mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
804 lines
33 KiB
804 lines
33 KiB
import numpy as np |
|
import cv2 as cv |
|
import math |
|
import argparse |
|
|
|
class AudioDrawing: |
|
''' |
|
Used for drawing audio graphics |
|
''' |
|
def __init__(self, args): |
|
|
|
self.inputType = args.inputType |
|
self.draw = args.draw |
|
self.graph = args.graph |
|
self.audio = cv.samples.findFile(args.audio) |
|
self.audioStream = args.audioStream |
|
|
|
self.windowType = args.windowType |
|
self.windLen = args.windLen |
|
self.overlap = args.overlap |
|
|
|
self.enableGrid = args.enableGrid |
|
|
|
self.rows = args.rows |
|
self.cols = args.cols |
|
|
|
self.xmarkup = args.xmarkup |
|
self.ymarkup = args.ymarkup |
|
self.zmarkup = args.zmarkup |
|
|
|
self.microTime = args.microTime |
|
self.frameSizeTime = args.frameSizeTime |
|
self.updateTime = args.updateTime |
|
self.waitTime = args.waitTime |
|
|
|
if self.initAndCheckArgs(args) is False: |
|
exit() |
|
|
|
|
|
def Draw(self): |
|
if self.draw == "static": |
|
|
|
if self.inputType == "file": |
|
samplingRate, inputAudio = self.readAudioFile(self.audio) |
|
|
|
elif self.inputType == "microphone": |
|
samplingRate, inputAudio = self.readAudioMicrophone() |
|
|
|
duration = len(inputAudio) // samplingRate |
|
|
|
# since the dimensional grid is counted in integer seconds, |
|
# if the input audio has an incomplete last second, |
|
# then it is filled with zeros to complete |
|
remainder = len(inputAudio) % samplingRate |
|
if remainder != 0: |
|
sizeToFullSec = samplingRate - remainder |
|
zeroArr = np.zeros(sizeToFullSec) |
|
inputAudio = np.concatenate((inputAudio, zeroArr), axis=0) |
|
duration += 1 |
|
print("Update duration of audio to full second with ", |
|
sizeToFullSec, " zero samples") |
|
print("New number of samples ", len(inputAudio)) |
|
|
|
if duration <= self.xmarkup: |
|
self.xmarkup = duration + 1 |
|
|
|
if self.graph == "ampl": |
|
imgAmplitude = self.drawAmplitude(inputAudio) |
|
imgAmplitude = self.drawAmplitudeScale(imgAmplitude, inputAudio, samplingRate) |
|
cv.imshow("Display window", imgAmplitude) |
|
cv.waitKey(0) |
|
|
|
elif self.graph == "spec": |
|
stft = self.STFT(inputAudio) |
|
imgSpec = self.drawSpectrogram(stft) |
|
imgSpec = self.drawSpectrogramColorbar(imgSpec, inputAudio, samplingRate, stft) |
|
cv.imshow("Display window", imgSpec) |
|
cv.waitKey(0) |
|
|
|
elif self.graph == "ampl_and_spec": |
|
imgAmplitude = self.drawAmplitude(inputAudio) |
|
imgAmplitude = self.drawAmplitudeScale(imgAmplitude, inputAudio, samplingRate) |
|
|
|
stft = self.STFT(inputAudio) |
|
imgSpec = self.drawSpectrogram(stft) |
|
imgSpec = self.drawSpectrogramColorbar(imgSpec, inputAudio, samplingRate, stft) |
|
|
|
imgTotal = self.concatenateImages(imgAmplitude, imgSpec) |
|
cv.imshow("Display window", imgTotal) |
|
cv.waitKey(0) |
|
|
|
