some context information, |
|
that should be reset using BaseFilter::reset() method before processing the new array. |
|
*/ |
|
class CV_EXPORTS BaseFilter |
|
{ |
|
public: |
|
//! the default constructor |
|
BaseFilter(); |
|
//! the destructor |
|
virtual ~BaseFilter(); |
|
//! the filtering operator. The horizontal and the vertical border interpolation is done outside of the class. |
|
virtual void operator()(const uchar** src, uchar* dst, int dststep, int dstcount, int width, int cn) = 0; |
|
//! resets the internal buffers, if any |
|
virtual void reset(); |
|
|
|
Size ksize; |
|
Point anchor; |
|
}; |
|
|
|
|
|
/*! |
|
The Main Class for Image Filtering. |
|
|
|
The class can be used to apply an arbitrary filtering operation to an image. |
|
It contains all the necessary intermediate buffers, it computes extrapolated values |
|
of the "virtual" pixels outside of the image etc. |
|
Pointers to the initialized cv::FilterEngine instances |
|
are returned by various OpenCV functions, such as cv::createSeparableLinearFilter(), |
|
cv::createLinearFilter(), cv::createGaussianFilter(), cv::createDerivFilter(), |
|
cv::createBoxFilter() and cv::createMorphologyFilter(). |
|
|
|
Using the class you can process large images by parts and build complex pipelines |
|
that include filtering as some of the stages. If all you need is to apply some pre-defined |
|
filtering operation, you may use cv::filter2D(), cv::erode(), cv::dilate() etc. |
|
functions that create FilterEngine internally. |
|
|
|
Here is the example on how to use the class to implement Laplacian operator, which is the sum of |
|
second-order derivatives. More complex variant for different types is implemented in cv::Laplacian(). |
|
|
|
\code |
|
void laplace_f(const Mat& src, Mat& dst) |
|
{ |
|
CV_Assert( src.type() == CV_32F ); |
|
// make sure the destination array has the proper size and type |
|
dst.create(src.size(), src.type()); |
|
|
|
// get the derivative and smooth kernels for d2I/dx2. |
|
// for d2I/dy2 we could use the same kernels, just swapped |
|
Mat kd, ks; |
|
getSobelKernels( kd, ks, 2, 0, ksize, false, ktype ); |
|
|
|
// let's process 10 source rows at once |
|
int DELTA = std::min(10, src.rows); |
|
Ptr<FilterEngine> Fxx = createSeparableLinearFilter(src.type(), |
|
dst.type(), kd, ks, Point(-1,-1), 0, borderType, borderType, Scalar() ); |
|
Ptr<FilterEngine> Fyy = createSeparableLinearFilter(src.type(), |
|
dst.type(), ks, kd, Point(-1,-1), 0, borderType, borderType, Scalar() ); |
|
|
|
int y = Fxx->start(src), dsty = 0, dy = 0; |
|
Fyy->start(src); |
|
const uchar* sptr = src.data + y*src.step; |
|
|
|
// allocate the buffers for the spatial image derivatives; |
|
// the buffers need to have more than DELTA rows, because at the |
|
// last iteration the output may take max(kd.rows-1,ks.rows-1) |
|
// rows more than the input. |
|
Mat Ixx( DELTA + kd.rows - 1, src.cols, dst.type() ); |
|
Mat Iyy( DELTA + kd.rows - 1, src.cols, dst.type() ); |
|
|
|
// inside the loop we always pass DELTA rows to the filter |
|
// (note that the "proceed" method takes care of possibe overflow, since |
|
// it was given the actual image height in the "start" method) |
|
// on output we can get: |
|
// * < DELTA rows (the initial buffer accumulation stage) |
|
// * = DELTA rows (settled state in the middle) |
|
// * > DELTA rows (then the input image is over, but we generate |
|
// "virtual" rows using the border mode and filter them) |
|
// this variable number of output rows is dy. |
|
// dsty is the current output row. |
|
// sptr is the pointer to the first input row in the portion to process |
|
for( ; dsty < dst.rows; sptr += DELTA*src.step, dsty += dy ) |
|
{ |
|
Fxx->proceed( sptr, (int)src.step, DELTA, Ixx.data, (int)Ixx.step ); |
|
dy = Fyy->proceed( sptr, (int)src.step, DELTA, d2y.data, (int)Iyy.step ); |
|
if( dy > 0 ) |
|
{ |
|
Mat dstripe = dst.rowRange(dsty, dsty + dy); |
|
add(Ixx.rowRange(0, dy), Iyy.rowRange(0, dy), dstripe); |
|
} |
|
} |
|
} |
|
\endcode |
|
*/ |
|
class CV_EXPORTS FilterEngine |
|
{ |
|
public: |
|
//! the default constructor |
|
FilterEngine(); |
|
//! the full constructor. Either _filter2D or both _rowFilter and _columnFilter must be non-empty. |
|
FilterEngine(const Ptr<BaseFilter>& _filter2D, |
|
const Ptr<BaseRowFilter>& _rowFilter, |
|
const Ptr<BaseColumnFilter>& _columnFilter, |
|
int srcType, int dstType, int bufType, |
|
int _rowBorderType = BORDER_REPLICATE, |
|
int _columnBorderType = -1, |
|
const Scalar& _borderValue = Scalar()); |
|
//! the destructor |
|
virtual ~FilterEngine(); |
|
//! reinitializes the engine. The previously assigned filters are released. |
|
void init(const Ptr<BaseFilter>& _filter2D, |
|
const Ptr<BaseRowFilter>& _rowFilter, |
|
const Ptr<BaseColumnFilter>& _columnFilter, |
|
int srcType, int dstType, int bufType, |
|
int _rowBorderType = BORDER_REPLICATE, |
|
int _columnBorderType = -1, |
|
const Scalar& _borderValue = Scalar()); |
|
//! starts filtering of the specified ROI of an image of size wholeSize. |
|
virtual int start(Size wholeSize, Rect roi, int maxBufRows = -1); |
|
//! starts filtering of the specified ROI of the specified image. |
|
virtual int start(const Mat& src, const Rect& srcRoi = Rect(0,0,-1,-1), |
|
bool isolated = false, int maxBufRows = -1); |
|
//! processes the next srcCount rows of the image. |
|
virtual int proceed(const uchar* src, int srcStep, int srcCount, |
|
uchar* dst, int dstStep); |
|
//! applies filter to the specified ROI of the image. if srcRoi=(0,0,-1,-1), the whole image is filtered. |
|
virtual void apply( const Mat& src, Mat& dst, |
|
const Rect& srcRoi = Rect(0,0,-1,-1), |
|
Point dstOfs = Point(0,0), |
|
bool isolated = false); |
