mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
177 lines
6.7 KiB
177 lines
6.7 KiB
/* |
|
Text detection model: https://github.com/argman/EAST |
|
Download link: https://www.dropbox.com/s/r2ingd0l3zt8hxs/frozen_east_text_detection.tar.gz?dl=1 |
|
|
|
Text recognition models can be downloaded directly here: |
|
Download link: https://drive.google.com/drive/folders/1cTbQ3nuZG-EKWak6emD_s8_hHXWz7lAr?usp=sharing |
|
and doc/tutorials/dnn/dnn_text_spotting/dnn_text_spotting.markdown |
|
|
|
How to convert from pb to onnx: |
|
Using classes from here: https://github.com/meijieru/crnn.pytorch/blob/master/models/crnn.py |
|
import torch |
|
from models.crnn import CRNN |
|
model = CRNN(32, 1, 37, 256) |
|
model.load_state_dict(torch.load('crnn.pth')) |
|
dummy_input = torch.randn(1, 1, 32, 100) |
|
torch.onnx.export(model, dummy_input, "crnn.onnx", verbose=True) |
|
|
|
For more information, please refer to doc/tutorials/dnn/dnn_text_spotting/dnn_text_spotting.markdown and doc/tutorials/dnn/dnn_OCR/dnn_OCR.markdown |
|
*/ |
|
#include <iostream> |
|
#include <fstream> |
|
|
|
#include <opencv2/imgproc.hpp> |
|
#include <opencv2/highgui.hpp> |
|
#include <opencv2/dnn.hpp> |
|
|
|
using namespace cv; |
|
using namespace cv::dnn; |
|
|
|
const char* keys = |
|
"{ help h | | Print help message. }" |
|
"{ input i | | Path to input image or video file. Skip this argument to capture frames from a camera.}" |
|
"{ detModel dmp | | Path to a binary .pb file contains trained detector network.}" |
|
"{ width | 320 | Preprocess input image by resizing to a specific width. It should be multiple by 32. }" |
|
"{ height | 320 | Preprocess input image by resizing to a specific height. It should be multiple by 32. }" |
|
"{ thr | 0.5 | Confidence threshold. }" |
|
"{ nms | 0.4 | Non-maximum suppression threshold. }" |
|
"{ recModel rmp | | Path to a binary .onnx file contains trained CRNN text recognition model. " |
|
"Download links are provided in doc/tutorials/dnn/dnn_text_spotting/dnn_text_spotting.markdown}" |
|
"{ RGBInput rgb |0| 0: imread with flags=IMREAD_GRAYSCALE; 1: imread with flags=IMREAD_COLOR. }" |
|
"{ vocabularyPath vp | alphabet_36.txt | Path to benchmarks for evaluation. " |
|
"Download links are provided in doc/tutorials/dnn/dnn_text_spotting/dnn_text_spotting.markdown}"; |
|
|
|
void fourPointsTransform(const Mat& frame, const Point2f vertices[], Mat& result); |
|
|
|
int main(int argc, char** argv) |
|
{ |
|
// Parse command line arguments. |
|
CommandLineParser parser(argc, argv, keys); |
|
parser.about("Use this script to run TensorFlow implementation (https://github.com/argman/EAST) of " |
|
"EAST: An Efficient and Accurate Scene Text Detector (https://arxiv.org/abs/1704.03155v2)"); |
|
if (argc == 1 || parser.has("help")) |
|
{ |
|
parser.printMessage(); |
|
return 0; |
|
} |
|
|
|
float confThreshold = parser.get<float>("thr"); |
|
float nmsThreshold = parser.get<float>("nms"); |
|
int width = parser.get<int>("width"); |
|
int height = parser.get<int>("height"); |
|
int imreadRGB = parser.get<int>("RGBInput"); |
|
String detModelPath = parser.get<String>("detModel"); |
|
String recModelPath = parser.get<String>("recModel"); |
|
String vocPath = parser.get<String>("vocabularyPath"); |
|
|
|
if (!parser.check()) |
|
{ |
|
parser.printErrors(); |