elif self.draw == "dynamic": |
|
|
|
if self.inputType == "file": |
|
self.dynamicFile(self.audio) |
|
|
|
elif self.inputType == "microphone": |
|
self.dynamicMicrophone() |
|
|
|
|
|
def readAudioFile(self, file): |
|
cap = cv.VideoCapture(file) |
|
|
|
params = [cv.CAP_PROP_AUDIO_STREAM, self.audioStream, |
|
cv.CAP_PROP_VIDEO_STREAM, -1, |
|
cv.CAP_PROP_AUDIO_DATA_DEPTH, cv.CV_16S] |
|
params = np.asarray(params) |
|
|
|
cap.open(file, cv.CAP_ANY, params) |
|
if cap.isOpened() == False: |
|
print("Error : Can't read audio file: '", self.audio, "' with audioStream = ", self.audioStream) |
|
print("Error: problems with audio reading, check input arguments") |
|
exit() |
|
audioBaseIndex = int(cap.get(cv.CAP_PROP_AUDIO_BASE_INDEX)) |
|
numberOfChannels = int(cap.get(cv.CAP_PROP_AUDIO_TOTAL_CHANNELS)) |
|
|
|
print("CAP_PROP_AUDIO_DATA_DEPTH: ", str((int(cap.get(cv.CAP_PROP_AUDIO_DATA_DEPTH))))) |
|
print("CAP_PROP_AUDIO_SAMPLES_PER_SECOND: ", cap.get(cv.CAP_PROP_AUDIO_SAMPLES_PER_SECOND)) |
|
print("CAP_PROP_AUDIO_TOTAL_CHANNELS: ", numberOfChannels) |
|
print("CAP_PROP_AUDIO_TOTAL_STREAMS: ", cap.get(cv.CAP_PROP_AUDIO_TOTAL_STREAMS)) |
|
|
|
frame = [] |
|
frame = np.asarray(frame) |
|
inputAudio = [] |
|
|
|
while (1): |
|
if (cap.grab()): |
|
frame = [] |
|
frame = np.asarray(frame) |
|
frame = cap.retrieve(frame, audioBaseIndex) |
|
for i in range(len(frame[1][0])): |
|
inputAudio.append(frame[1][0][i]) |
|
else: |
|
break |
|
|
|
inputAudio = np.asarray(inputAudio) |
|
print("Number of samples: ", len(inputAudio)) |
|
samplingRate = int(cap.get(cv.CAP_PROP_AUDIO_SAMPLES_PER_SECOND)) |
|
return samplingRate, inputAudio |
|
|
|
|
|
def readAudioMicrophone(self): |
|
cap = cv.VideoCapture() |
|
|
|
params = [cv.CAP_PROP_AUDIO_STREAM, 0, cv.CAP_PROP_VIDEO_STREAM, -1] |
|
params = np.asarray(params) |
|
|
|
cap.open(0, cv.CAP_ANY, params) |
|
if cap.isOpened() == False: |
|
print("Error: Can't open microphone") |
|
print("Error: problems with audio reading, check input arguments") |
|
exit() |
|
audioBaseIndex = int(cap.get(cv.CAP_PROP_AUDIO_BASE_INDEX)) |
|
numberOfChannels = int(cap.get(cv.CAP_PROP_AUDIO_TOTAL_CHANNELS)) |
|
|
|
print("CAP_PROP_AUDIO_DATA_DEPTH: ", str((int(cap.get(cv.CAP_PROP_AUDIO_DATA_DEPTH))))) |
|
print("CAP_PROP_AUDIO_SAMPLES_PER_SECOND: ", cap.get(cv.CAP_PROP_AUDIO_SAMPLES_PER_SECOND)) |
|
print("CAP_PROP_AUDIO_TOTAL_CHANNELS: ", numberOfChannels) |
|
print("CAP_PROP_AUDIO_TOTAL_STREAMS: ", cap.get(cv.CAP_PROP_AUDIO_TOTAL_STREAMS)) |
|
|
|
cvTickFreq = cv.getTickFrequency() |
|
sysTimeCurr = cv.getTickCount() |
|
sysTimePrev = sysTimeCurr |
|
|
|
frame = [] |
|
frame = np.asarray(frame) |
|
inputAudio = [] |
|
|
|
while ((sysTimeCurr - sysTimePrev) / cvTickFreq < self.microTime): |
|
if (cap.grab()): |
|
frame = [] |
|
frame = np.asarray(frame) |
|
frame = cap.retrieve(frame, audioBaseIndex) |