|
//! returns true if the filter is separable |
|
bool isSeparable() const { return (const BaseFilter*)filter2D == 0; } |
|
//! returns the number |
|
int remainingInputRows() const; |
|
int remainingOutputRows() const; |
|
|
|
int srcType; |
|
int dstType; |
|
int bufType; |
|
Size ksize; |
|
Point anchor; |
|
int maxWidth; |
|
Size wholeSize; |
|
Rect roi; |
|
int dx1; |
|
int dx2; |
|
int rowBorderType; |
|
int columnBorderType; |
|
std::vector<int> borderTab; |
|
int borderElemSize; |
|
std::vector<uchar> ringBuf; |
|
std::vector<uchar> srcRow; |
|
std::vector<uchar> constBorderValue; |
|
std::vector<uchar> constBorderRow; |
|
int bufStep; |
|
int startY; |
|
int startY0; |
|
int endY; |
|
int rowCount; |
|
int dstY; |
|
std::vector<uchar*> rows; |
|
|
|
Ptr<BaseFilter> filter2D; |
|
Ptr<BaseRowFilter> rowFilter; |
|
Ptr<BaseColumnFilter> columnFilter; |
|
}; |
|
|
|
|
|
//! finds arbitrary template in the grayscale image using Generalized Hough Transform |
|
//! Ballard, D.H. (1981). Generalizing the Hough transform to detect arbitrary shapes. Pattern Recognition 13 (2): 111-122. |
|
//! Guil, N., González-Linares, J.M. and Zapata, E.L. (1999). Bidimensional shape detection using an invariant approach. Pattern Recognition 32 (6): 1025-1038. |
|
class CV_EXPORTS GeneralizedHough : public Algorithm |
|
{ |
|
public: |
|
enum { GHT_POSITION = 0, |
|
GHT_SCALE = 1, |
|
GHT_ROTATION = 2 |
|
}; |
|
|
|
static Ptr<GeneralizedHough> create(int method); |
|
|
|
virtual ~GeneralizedHough(); |
|
|
|
//! set template to search |
|
void setTemplate(InputArray templ, int cannyThreshold = 100, Point templCenter = Point(-1, -1)); |
|
void setTemplate(InputArray edges, InputArray dx, InputArray dy, Point templCenter = Point(-1, -1)); |
|
|
|
//! find template on image |
|
void detect(InputArray image, OutputArray positions, OutputArray votes = cv::noArray(), int cannyThreshold = 100); |
|
void detect(InputArray edges, InputArray dx, InputArray dy, OutputArray positions, OutputArray votes = cv::noArray()); |
|
|
|
void release(); |
|
|
|
protected: |
|
virtual void setTemplateImpl(const Mat& edges, const Mat& dx, const Mat& dy, Point templCenter) = 0; |
|
virtual void detectImpl(const Mat& edges, const Mat& dx, const Mat& dy, OutputArray positions, OutputArray votes) = 0; |
|
virtual void releaseImpl() = 0; |
|
|
|
private: |
|
Mat edges_; |
|
Mat dx_; |
|
Mat dy_; |
|
}; |
|
|
|
|
|
class CV_EXPORTS CLAHE : public Algorithm |
|
{ |
|
public: |
|
virtual void apply(InputArray src, OutputArray dst) = 0; |
|
|
|
virtual void setClipLimit(double clipLimit) = 0; |
|
virtual double getClipLimit() const = 0; |
|
|
|
virtual void setTilesGridSize(Size tileGridSize) = 0; |
|
virtual Size getTilesGridSize() const = 0; |
|
|
|
virtual void collectGarbage() = 0; |
|
}; |
|
|
|
|
|
class CV_EXPORTS_W Subdiv2D |
|
{ |
|
public: |
|
enum { PTLOC_ERROR = -2, |
|
PTLOC_OUTSIDE_RECT = -1, |
|
PTLOC_INSIDE = 0, |
|
PTLOC_VERTEX = 1, |
|
PTLOC_ON_EDGE = 2 |
|
}; |
|
|
|
enum { NEXT_AROUND_ORG = 0x00, |
|
NEXT_AROUND_DST = 0x22, |
|
PREV_AROUND_ORG = 0x11, |
|
PREV_AROUND_DST = 0x33, |
|
NEXT_AROUND_LEFT = 0x13, |
|
NEXT_AROUND_RIGHT = 0x31, |
|
PREV_AROUND_LEFT = 0x20, |
|
PREV_AROUND_RIGHT = 0x02 |
|
}; |
|
|
|
CV_WRAP Subdiv2D(); |
|
CV_WRAP Subdiv2D(Rect rect); |
|
CV_WRAP void initDelaunay(Rect rect); |
|
|
|
CV_WRAP int insert(Point2f pt); |
|
CV_WRAP void insert(const std::vector<Point2f>& ptvec); |
|
CV_WRAP int locate(Point2f pt, CV_OUT int& edge, CV_OUT int& vertex); |
|
|
|
CV_WRAP int findNearest(Point2f pt, CV_OUT Point2f* nearestPt = 0); |
|
CV_WRAP void getEdgeList(CV_OUT std::vector<Vec4f>& edgeList) const; |
|
CV_WRAP void getTriangleList(CV_OUT std::vector<Vec6f>& triangleList) const; |
|
CV_WRAP void getVoronoiFacetList(const std::vector<int>& idx, CV_OUT std::vector<std::vector<Point2f> >& facetList, |
|
CV_OUT std::vector<Point2f>& facetCenters); |
|
|
|
CV_WRAP Point2f getVertex(int vertex, CV_OUT int* firstEdge = 0) const; |
|
|
|
CV_WRAP int getEdge( int edge, int nextEdgeType ) const; |
|
CV_WRAP int nextEdge(int edge) const; |
|
CV_WRAP int rotateEdge(int edge, int rotate) const; |
|
CV_WRAP int symEdge(int edge) const; |
|
CV_WRAP int edgeOrg(int edge, CV_OUT Point2f* orgpt = 0) const; |
|
CV_WRAP int edgeDst(int edge, CV_OUT Point2f* dstpt = 0) const; |
|
|
|
protected: |
|
int newEdge(); |
|
void deleteEdge(int edge); |
|
int newPoint(Point2f pt, bool isvirtual, int firstEdge = 0); |
|
void deletePoint(int vtx); |
|
void setEdgePoints( int edge, int orgPt, int dstPt ); |
|
void splice( int edgeA, int edgeB ); |
|
int connectEdges( int edgeA, int edgeB ); |
|
void swapEdges( int edge ); |
|
int isRightOf(Point2f pt, int edge) const; |
|
void calcVoronoi(); |
|
void clearVoronoi(); |
|
void checkSubdiv() const; |
|
|
|
struct CV_EXPORTS Vertex |
|
{ |
|
Vertex(); |
|
Vertex(Point2f pt, bool _isvirtual, int _firstEdge=0); |
|
bool isvirtual() const; |
|
bool isfree() const; |
|
|
|
int firstEdge; |
|
int type; |
|
Point2f pt; |
|
}; |
|
|
|
struct CV_EXPORTS QuadEdge |
|
{ |
|
QuadEdge(); |
|
QuadEdge(int edgeidx); |
|
bool isfree() const; |
|
|
|
int next[4]; |
|
int pt[4]; |
|
}; |
|
|
|
std::vector<Vertex> vtx; |
|
std::vector<QuadEdge> qedges; |
|
int freeQEdge; |
|
int freePoint; |
|
bool validGeometry; |
|
|
|
int recentEdge; |
|
Point2f topLeft; |
|
Point2f bottomRight; |
|
}; |
|
|
|
class CV_EXPORTS_W LSD |
|
{ |
|
public: |
|
|
|
/** |
|
* Create an LSD object. Specifying scale, number of subdivisions for the image, should the lines be refined and other constants as follows: |
|
* |
|
* @param _refine How should the lines found be refined? |
|
* REFINE_NONE - No refinement applied. |
|