|
return 1; |
|
} |
|
|
|
// Load networks. |
|
CV_Assert(!detModelPath.empty() && !recModelPath.empty()); |
|
TextDetectionModel_EAST detector(detModelPath); |
|
detector.setConfidenceThreshold(confThreshold) |
|
.setNMSThreshold(nmsThreshold); |
|
|
|
TextRecognitionModel recognizer(recModelPath); |
|
|
|
// Load vocabulary |
|
CV_Assert(!vocPath.empty()); |
|
std::ifstream vocFile; |
|
vocFile.open(samples::findFile(vocPath)); |
|
CV_Assert(vocFile.is_open()); |
|
String vocLine; |
|
std::vector<String> vocabulary; |
|
while (std::getline(vocFile, vocLine)) { |
|
vocabulary.push_back(vocLine); |
|
} |
|
recognizer.setVocabulary(vocabulary); |
|
recognizer.setDecodeType("CTC-greedy"); |
|
|
|
// Parameters for Recognition |
|
double recScale = 1.0 / 127.5; |
|
Scalar recMean = Scalar(127.5, 127.5, 127.5); |
|
Size recInputSize = Size(100, 32); |
|
recognizer.setInputParams(recScale, recInputSize, recMean); |
|
|
|
// Parameters for Detection |
|
double detScale = 1.0; |
|
Size detInputSize = Size(width, height); |
|
Scalar detMean = Scalar(123.68, 116.78, 103.94); |
|
bool swapRB = true; |
|
detector.setInputParams(detScale, detInputSize, detMean, swapRB); |
|
|
|
// Open a video file or an image file or a camera stream. |
|
VideoCapture cap; |
|
bool openSuccess = parser.has("input") ? cap.open(parser.get<String>("input")) : cap.open(0); |
|
CV_Assert(openSuccess); |
|
|
|
static const std::string kWinName = "EAST: An Efficient and Accurate Scene Text Detector"; |
|
|
|
Mat frame; |
|
while (waitKey(1) < 0) |
|
{ |
|
cap >> frame; |
|
if (frame.empty()) |
|
{ |
|
waitKey(); |
|
break; |
|
} |
|
|
|
std::cout << frame.size << std::endl; |
|
|
|
// Detection |
|
std::vector< std::vector<Point> > detResults; |
|
detector.detect(frame, detResults); |
|
Mat frame2 = frame.clone(); |
|
if (detResults.size() > 0) { |
|
// Text Recognition |
|
Mat recInput; |
|
if (!imreadRGB) { |
|
cvtColor(frame, recInput, cv::COLOR_BGR2GRAY); |
|
} else { |
|
recInput = frame; |
|
} |
|
std::vector< std::vector<Point> > contours; |
|
for (uint i = 0; i < detResults.size(); i++) |
|
{ |
|
const auto& quadrangle = detResults[i]; |
|
CV_CheckEQ(quadrangle.size(), (size_t)4, ""); |
|
|
|
contours.emplace_back(quadrangle); |
|
|
|
std::vector<Point2f> quadrangle_2f; |
|
for (int j = 0; j < 4; j++) |
|
quadrangle_2f.emplace_back(quadrangle[j]); |
|
|
|
Mat cropped; |
|
fourPointsTransform(recInput, &quadrangle_2f[0], cropped); |
|
|
|
std::string recognitionResult = recognizer.recognize(cropped); |
|
std::cout << i << ": '" << recognitionResult << "'" << std::endl; |
|
|
|
putText(frame2, recognitionResult, quadrangle[3], FONT_HERSHEY_SIMPLEX, 1.5, Scalar(0, 0, 255), 2); |
|
} |
|
polylines(frame2, contours, true, Scalar(0, 255, 0), 2); |
|
} |
|
imshow(kWinName, frame2); |
|
} |
|
return 0; |
|
} |
|
|
|
void fourPointsTransform(const Mat& frame, const Point2f vertices[], Mat& result) |
|
{ |
|
const Size outputSize = Size(100, 32); |
|
|
|
Point2f targetVertices[4] = { |
|
Point(0, outputSize.height - 1), |
|
Point(0, 0), Point(outputSize.width - 1, 0), |
|
Point(outputSize.width - 1, outputSize.height - 1) |
|
}; |
|
Mat rotationMatrix = getPerspectiveTransform(vertices, targetVertices); |
|
|
|
warpPerspective(frame, result, rotationMatrix, outputSize); |
|
}
|
|
|