|
for i in range(len(frame[1][0])): |
|
inputAudio.append(frame[1][0][i]) |
|
sysTimeCurr = cv.getTickCount() |
|
else: |
|
print("Error: Grab error") |
|
break |
|
|
|
inputAudio = np.asarray(inputAudio) |
|
print("Number of samples: ", len(inputAudio)) |
|
samplingRate = int(cap.get(cv.CAP_PROP_AUDIO_SAMPLES_PER_SECOND)) |
|
|
|
return samplingRate, inputAudio |
|
|
|
|
|
def drawAmplitude(self, inputAudio): |
|
color = (247, 111, 87) |
|
thickness = 5 |
|
frameVectorRows = 500 |
|
middle = frameVectorRows // 2 |
|
|
|
# usually the input data is too big, so it is necessary |
|
# to reduce size using interpolation of data |
|
frameVectorCols = 40000 |
|
if len(inputAudio) < frameVectorCols: |
|
frameVectorCols = len(inputAudio) |
|
|
|
img = np.zeros((frameVectorRows, frameVectorCols, 3), np.uint8) |
|
img += 255 # white background |
|
|
|
audio = np.array(0) |
|
audio = cv.resize(inputAudio, (1, frameVectorCols), interpolation=cv.INTER_LINEAR) |
|
reshapeAudio = np.reshape(audio, (-1)) |
|
|
|
# normalization data by maximum element |
|
minCv, maxCv, _, _ = cv.minMaxLoc(reshapeAudio) |
|
maxElem = int(max(abs(minCv), abs(maxCv))) |
|
|
|
# if all data values are zero (silence) |
|
if maxElem == 0: |
|
maxElem = 1 |
|
for i in range(len(reshapeAudio)): |
|
reshapeAudio[i] = middle - reshapeAudio[i] * middle // maxElem |
|
|
|
for i in range(1, frameVectorCols, 1): |
|
cv.line(img, (i - 1, int(reshapeAudio[i - 1])), (i, int(reshapeAudio[i])), color, thickness) |
|
|
|
img = cv.resize(img, (900, 400), interpolation=cv.INTER_AREA) |
|
return img |
|
|
|
|
|
def drawAmplitudeScale(self, inputImg, inputAudio, samplingRate, xmin=None, xmax=None): |
|
# function of layout drawing for graph of volume amplitudes |
|
# x axis for time |
|
# y axis for amplitudes |
|
|
|
# parameters for the new image size |
|
preCol = 100 |
|
aftCol = 100 |
|
preLine = 40 |
|
aftLine = 50 |
|
|
|
frameVectorRows = inputImg.shape[0] |
|
frameVectorCols = inputImg.shape[1] |
|
|
|
totalRows = preLine + frameVectorRows + aftLine |
|
totalCols = preCol + frameVectorCols + aftCol |
|
|
|
imgTotal = np.zeros((totalRows, totalCols, 3), np.uint8) |
|
imgTotal += 255 # white background |
|
imgTotal[preLine: preLine + frameVectorRows, preCol: preCol + frameVectorCols] = inputImg |
|
|
|
# calculating values on x axis |
|
if xmin is None: |
|
xmin = 0 |
|
if xmax is None: |
|
xmax = len(inputAudio) / samplingRate |
|
|
|
if xmax > self.xmarkup: |
|
xList = np.linspace(xmin, xmax, self.xmarkup).astype(int) |
|
else: |
|
# this case is used to display a dynamic update |
|
tmp = np.arange(xmin, xmax, 1).astype(int) + 1 |
|
xList = np.concatenate((np.zeros(self.xmarkup - len(tmp)), tmp[:]), axis=None) |
|
|
|
# calculating values on y axis |
|
ymin = np.min(inputAudio) |
|
ymax = np.max(inputAudio) |
|
yList = np.linspace(ymin, ymax, self.ymarkup) |