* REFINE_STD - Standard refinement is applied. E.g. breaking arches into smaller line approximations. |
|
* REFINE_ADV - Advanced refinement. Number of false alarms is calculated, |
|
* lines are refined through increase of precision, decrement in size, etc. |
|
* @param _scale The scale of the image that will be used to find the lines. Range (0..1]. |
|
* @param _sigma_scale Sigma for Gaussian filter is computed as sigma = _sigma_scale/_scale. |
|
* @param _quant Bound to the quantization error on the gradient norm. |
|
* @param _ang_th Gradient angle tolerance in degrees. |
|
* @param _log_eps Detection threshold: -log10(NFA) > _log_eps |
|
* @param _density_th Minimal density of aligned region points in rectangle. |
|
* @param _n_bins Number of bins in pseudo-ordering of gradient modulus. |
|
*/ |
|
LSD(lsd_refine_lvl _refine = LSD_REFINE_STD, double _scale = 0.8, |
|
double _sigma_scale = 0.6, double _quant = 2.0, double _ang_th = 22.5, |
|
double _log_eps = 0, double _density_th = 0.7, int _n_bins = 1024); |
|
|
|
/** |
|
* Detect lines in the input image with the specified ROI. |
|
* |
|
* @param _image A grayscale(CV_8UC1) input image. |
|
* @param _lines Return: A vector of Vec4i elements specifying the beginning and ending point of a line. |
|
* Where Vec4i is (x1, y1, x2, y2), point 1 is the start, point 2 - end. |
|
* Returned lines are strictly oriented depending on the gradient. |
|
* @param _roi Return: ROI of the image, where lines are to be found. If specified, the returning |
|
* lines coordinates are image wise. |
|
* @param width Return: Vector of widths of the regions, where the lines are found. E.g. Width of line. |
|
* @param prec Return: Vector of precisions with which the lines are found. |
|
* @param nfa Return: Vector containing number of false alarms in the line region, with precision of 10%. |
|
* The bigger the value, logarithmically better the detection. |
|
* * -1 corresponds to 10 mean false alarms |
|
* * 0 corresponds to 1 mean false alarm |
|
* * 1 corresponds to 0.1 mean false alarms |
|
*/ |
|
void detect(const cv::InputArray _image, cv::OutputArray _lines, cv::Rect _roi = cv::Rect(), |
|
cv::OutputArray width = cv::noArray(), cv::OutputArray prec = cv::noArray(), |
|
cv::OutputArray nfa = cv::noArray()); |
|
|
|
/** |
|
* Draw lines on the given canvas. |
|
* |
|
* @param image The image, where lines will be drawn. |
|
* Should have the size of the image, where the lines were found |
|
* @param lines The lines that need to be drawn |
|
*/ |
|
static void drawSegments(cv::Mat& image, const std::vector<cv::Vec4i>& lines); |
|
|
|
/** |
|
* Draw both vectors on the image canvas. Uses blue for lines 1 and red for lines 2. |
|
* |
|
* @param image The image, where lines will be drawn. |
|
* Should have the size of the image, where the lines were found |
|
* @param lines1 The first lines that need to be drawn. Color - Blue. |
|
* @param lines2 The second lines that need to be drawn. Color - Red. |
|
* @return The number of mismatching pixels between lines1 and lines2. |
|
*/ |
|
static int compareSegments(const cv::Size& size, const std::vector<cv::Vec4i>& lines1, const std::vector<cv::Vec4i> lines2, cv::Mat* image = 0); |
|
|
|
private: |
|
cv::Mat image; |
|
cv::Mat_<double> scaled_image; |
|
double *scaled_image_data; |
|
cv::Mat_<double> angles; // in rads |
|
double *angles_data; |
|
cv::Mat_<double> modgrad; |
|
double *modgrad_data; |
|
cv::Mat_<uchar> used; |
|
|
|
int img_width; |
|
int img_height; |
|
double LOG_NT; |
|
|
|
cv::Rect roi; |
|
int roix, roiy; |
|
|
|
const double SCALE; |
|
const lsd_refine_lvl doRefine; |
|
const double SIGMA_SCALE; |
|
const double QUANT; |
|
const double ANG_TH; |
|
const double LOG_EPS; |
|
const double DENSITY_TH; |
|
const int N_BINS; |
|
|
|
struct RegionPoint { |
|
int x; |
|
int y; |
|
uchar* used; |
|
double angle; |
|
double modgrad; |
|
}; |
|
|
|
struct coorlist |
|
{ |
|
cv::Point2i p; |
|
struct coorlist* next; |
|
}; |
|
|
|
struct rect |
|
{ |
|
double x1, y1, x2, y2; // first and second point of the line segment |
|
double width; // rectangle width |
|
double x, y; // center of the rectangle |
|
double theta; // angle |
|
double dx,dy; // (dx,dy) is vector oriented as the line segment |
|
double prec; // tolerance angle |
|
double p; // probability of a point with angle within 'prec' |
|
}; |
|
|
|
/** |
|
* Detect lines in the whole input image. |
|
* |
|
* @param lines Return: A vector of Vec4i elements specifying the beginning and ending point of a line. |
|
* Where Vec4i is (x1, y1, x2, y2), point 1 is the start, point 2 - end. |
|
* Returned lines are strictly oriented depending on the gradient. |
|
* @param widths Return: Vector of widths of the regions, where the lines are found. E.g. Width of line. |
|
* @param precisions Return: Vector of precisions with which the lines are found. |
|
* @param nfas Return: Vector containing number of false alarms in the line region, with precision of 10%. |
|
* The bigger the value, logarithmically better the detection. |
|
* * -1 corresponds to 10 mean false alarms |
|
* * 0 corresponds to 1 mean false alarm |
|
* * 1 corresponds to 0.1 mean false alarms |
|
*/ |
|
void flsd(std::vector<cv::Vec4i>& lines, |
|
std::vector<double>* widths, std::vector<double>* precisions, |
|
std::vector<double>* nfas); |
|
|
|
/** |
|
* Finds the angles and the gradients of the image. Generates a list of pseudo ordered points. |
|
* |
|
* @param threshold The minimum value of the angle that is considered defined, otherwise NOTDEF |
|
* @param n_bins The number of bins with which gradients are ordered by, using bucket sort. |
|
* @param list Return: Vector of coordinate points that are pseudo ordered by magnitude. |
|
* Pixels would be ordered by norm value, up to a precision given by max_grad/n_bins. |
|
*/ |
|
void ll_angle(const double& threshold, const unsigned int& n_bins, std::vector<coorlist>& list); |
|
|
|
/** |
|
* Grow a region starting from point s with a defined precision, |
|
* returning the containing points size and the angle of the gradients. |
|
* |
|
* @param s Starting point for the region. |
|
* @param reg Return: Vector of points, that are part of the region |
|
* @param reg_size Return: The size of the region. |
|
* @param reg_angle Return: The mean angle of the region. |
|
* @param prec The precision by which each region angle should be aligned to the mean. |
|
*/ |
|
void region_grow(const cv::Point2i& s, std::vector<RegionPoint>& reg, |
|
int& reg_size, double& reg_angle, const double& prec); |
|
|
|
/** |
|
* Finds the bounding rotated rectangle of a region. |
|
* |
|
* @param reg The region of points, from which the rectangle to be constructed from. |
|
* @param reg_size The number of points in the region. |
|
* @param reg_angle The mean angle of the region. |
|
* @param prec The precision by which points were found. |
|
* @param p Probability of a point with angle within 'prec'. |
|
* @param rec Return: The generated rectangle. |
|
*/ |
|
void region2rect(const std::vector<RegionPoint>& reg, const int reg_size, const double reg_angle, |
|
const double prec, const double p, rect& rec) const; |
|
|
|
/** |
|
* Compute region's angle as the principal inertia axis of the region. |
|
* @return Regions angle. |
|
*/ |
|
double get_theta(const std::vector<RegionPoint>& reg, const int& reg_size, const double& x, |
|
const double& y, const double& reg_angle, const double& prec) const; |
|
|
|
/** |
|
* An estimation of the angle tolerance is performed by the standard deviation of the angle at points |
|
* near the region's starting point. Then, a new region is grown starting from the same point, but using the |
|
* estimated angle tolerance. If this fails to produce a rectangle with the right density of region points, |
|
* 'reduce_region_radius' is called to try to satisfy this condition. |
|
*/ |
|
bool refine(std::vector<RegionPoint>& reg, int& reg_size, double reg_angle, |
|
const double prec, double p, rect& rec, const double& density_th); |
|
|
|
/** |
|
* Reduce the region size, by elimination the points far from the starting point, until that leads to |
|
* rectangle with the right density of region points or to discard the region if too small. |
|
*/ |
|
bool reduce_region_radius(std::vector<RegionPoint>& reg, int& reg_size, double reg_angle, |
|
const double prec, double p, rect& rec, double density, const double& density_th); |
|
|
|
/** |
|
* Try some rectangles variations to improve NFA value. Only if the rectangle is not meaningful (i.e., log_nfa <= log_eps). |
|
* @return The new NFA value. |
|
*/ |
|
double rect_improve(rect& rec) const; |
|
|
|
/** |
|
* Calculates the number of correctly aligned points within the rectangle. |
|
* @return The new NFA value. |
|
*/ |
|
double rect_nfa(const rect& rec) const; |
|
|
|
/** |
|
* Computes the NFA values based on the total number of points, points that agree. |
|
* n, k, p are the binomial parameters. |
|
* @return The new NFA value. |
|
*/ |
|
double nfa(const int& n, const int& k, const double& p) const; |
|
|
|
/** |
|
* Is the point at place 'address' aligned to angle theta, up to precision 'prec'? |
|
* @return Whether the point is aligned. |
|
*/ |
|
bool isAligned(const int& address, const double& theta, const double& prec) const; |
|
}; |
|
|
|
|
|
|
|
//! returns type (one of KERNEL_*) of 1D or 2D kernel specified by its coefficients. |
|
CV_EXPORTS int getKernelType(InputArray kernel, Point anchor); |
|
|
|
//! returns the primitive row filter with the specified kernel |
|
CV_EXPORTS Ptr<BaseRowFilter> getLinearRowFilter(int srcType, int bufType, |
|
InputArray kernel, int anchor, |
|
int symmetryType); |
|
|
|
//! returns the primitive column filter with the specified kernel |
|
CV_EXPORTS Ptr<BaseColumnFilter> getLinearColumnFilter(int bufType, int dstType, |
|
InputArray kernel, int anchor, |
|
int symmetryType, double delta = 0, |
|
int bits = 0); |
|
|
|
//! returns 2D filter with the specified kernel |
|
CV_EXPORTS Ptr<BaseFilter> getLinearFilter(int srcType, int dstType, |
|
InputArray kernel, |
|
Point anchor = Point(-1,-1), |
|
double delta = 0, int bits = 0); |
|
|
|
//! returns the separable linear filter engine |
|
CV_EXPORTS Ptr<FilterEngine> createSeparableLinearFilter(int srcType, int dstType, |
|
InputArray rowKernel, InputArray columnKernel, |
|
Point anchor = Point(-1,-1), double delta = 0, |
|
int rowBorderType = BORDER_DEFAULT, |
|
int columnBorderType = -1, |
|
const Scalar& borderValue = Scalar()); |
|
|
|
//! returns the non-separable linear filter engine |
|
CV_EXPORTS Ptr<FilterEngine> createLinearFilter(int srcType, int dstType, |
|
InputArray kernel, Point _anchor = Point(-1,-1), |
|
double delta = 0, int rowBorderType = BORDER_DEFAULT, |
|
int columnBorderType = -1, const Scalar& borderValue = Scalar()); |
|
|
|
//! returns the Gaussian kernel with the specified parameters |
|
CV_EXPORTS_W Mat getGaussianKernel( int ksize, double sigma, int ktype = CV_64F ); |
|
|
|
//! returns the Gaussian filter engine |
|
CV_EXPORTS Ptr<FilterEngine> createGaussianFilter( int type, Size ksize, |
|
double sigma1, double sigma2 = 0, |
|
int borderType = BORDER_DEFAULT); |
|
|
|
//! initializes kernels of the generalized Sobel operator |
|
CV_EXPORTS_W void getDerivKernels( OutputArray kx, OutputArray ky, |
|
int dx, int dy, int ksize, |
|
bool normalize = false, int ktype = CV_32F ); |
|
|
|