|
|
|
# parameters for layout drawing |
|
textThickness = 1 |
|
gridThickness = 1 |
|
gridColor = (0, 0, 0) |
|
textColor = (0, 0, 0) |
|
font = cv.FONT_HERSHEY_SIMPLEX |
|
fontScale = 0.5 |
|
|
|
# horizontal axis under the graph |
|
cv.line(imgTotal, (preCol, totalRows - aftLine), |
|
(preCol + frameVectorCols, totalRows - aftLine), |
|
gridColor, gridThickness) |
|
# vertical axis for amplitude |
|
cv.line(imgTotal, (preCol, preLine), (preCol, preLine + frameVectorRows), |
|
gridColor, gridThickness) |
|
|
|
# parameters for layout calculation |
|
serifSize = 10 |
|
indentDownX = serifSize * 2 |
|
indentDownY = serifSize // 2 |
|
indentLeftX = serifSize |
|
indentLeftY = 2 * preCol // 3 |
|
|
|
# drawing layout for x axis |
|
numX = frameVectorCols // (self.xmarkup - 1) |
|
for i in range(len(xList)): |
|
a1 = preCol + i * numX |
|
a2 = frameVectorRows + preLine |
|
b1 = a1 |
|
b2 = a2 + serifSize |
|
if self.enableGrid is True: |
|
d1 = a1 |
|
d2 = preLine |
|
cv.line(imgTotal, (a1, a2), (d1, d2), gridColor, gridThickness) |
|
cv.line(imgTotal, (a1, a2), (b1, b2), gridColor, gridThickness) |
|
cv.putText(imgTotal, str(int(xList[i])), (b1 - indentLeftX, b2 + indentDownX), |
|
font, fontScale, textColor, textThickness) |
|
|
|
# drawing layout for y axis |
|
numY = frameVectorRows // (self.ymarkup - 1) |
|
for i in range(len(yList)): |
|
a1 = preCol |
|
a2 = totalRows - aftLine - i * numY |
|
b1 = preCol - serifSize |
|
b2 = a2 |
|
if self.enableGrid is True: |
|
d1 = preCol + frameVectorCols |
|
d2 = a2 |
|
cv.line(imgTotal, (a1, a2), (d1, d2), gridColor, gridThickness) |
|
cv.line(imgTotal, (a1, a2), (b1, b2), gridColor, gridThickness) |
|
cv.putText(imgTotal, str(int(yList[i])), (b1 - indentLeftY, b2 + indentDownY), |
|
font, fontScale, textColor, textThickness) |
|
imgTotal = cv.resize(imgTotal, (self.cols, self.rows), interpolation=cv.INTER_AREA) |
|
return imgTotal |
|
|
|
|
|
def STFT(self, inputAudio): |
|
""" |
|
The Short-time Fourier transform (STFT), is a Fourier-related transform used to determine |
|
the sinusoidal frequency and phase content of local sections of a signal as it changes over |
|
time. |
|
In practice, the procedure for computing STFTs is to divide a longer time signal into |
|
shorter segments of equal length and then compute the Fourier transform separately on each |
|
shorter segment. This reveals the Fourier spectrum on each shorter segment. One then usually |
|
plots the changing spectra as a function of time, known as a spectrogram or waterfall plot. |
|
|
|
https://en.wikipedia.org/wiki/Short-time_Fourier_transform |
|
""" |
|
|
|
time_step = self.windLen - self.overlap |
|
stft = [] |
|
|
|
if self.windowType == "Hann": |
|
# https://en.wikipedia.org/wiki/Window_function#Hann_and_Hamming_windows |
|
Hann_wind = [] |
|
for i in range (1 - self.windLen, self.windLen, 2): |