//! returns filter engine for the generalized Sobel operator |
|
CV_EXPORTS Ptr<FilterEngine> createDerivFilter( int srcType, int dstType, |
|
int dx, int dy, int ksize, |
|
int borderType = BORDER_DEFAULT ); |
|
|
|
//! returns horizontal 1D box filter |
|
CV_EXPORTS Ptr<BaseRowFilter> getRowSumFilter(int srcType, int sumType, |
|
int ksize, int anchor = -1); |
|
|
|
//! returns vertical 1D box filter |
|
CV_EXPORTS Ptr<BaseColumnFilter> getColumnSumFilter( int sumType, int dstType, |
|
int ksize, int anchor = -1, |
|
double scale = 1); |
|
//! returns box filter engine |
|
CV_EXPORTS Ptr<FilterEngine> createBoxFilter( int srcType, int dstType, Size ksize, |
|
Point anchor = Point(-1,-1), |
|
bool normalize = true, |
|
int borderType = BORDER_DEFAULT); |
|
|
|
//! returns the Gabor kernel with the specified parameters |
|
CV_EXPORTS_W Mat getGaborKernel( Size ksize, double sigma, double theta, double lambd, |
|
double gamma, double psi = CV_PI*0.5, int ktype = CV_64F ); |
|
|
|
//! returns horizontal 1D morphological filter |
|
CV_EXPORTS Ptr<BaseRowFilter> getMorphologyRowFilter(int op, int type, int ksize, int anchor = -1); |
|
|
|
//! returns vertical 1D morphological filter |
|
CV_EXPORTS Ptr<BaseColumnFilter> getMorphologyColumnFilter(int op, int type, int ksize, int anchor = -1); |
|
|
|
//! returns 2D morphological filter |
|
CV_EXPORTS Ptr<BaseFilter> getMorphologyFilter(int op, int type, InputArray kernel, |
|
Point anchor = Point(-1,-1)); |
|
|
|
//! returns "magic" border value for erosion and dilation. It is automatically transformed to Scalar::all(-DBL_MAX) for dilation. |
|
static inline Scalar morphologyDefaultBorderValue() { return Scalar::all(DBL_MAX); } |
|
|
|
//! returns morphological filter engine. Only MORPH_ERODE and MORPH_DILATE are supported. |
|
CV_EXPORTS Ptr<FilterEngine> createMorphologyFilter(int op, int type, InputArray kernel, |
|
Point anchor = Point(-1,-1), int rowBorderType = BORDER_CONSTANT, |
|
int columnBorderType = -1, const Scalar& borderValue = morphologyDefaultBorderValue()); |
|
|
|
//! returns structuring element of the specified shape and size |
|
CV_EXPORTS_W Mat getStructuringElement(int shape, Size ksize, Point anchor = Point(-1,-1)); |
|
|
|
//! smooths the image using median filter. |
|
CV_EXPORTS_W void medianBlur( InputArray src, OutputArray dst, int ksize ); |
|
|
|
//! smooths the image using Gaussian filter. |
|
CV_EXPORTS_W void GaussianBlur( InputArray src, OutputArray dst, Size ksize, |
|
double sigmaX, double sigmaY = 0, |
|
int borderType = BORDER_DEFAULT ); |
|
|
|
//! smooths the image using bilateral filter |
|
CV_EXPORTS_W void bilateralFilter( InputArray src, OutputArray dst, int d, |
|
double sigmaColor, double sigmaSpace, |
|
int borderType = BORDER_DEFAULT ); |
|
|
|
//! smooths the image using the box filter. Each pixel is processed in O(1) time |
|
CV_EXPORTS_W void boxFilter( InputArray src, OutputArray dst, int ddepth, |
|
Size ksize, Point anchor = Point(-1,-1), |
|
bool normalize = true, |
|
int borderType = BORDER_DEFAULT ); |
|
|
|
//! a synonym for normalized box filter |
|
CV_EXPORTS_W void blur( InputArray src, OutputArray dst, |
|
Size ksize, Point anchor = Point(-1,-1), |
|
int borderType = BORDER_DEFAULT ); |
|
|
|
//! applies non-separable 2D linear filter to the image |
|
CV_EXPORTS_W void filter2D( InputArray src, OutputArray dst, int ddepth, |
|
InputArray kernel, Point anchor = Point(-1,-1), |
|
double delta = 0, int borderType = BORDER_DEFAULT ); |
|
|
|
//! applies separable 2D linear filter to the image |
|
CV_EXPORTS_W void sepFilter2D( InputArray src, OutputArray dst, int ddepth, |
|
InputArray kernelX, InputArray kernelY, |
|
Point anchor = Point(-1,-1), |
|
double delta = 0, int borderType = BORDER_DEFAULT ); |
|
|
|
//! applies generalized Sobel operator to the image |
|
CV_EXPORTS_W void Sobel( InputArray src, OutputArray dst, int ddepth, |
|
int dx, int dy, int ksize = 3, |
|
double scale = 1, double delta = 0, |
|
int borderType = BORDER_DEFAULT ); |
|
|
|
//! applies the vertical or horizontal Scharr operator to the image |
|
CV_EXPORTS_W void Scharr( InputArray src, OutputArray dst, int ddepth, |
|
int dx, int dy, double scale = 1, double delta = 0, |
|
int borderType = BORDER_DEFAULT ); |
|
|
|
//! applies Laplacian operator to the image |
|
CV_EXPORTS_W void Laplacian( InputArray src, OutputArray dst, int ddepth, |
|
int ksize = 1, double scale = 1, double delta = 0, |
|
int borderType = BORDER_DEFAULT ); |
|
|
|
//! applies Canny edge detector and produces the edge map. |
|
CV_EXPORTS_W void Canny( InputArray image, OutputArray edges, |
|
double threshold1, double threshold2, |
|
int apertureSize = 3, bool L2gradient = false ); |
|
|
|
//! computes minimum eigen value of 2x2 derivative covariation matrix at each pixel - the cornerness criteria |
|
CV_EXPORTS_W void cornerMinEigenVal( InputArray src, OutputArray dst, |
|
int blockSize, int ksize = 3, |
|
int borderType = BORDER_DEFAULT ); |
|
|
|
//! computes Harris cornerness criteria at each image pixel |
|
CV_EXPORTS_W void cornerHarris( InputArray src, OutputArray dst, int blockSize, |
|
int ksize, double k, |
|
int borderType = BORDER_DEFAULT ); |
|
|
|
//! computes both eigenvalues and the eigenvectors of 2x2 derivative covariation matrix at each pixel. The output is stored as 6-channel matrix. |
|
CV_EXPORTS_W void cornerEigenValsAndVecs( InputArray src, OutputArray dst, |
|
int blockSize, int ksize, |
|
int borderType = BORDER_DEFAULT ); |
|
|
|
//! computes another complex cornerness criteria at each pixel |
|
CV_EXPORTS_W void preCornerDetect( InputArray src, OutputArray dst, int ksize, |
|
int borderType = BORDER_DEFAULT ); |
|
|
|