|
Hann_wind.append(i * (0.5 + 0.5 * math.cos(math.pi * i / (self.windLen - 1)))) |
|
Hann_wind = np.asarray(Hann_wind) |
|
|
|
elif self.windowType == "Hamming": |
|
# https://en.wikipedia.org/wiki/Window_function#Hann_and_Hamming_windows |
|
Hamming_wind = [] |
|
for i in range (1 - self.windLen, self.windLen, 2): |
|
Hamming_wind.append(i * (0.53836 - 0.46164 * (math.cos(2 * math.pi * i / (self.windLen - 1))))) |
|
Hamming_wind = np.asarray(Hamming_wind) |
|
|
|
for index in np.arange(0, len(inputAudio), time_step).astype(int): |
|
|
|
section = inputAudio[index:index + self.windLen] |
|
zeroArray = np.zeros(self.windLen - len(section)) |
|
section = np.concatenate((section, zeroArray), axis=None) |
|
|
|
if self.windowType == "Hann": |
|
section *= Hann_wind |
|
elif self.windowType == "Hamming": |
|
section *= Hamming_wind |
|
|
|
dst = np.empty(0) |
|
dst = cv.dft(section, dst, flags=cv.DFT_COMPLEX_OUTPUT) |
|
reshape_dst = np.reshape(dst, (-1)) |
|
# we need only the first part of the spectrum, the second part is symmetrical |
|
complexArr = np.zeros(len(dst) // 4, dtype=complex) |
|
for i in range(len(dst) // 4): |
|
complexArr[i] = complex(reshape_dst[2 * i], reshape_dst[2 * i + 1]) |
|
stft.append(np.abs(complexArr)) |
|
|
|
stft = np.array(stft).transpose() |
|
# convert elements to the decibel scale |
|
np.log10(stft, out=stft, where=(stft != 0.)) |
|
return 10 * stft |
|
|
|
|
|
def drawSpectrogram(self, stft): |
|
|
|
frameVectorRows = stft.shape[0] |
|
frameVectorCols = stft.shape[1] |
|
|
|
# Normalization of image values from 0 to 255 to get more contrast image |
|
# and this normalization will be taken into account in the scale drawing |
|
colormapImageRows = 255 |
|
|
|
imgSpec = np.zeros((frameVectorRows, frameVectorCols, 3), np.uint8) |
|
stftMat = np.zeros((frameVectorRows, frameVectorCols), np.float64) |
|
cv.normalize(stft, stftMat, 1.0, 0.0, cv.NORM_INF) |
|
|
|
for i in range(frameVectorRows): |
|
for j in range(frameVectorCols): |
|
imgSpec[frameVectorRows - i - 1, j] = int(stftMat[i][j] * colormapImageRows) |
|
|
|
imgSpec = cv.applyColorMap(imgSpec, cv.COLORMAP_INFERNO) |
|
imgSpec = cv.resize(imgSpec, (900, 400), interpolation=cv.INTER_LINEAR) |
|
return imgSpec |
|
|
|
|
|
def drawSpectrogramColorbar(self, inputImg, inputAudio, samplingRate, stft, xmin=None, xmax=None): |
|
# function of layout drawing for the three-dimensional graph of the spectrogram |
|
# x axis for time |
|
# y axis for frequencies |
|
# z axis for magnitudes of frequencies shown by color scale |
|
|
|
# parameters for the new image size |
|
preCol = 100 |
|
aftCol = 100 |
|
preLine = 40 |
|
aftLine = 50 |
|
colColor = 20 |
|
ind_col = 20 |
|
|
|
frameVectorRows = inputImg.shape[0] |
|
frameVectorCols = inputImg.shape[1] |
|
|
|
totalRows = preLine + frameVectorRows + aftLine |
|
totalCols = preCol + frameVectorCols + aftCol + colColor |
|
|
|
imgTotal = np.zeros((totalRows, totalCols, 3), np.uint8) |
|
imgTotal += 255 # white background |
|
imgTotal[preLine: preLine + frameVectorRows, preCol: preCol + frameVectorCols] = inputImg |
|
|
|
# colorbar image due to drawSpectrogram(..) picture has been normalised from 255 to 0, |
|
# so here colorbar has values from 255 to 0 |
|
colorArrSize = 256 |
|
imgColorBar = np.zeros((colorArrSize, colColor, 1), np.uint8) |
|
|
|
for i in range(colorArrSize): |
|
imgColorBar[i] += colorArrSize - 1 - i |
|
|
|
imgColorBar = cv.applyColorMap(imgColorBar, cv.COLORMAP_INFERNO) |
|
imgColorBar = cv.resize(imgColorBar, (colColor, frameVectorRows), interpolation=cv.INTER_AREA) # |
|
|
|
imgTotal[preLine: preLine + frameVectorRows, |
|
preCol + frameVectorCols + ind_col: |
|
preCol + frameVectorCols + ind_col + colColor] = imgColorBar |
|
|
|
# calculating values on x axis |
|
if xmin is None: |
|
xmin = 0 |
|
if xmax is None: |
|
xmax = len(inputAudio) / samplingRate |
|
if xmax > self.xmarkup: |
|
xList = np.linspace(xmin, xmax, self.xmarkup).astype(int) |
|
else: |
|
# this case is used to display a dynamic update |
|
tmpXList = np.arange(xmin, xmax, 1).astype(int) + 1 |
|
xList = np.concatenate((np.zeros(self.xmarkup - len(tmpXList)), tmpXList[:]), axis=None) |
|
|
|
# calculating values on y axis |
|
# according to the Nyquist sampling theorem, |
|
# signal should posses frequencies equal to half of sampling rate |
|
ymin = 0 |
|
ymax = int(samplingRate / 2.) |
|
yList = np.linspace(ymin, ymax, self.ymarkup).astype(int) |
|
|
|
# calculating values on z axis |
|
zList = np.linspace(np.min(stft), np.max(stft), self.zmarkup) |
|
|
|
# parameters for layout drawing |
|
textThickness = 1 |
|
textColor = (0, 0, 0) |
|
gridThickness = 1 |
|
gridColor = (0, 0, 0) |
|
font = cv.FONT_HERSHEY_SIMPLEX |
|
fontScale = 0.5 |
|
|
|
serifSize = 10 |
|
indentDownX = serifSize * 2 |
|
indentDownY = serifSize // 2 |
|
indentLeftX = serifSize |
|
indentLeftY = 2 * preCol // 3 |
|
|
|
# horizontal axis |
|
cv.line(imgTotal, (preCol, totalRows - aftLine), (preCol + frameVectorCols, totalRows - aftLine), |
|
gridColor, gridThickness) |
|
# vertical axis |
|
cv.line(imgTotal, (preCol, preLine), (preCol, preLine + frameVectorRows), |
|
gridColor, gridThickness) |
|
|
|
# drawing layout for x axis |
|
numX = frameVectorCols // (self.xmarkup - 1) |
|
for i in range(len(xList)): |
|
a1 = preCol + i * numX |
|
a2 = frameVectorRows + preLine |
|
b1 = a1 |
|
b2 = a2 + serifSize |
|
cv.line(imgTotal, (a1, a2), (b1, b2), gridColor, gridThickness) |
|
cv.putText(imgTotal, str(int(xList[i])), (b1 - indentLeftX, b2 + indentDownX), |
|
font, fontScale, textColor, textThickness) |
|
|
|
# drawing layout for y axis |
|
numY = frameVectorRows // (self.ymarkup - 1) |
|
for i in range(len(yList)): |
|
a1 = preCol |
|