//! adjusts the corner locations with sub-pixel accuracy to maximize the certain cornerness criteria |
|
CV_EXPORTS_W void cornerSubPix( InputArray image, InputOutputArray corners, |
|
Size winSize, Size zeroZone, |
|
TermCriteria criteria ); |
|
|
|
//! finds the strong enough corners where the cornerMinEigenVal() or cornerHarris() report the local maxima |
|
CV_EXPORTS_W void goodFeaturesToTrack( InputArray image, OutputArray corners, |
|
int maxCorners, double qualityLevel, double minDistance, |
|
InputArray mask = noArray(), int blockSize = 3, |
|
bool useHarrisDetector = false, double k = 0.04 ); |
|
|
|
//! finds lines in the black-n-white image using the standard or pyramid Hough transform |
|
CV_EXPORTS_W void HoughLines( InputArray image, OutputArray lines, |
|
double rho, double theta, int threshold, |
|
double srn = 0, double stn = 0 ); |
|
|
|
//! finds line segments in the black-n-white image using probabalistic Hough transform |
|
CV_EXPORTS_W void HoughLinesP( InputArray image, OutputArray lines, |
|
double rho, double theta, int threshold, |
|
double minLineLength = 0, double maxLineGap = 0 ); |
|
|
|
//! finds circles in the grayscale image using 2+1 gradient Hough transform |
|
CV_EXPORTS_W void HoughCircles( InputArray image, OutputArray circles, |
|
int method, double dp, double minDist, |
|
double param1 = 100, double param2 = 100, |
|
int minRadius = 0, int maxRadius = 0 ); |
|
|
|
//! erodes the image (applies the local minimum operator) |
|
CV_EXPORTS_W void erode( InputArray src, OutputArray dst, InputArray kernel, |
|
Point anchor = Point(-1,-1), int iterations = 1, |
|
int borderType = BORDER_CONSTANT, |
|
const Scalar& borderValue = morphologyDefaultBorderValue() ); |
|
|
|
//! dilates the image (applies the local maximum operator) |
|
CV_EXPORTS_W void dilate( InputArray src, OutputArray dst, InputArray kernel, |
|
Point anchor = Point(-1,-1), int iterations = 1, |
|
int borderType = BORDER_CONSTANT, |
|
const Scalar& borderValue = morphologyDefaultBorderValue() ); |
|
|
|
//! applies an advanced morphological operation to the image |
|
CV_EXPORTS_W void morphologyEx( InputArray src, OutputArray dst, |
|
int op, InputArray kernel, |
|
Point anchor = Point(-1,-1), int iterations = 1, |
|
int borderType = BORDER_CONSTANT, |
|
const Scalar& borderValue = morphologyDefaultBorderValue() ); |
|
|
|
//! resizes the image |
|
CV_EXPORTS_W void resize( InputArray src, OutputArray dst, |
|
Size dsize, double fx = 0, double fy = 0, |
|
int interpolation = INTER_LINEAR ); |
|
|
|
//! warps the image using affine transformation |
|
CV_EXPORTS_W void warpAffine( InputArray src, OutputArray dst, |
|
InputArray M, Size dsize, |
|
int flags = INTER_LINEAR, |
|
int borderMode = BORDER_CONSTANT, |
|
const Scalar& borderValue = Scalar()); |
|
|
|
//! warps the image using perspective transformation |
|
CV_EXPORTS_W void warpPerspective( InputArray src, OutputArray dst, |
|
InputArray M, Size dsize, |
|
int flags = INTER_LINEAR, |
|
int borderMode = BORDER_CONSTANT, |
|
const Scalar& borderValue = Scalar()); |
|
|
|
//! warps the image using the precomputed maps. The maps are stored in either floating-point or integer fixed-point format |
|
CV_EXPORTS_W void remap( InputArray src, OutputArray dst, |
|
InputArray map1, InputArray map2, |
|
int interpolation, int borderMode = BORDER_CONSTANT, |
|
const Scalar& borderValue = Scalar()); |
|
|
|
//! converts maps for remap from floating-point to fixed-point format or backwards |
|
CV_EXPORTS_W void convertMaps( InputArray map1, InputArray map2, |
|
OutputArray dstmap1, OutputArray dstmap2, |
|
int dstmap1type, bool nninterpolation = false ); |
|
|
|
//! returns 2x3 affine transformation matrix for the planar rotation. |
|
CV_EXPORTS_W Mat getRotationMatrix2D( Point2f center, double angle, double scale ); |
|
|
|
//! returns 3x3 perspective transformation for the corresponding 4 point pairs. |
|
CV_EXPORTS Mat getPerspectiveTransform( const Point2f src[], const Point2f dst[] ); |
|
|
|
//! returns 2x3 affine transformation for the corresponding 3 point pairs. |
|
CV_EXPORTS Mat getAffineTransform( const Point2f src[], const Point2f dst[] ); |
|
|
|
//! computes 2x3 affine transformation matrix that is inverse to the specified 2x3 affine transformation. |
|
CV_EXPORTS_W void invertAffineTransform( InputArray M, OutputArray iM ); |
|
|
|
CV_EXPORTS_W Mat getPerspectiveTransform( InputArray src, InputArray dst ); |
|
|
|
CV_EXPORTS_W Mat getAffineTransform( InputArray src, InputArray dst ); |
|
|
|
//! extracts rectangle from the image at sub-pixel location |
|
CV_EXPORTS_W void getRectSubPix( InputArray image, Size patchSize, |
|
Point2f center, OutputArray patch, int patchType = -1 ); |
|
|
|
//! computes the integral image |
|
CV_EXPORTS_W void integral( InputArray src, OutputArray sum, int sdepth = -1 ); |
|
|
|
//! computes the integral image and integral for the squared image |
|
CV_EXPORTS_AS(integral2) void integral( InputArray src, OutputArray sum, |
|
OutputArray sqsum, int sdepth = -1 ); |
|
|
|
//! computes the integral image, integral for the squared image and the tilted integral image |
|
CV_EXPORTS_AS(integral3) void integral( InputArray src, OutputArray sum, |
|
OutputArray sqsum, OutputArray tilted, |
|
int sdepth = -1 ); |
|
|
|
//! adds image to the accumulator (dst += src). Unlike cv::add, dst and src can have different types. |
|
CV_EXPORTS_W void accumulate( InputArray src, InputOutputArray dst, |
|
InputArray mask = noArray() ); |
|
|
|
//! adds squared src image to the accumulator (dst += src*src). |
|
CV_EXPORTS_W void accumulateSquare( InputArray src, InputOutputArray dst, |
|
InputArray mask = noArray() ); |
|