a2 = totalRows - aftLine - i * numY |
|
b1 = preCol - serifSize |
|
b2 = a2 |
|
cv.line(imgTotal, (a1, a2), (b1, b2), gridColor, gridThickness) |
|
cv.putText(imgTotal, str(int(yList[i])), (b1 - indentLeftY, b2 + indentDownY), |
|
font, fontScale, textColor, textThickness) |
|
|
|
# drawing layout for z axis |
|
numZ = frameVectorRows // (self.zmarkup - 1) |
|
for i in range(len(zList)): |
|
a1 = preCol + frameVectorCols + ind_col + colColor |
|
a2 = totalRows - aftLine - i * numZ |
|
b1 = a1 + serifSize |
|
b2 = a2 |
|
cv.line(imgTotal, (a1, a2), (b1, b2), gridColor, gridThickness) |
|
cv.putText(imgTotal, str(int(zList[i])), (b1 + 10, b2 + indentDownY), |
|
font, fontScale, textColor, textThickness) |
|
imgTotal = cv.resize(imgTotal, (self.cols, self.rows), interpolation=cv.INTER_AREA) |
|
return imgTotal |
|
|
|
|
|
def concatenateImages(self, img1, img2): |
|
# first image will be under the second image |
|
totalRows = img1.shape[0] + img2.shape[0] |
|
totalCols = max(img1.shape[1], img2.shape[1]) |
|
|
|
# if images columns do not match, the difference is filled in white |
|
imgTotal = np.zeros((totalRows, totalCols, 3), np.uint8) |
|
imgTotal += 255 |
|
|
|
imgTotal[:img1.shape[0], :img1.shape[1]] = img1 |
|
imgTotal[img2.shape[0]:, :img2.shape[1]] = img2 |
|
|
|
return imgTotal |
|
|
|
|
|
def dynamicFile(self, file): |
|
cap = cv.VideoCapture(file) |
|
params = [cv.CAP_PROP_AUDIO_STREAM, self.audioStream, |
|
cv.CAP_PROP_VIDEO_STREAM, -1, |
|
cv.CAP_PROP_AUDIO_DATA_DEPTH, cv.CV_16S] |
|
params = np.asarray(params) |
|
|
|
cap.open(file, cv.CAP_ANY, params) |
|
if cap.isOpened() == False: |
|
print("ERROR! Can't to open file") |
|
return |
|
|
|
audioBaseIndex = int(cap.get(cv.CAP_PROP_AUDIO_BASE_INDEX)) |
|
numberOfChannels = int(cap.get(cv.CAP_PROP_AUDIO_TOTAL_CHANNELS)) |
|
samplingRate = int(cap.get(cv.CAP_PROP_AUDIO_SAMPLES_PER_SECOND)) |
|
|
|
print("CAP_PROP_AUDIO_DATA_DEPTH: ", str((int(cap.get(cv.CAP_PROP_AUDIO_DATA_DEPTH))))) |
|
print("CAP_PROP_AUDIO_SAMPLES_PER_SECOND: ", cap.get(cv.CAP_PROP_AUDIO_SAMPLES_PER_SECOND)) |
|
print("CAP_PROP_AUDIO_TOTAL_CHANNELS: ", numberOfChannels) |
|
print("CAP_PROP_AUDIO_TOTAL_STREAMS: ", cap.get(cv.CAP_PROP_AUDIO_TOTAL_STREAMS)) |
|
|
|
step = int(self.updateTime * samplingRate) |
|
frameSize = int(self.frameSizeTime * samplingRate) |
|
# since the dimensional grid is counted in integer seconds, |
|
# if duration of audio frame is less than xmarkup, to avoid an incorrect display, |
|
# xmarkup will be taken equal to duration |
|
if self.frameSizeTime <= self.xmarkup: |
|
self.xmarkup = self.frameSizeTime |
|
|
|
buffer = [] |
|
section = np.zeros(frameSize, dtype=np.int16) |
|
currentSamples = 0 |
|
|
|
while (1): |
|
if (cap.grab()): |
|
frame = [] |
|
frame = np.asarray(frame) |
|
frame = cap.retrieve(frame, audioBaseIndex) |
|
|
|
for i in range(len(frame[1][0])): |