//! adds product of the 2 images to the accumulator (dst += src1*src2). |
|
CV_EXPORTS_W void accumulateProduct( InputArray src1, InputArray src2, |
|
InputOutputArray dst, InputArray mask=noArray() ); |
|
|
|
//! updates the running average (dst = dst*(1-alpha) + src*alpha) |
|
CV_EXPORTS_W void accumulateWeighted( InputArray src, InputOutputArray dst, |
|
double alpha, InputArray mask = noArray() ); |
|
|
|
CV_EXPORTS_W Point2d phaseCorrelate(InputArray src1, InputArray src2, |
|
InputArray window = noArray(), CV_OUT double* response = 0); |
|
|
|
CV_EXPORTS_W void createHanningWindow(OutputArray dst, Size winSize, int type); |
|
|
|
//! applies fixed threshold to the image |
|
CV_EXPORTS_W double threshold( InputArray src, OutputArray dst, |
|
double thresh, double maxval, int type ); |
|
|
|
|
|
//! applies variable (adaptive) threshold to the image |
|
CV_EXPORTS_W void adaptiveThreshold( InputArray src, OutputArray dst, |
|
double maxValue, int adaptiveMethod, |
|
int thresholdType, int blockSize, double C ); |
|
|
|
//! smooths and downsamples the image |
|
CV_EXPORTS_W void pyrDown( InputArray src, OutputArray dst, |
|
const Size& dstsize = Size(), int borderType = BORDER_DEFAULT ); |
|
|
|
//! upsamples and smoothes the image |
|
CV_EXPORTS_W void pyrUp( InputArray src, OutputArray dst, |
|
const Size& dstsize = Size(), int borderType = BORDER_DEFAULT ); |
|
|
|
//! builds the gaussian pyramid using pyrDown() as a basic operation |
|
CV_EXPORTS void buildPyramid( InputArray src, OutputArrayOfArrays dst, |
|
int maxlevel, int borderType = BORDER_DEFAULT ); |
|
|
|
//! corrects lens distortion for the given camera matrix and distortion coefficients |
|
CV_EXPORTS_W void undistort( InputArray src, OutputArray dst, |
|
InputArray cameraMatrix, |
|
InputArray distCoeffs, |
|
InputArray newCameraMatrix = noArray() ); |
|
|
|
//! initializes maps for cv::remap() to correct lens distortion and optionally rectify the image |
|
CV_EXPORTS_W void initUndistortRectifyMap( InputArray cameraMatrix, InputArray distCoeffs, |
|
InputArray R, InputArray newCameraMatrix, |
|
Size size, int m1type, OutputArray map1, OutputArray map2 ); |
|
|
|
//! initializes maps for cv::remap() for wide-angle |
|
CV_EXPORTS_W float initWideAngleProjMap( InputArray cameraMatrix, InputArray distCoeffs, |
|
Size imageSize, int destImageWidth, |
|
int m1type, OutputArray map1, OutputArray map2, |
|
int projType = PROJ_SPHERICAL_EQRECT, double alpha = 0); |
|
|
|
//! returns the default new camera matrix (by default it is the same as cameraMatrix unless centerPricipalPoint=true) |
|
CV_EXPORTS_W Mat getDefaultNewCameraMatrix( InputArray cameraMatrix, Size imgsize = Size(), |
|
bool centerPrincipalPoint = false ); |
|
|
|
//! returns points' coordinates after lens distortion correction |
|
CV_EXPORTS_W void undistortPoints( InputArray src, OutputArray dst, |
|
InputArray cameraMatrix, InputArray distCoeffs, |
|
InputArray R = noArray(), InputArray P = noArray()); |
|
|
|
//! computes the joint dense histogram for a set of images. |
|
CV_EXPORTS void calcHist( const Mat* images, int nimages, |
|
const int* channels, InputArray mask, |
|
OutputArray hist, int dims, const int* histSize, |
|
const float** ranges, bool uniform = true, bool accumulate = false ); |
|
|
|
//! computes the joint sparse histogram for a set of images. |
|
CV_EXPORTS void calcHist( const Mat* images, int nimages, |
|
const int* channels, InputArray mask, |
|
SparseMat& hist, int dims, |
|
const int* histSize, const float** ranges, |
|
bool uniform = true, bool accumulate = false ); |
|
|
|
CV_EXPORTS_W void calcHist( InputArrayOfArrays images, |
|
const std::vector<int>& channels, |
|
InputArray mask, OutputArray hist, |
|
const std::vector<int>& histSize, |
|
const std::vector<float>& ranges, |
|
bool accumulate = false ); |
|
|
|
//! computes back projection for the set of images |
|
CV_EXPORTS void calcBackProject( const Mat* images, int nimages, |
|
const int* channels, InputArray hist, |
|
OutputArray backProject, const float** ranges, |
|
double scale = 1, bool uniform = true ); |
|
|
|
//! computes back projection for the set of images |
|
CV_EXPORTS void calcBackProject( const Mat* images, int nimages, |
|
const int* channels, const SparseMat& hist, |
|
OutputArray backProject, const float** ranges, |
|
double scale = 1, bool uniform = true ); |
|
|
|
CV_EXPORTS_W void calcBackProject( InputArrayOfArrays images, const std::vector<int>& channels, |
|
InputArray hist, OutputArray dst, |
|
const std::vector<float>& ranges, |
|
double scale ); |
|
|
|
//! compares two histograms stored in dense arrays |
|
CV_EXPORTS_W double compareHist( InputArray H1, InputArray H2, int method ); |
|
|
|
//! compares two histograms stored in sparse arrays |
|
CV_EXPORTS double compareHist( const SparseMat& H1, const SparseMat& H2, int method ); |
|
|
|
//! normalizes the grayscale image brightness and contrast by normalizing its histogram |
|
CV_EXPORTS_W void equalizeHist( InputArray src, OutputArray dst ); |
|
|
|
CV_EXPORTS float EMD( InputArray signature1, InputArray signature2, |
|
int distType, InputArray cost=noArray(), |
|
float* lowerBound = 0, OutputArray flow = noArray() ); |
|
|
|
//! segments the image using watershed algorithm |
|
CV_EXPORTS_W void watershed( InputArray image, InputOutputArray markers ); |
|
|
|
//! filters image using meanshift algorithm |
|
CV_EXPORTS_W void pyrMeanShiftFiltering( InputArray src, OutputArray dst, |
|
double sp, double sr, int maxLevel = 1, |
|
TermCriteria termcrit=TermCriteria(TermCriteria::MAX_ITER+TermCriteria::EPS,5,1) ); |
|
|
|
//! segments the image using GrabCut algorithm |
|
CV_EXPORTS_W void grabCut( InputArray img, InputOutputArray mask, Rect rect, |
|
InputOutputArray bgdModel, InputOutputArray fgdModel, |
|
int iterCount, int mode = GC_EVAL ); |
|
|
|
|
|
//! builds the discrete Voronoi diagram |
|
CV_EXPORTS_AS(distanceTransformWithLabels) void distanceTransform( InputArray src, OutputArray dst, |
|
OutputArray labels, int distanceType, int maskSize, |
|
int labelType = DIST_LABEL_CCOMP ); |
|
|
|
//! computes the distance transform map |
|
CV_EXPORTS_W void distanceTransform( InputArray src, OutputArray dst, |
|
int distanceType, int maskSize ); |
|
|
|
|
|
//! fills the semi-uniform image region starting from the specified seed point |
|
CV_EXPORTS int floodFill( InputOutputArray image, |
|
Point seedPoint, Scalar newVal, CV_OUT Rect* rect = 0, |
|
Scalar loDiff = Scalar(), Scalar upDiff = Scalar(), |
|
int flags = 4 ); |
|
|
|
//! fills the semi-uniform image region and/or the mask starting from the specified seed point |
|
CV_EXPORTS_W int floodFill( InputOutputArray image, InputOutputArray mask, |
|
Point seedPoint, Scalar newVal, CV_OUT Rect* rect=0, |
|
Scalar loDiff = Scalar(), Scalar upDiff = Scalar(), |
|
int flags = 4 ); |
|
|
|
//! converts image from one color space to another |
|
CV_EXPORTS_W void cvtColor( InputArray src, OutputArray dst, int code, int dstCn = 0 ); |
|
|
|
// main function for all demosaicing procceses |
|
CV_EXPORTS_W void demosaicing(InputArray _src, OutputArray _dst, int code, int dcn = 0); |
|
|
|
//! computes moments of the rasterized shape or a vector of points |
|
CV_EXPORTS_W Moments moments( InputArray array, bool binaryImage = false ); |
|
|
|
//! computes 7 Hu invariants from the moments |
|
CV_EXPORTS void HuMoments( const Moments& moments, double hu[7] ); |
|
|
|
CV_EXPORTS_W void HuMoments( const Moments& m, OutputArray hu ); |
|
|
|
//! computes the proximity map for the raster template and the image where the template is searched for |
|
CV_EXPORTS_W void matchTemplate( InputArray image, InputArray templ, |
|
OutputArray result, int method ); |
|
|
|
|
|
// computes the connected components labeled image of boolean image ``image`` |
|
// with 4 or 8 way connectivity - returns N, the total |
|
// number of labels [0, N-1] where 0 represents the background label. |
|
// ltype specifies the output label image type, an important |
|
// consideration based on the total number of labels or |
|
// alternatively the total number of pixels in the source image. |
|
CV_EXPORTS_W int connectedComponents(InputArray image, OutputArray labels, |
|
int connectivity = 8, int ltype = CV_32S); |
|
|
|
CV_EXPORTS_W int connectedComponentsWithStats(InputArray image, OutputArray labels, |
|
OutputArray stats, OutputArray centroids, |
|
int connectivity = 8, int ltype = CV_32S); |
|
|
|
|
|
//! retrieves contours and the hierarchical information from black-n-white image. |
|
CV_EXPORTS_W void findContours( InputOutputArray image, OutputArrayOfArrays contours, |
|
OutputArray hierarchy, int mode, |
|
int method, Point offset = Point()); |
|
|
|
//! retrieves contours from black-n-white image. |
|
CV_EXPORTS void findContours( InputOutputArray image, OutputArrayOfArrays contours, |
|
int mode, int method, Point offset = Point()); |
|
|
|
//! approximates contour or a curve using Douglas-Peucker algorithm |
|
CV_EXPORTS_W void approxPolyDP( InputArray curve, |
|
OutputArray approxCurve, |
|
double epsilon, bool closed ); |
|
|
|
//! computes the contour perimeter (closed=true) or a curve length |
|
CV_EXPORTS_W double arcLength( InputArray curve, bool closed ); |
|
|
|
//! computes the bounding rectangle for a contour |
|
CV_EXPORTS_W Rect boundingRect( InputArray points ); |
|
|
|
//! computes the contour area |
|
CV_EXPORTS_W double contourArea( InputArray contour, bool oriented = false ); |
|
|
|
//! computes the minimal rotated rectangle for a set of points |
|
CV_EXPORTS_W RotatedRect minAreaRect( InputArray points ); |
|
|
|
//! computes boxpoints |
|
CV_EXPORTS_W void boxPoints(RotatedRect box, OutputArray points); |
|
|
|
//! computes the minimal enclosing circle for a set of points |
|
CV_EXPORTS_W void minEnclosingCircle( InputArray points, |
|
CV_OUT Point2f& center, CV_OUT float& radius ); |
|
|
|
//! matches two contours using one of the available algorithms |
|
CV_EXPORTS_W double matchShapes( InputArray contour1, InputArray contour2, |
|
int method, double parameter ); |
|
|
|
//! computes convex hull for a set of 2D points. |
|
CV_EXPORTS_W void convexHull( InputArray points, OutputArray hull, |
|
bool clockwise = false, bool returnPoints = true ); |
|
|
|
//! computes the contour convexity defects |
|
CV_EXPORTS_W void convexityDefects( InputArray contour, InputArray convexhull, OutputArray convexityDefects ); |
|
|
|
//! returns true if the contour is convex. Does not support contours with self-intersection |
|
CV_EXPORTS_W bool isContourConvex( InputArray contour ); |
|
|
|
//! finds intersection of two convex polygons |
|
CV_EXPORTS_W float intersectConvexConvex( InputArray _p1, InputArray _p2, |
|
OutputArray _p12, bool handleNested = true ); |
|
|
|
//! fits ellipse to the set of 2D points |
|
CV_EXPORTS_W RotatedRect fitEllipse( InputArray points ); |
|
|
|
//! fits line to the set of 2D points using M-estimator algorithm |
|
CV_EXPORTS_W void fitLine( InputArray points, OutputArray line, int distType, |
|
double param, double reps, double aeps ); |
|
|
|
//! checks if the point is inside the contour. Optionally computes the signed distance from the point to the contour boundary |
|
CV_EXPORTS_W double pointPolygonTest( InputArray contour, Point2f pt, bool measureDist ); |
|
|
|
CV_EXPORTS Ptr<CLAHE> createCLAHE(double clipLimit = 40.0, Size tileGridSize = Size(8, 8)); |
|
|
|
} // cv |
|
|
|
#endif
|
|
|