|
buffer.append(frame[1][0][i]) |
|
|
|
buffer_size = len(buffer) |
|
if (buffer_size >= step): |
|
|
|
section = list(section) |
|
currentSamples += step |
|
|
|
del section[0:step] |
|
section.extend(buffer[0:step]) |
|
del buffer[0:step] |
|
|
|
section = np.asarray(section) |
|
|
|
if currentSamples < frameSize: |
|
xmin = 0 |
|
xmax = (currentSamples) / samplingRate |
|
else: |
|
xmin = (currentSamples - frameSize) / samplingRate + 1 |
|
xmax = (currentSamples) / samplingRate |
|
|
|
if self.graph == "ampl": |
|
imgAmplitude = self.drawAmplitude(section) |
|
imgAmplitude = self.drawAmplitudeScale(imgAmplitude, section, samplingRate, xmin, xmax) |
|
cv.imshow("Display amplitude graph", imgAmplitude) |
|
cv.waitKey(self.waitTime) |
|
|
|
elif self.graph == "spec": |
|
stft = self.STFT(section) |
|
imgSpec = self.drawSpectrogram(stft) |
|
imgSpec = self.drawSpectrogramColorbar(imgSpec, section, samplingRate, stft, xmin, xmax) |
|
cv.imshow("Display spectrogram", imgSpec) |
|
cv.waitKey(self.waitTime) |
|
|
|
elif self.graph == "ampl_and_spec": |
|
|
|
imgAmplitude = self.drawAmplitude(section) |
|
stft = self.STFT(section) |
|
imgSpec = self.drawSpectrogram(stft) |
|
|
|
imgAmplitude = self.drawAmplitudeScale(imgAmplitude, section, samplingRate, xmin, xmax) |
|
imgSpec = self.drawSpectrogramColorbar(imgSpec, section, samplingRate, stft, xmin, xmax) |
|
|
|
imgTotal = self.concatenateImages(imgAmplitude, imgSpec) |
|
cv.imshow("Display amplitude graph and spectrogram", imgTotal) |
|
cv.waitKey(self.waitTime) |
|
else: |
|
break |
|
|
|
|
|
def dynamicMicrophone(self): |
|
cap = cv.VideoCapture() |
|
params = [cv.CAP_PROP_AUDIO_STREAM, 0, cv.CAP_PROP_VIDEO_STREAM, -1] |
|
params = np.asarray(params) |
|
|
|
cap.open(0, cv.CAP_ANY, params) |
|
if cap.isOpened() == False: |
|
print("ERROR! Can't to open file") |
|
return |
|
audioBaseIndex = int(cap.get(cv.CAP_PROP_AUDIO_BASE_INDEX)) |
|
numberOfChannels = int(cap.get(cv.CAP_PROP_AUDIO_TOTAL_CHANNELS)) |
|
|
|
print("CAP_PROP_AUDIO_DATA_DEPTH: ", str((int(cap.get(cv.CAP_PROP_AUDIO_DATA_DEPTH))))) |
|
print("CAP_PROP_AUDIO_SAMPLES_PER_SECOND: ", cap.get(cv.CAP_PROP_AUDIO_SAMPLES_PER_SECOND)) |
|
print("CAP_PROP_AUDIO_TOTAL_CHANNELS: ", numberOfChannels) |
|
print("CAP_PROP_AUDIO_TOTAL_STREAMS: ", cap.get(cv.CAP_PROP_AUDIO_TOTAL_STREAMS)) |
|
|
|
frame = [] |
|
frame = np.asarray(frame) |
|
samplingRate = int(cap.get(cv.CAP_PROP_AUDIO_SAMPLES_PER_SECOND)) |
|
|
|
step = int(self.updateTime * samplingRate) |
|
frameSize = int(self.frameSizeTime * samplingRate) |
|
self.xmarkup = self.frameSizeTime |
|
|
|
currentSamples = 0 |
|
|
|
buffer = [] |
|
section = np.zeros(frameSize, dtype=np.int16) |
|
|
|
cvTickFreq = cv.getTickFrequency() |
|
sysTimeCurr = cv.getTickCount() |
|
sysTimePrev = sysTimeCurr |
|
self.waitTime = self.updateTime * 1000 |
|
while ((sysTimeCurr - sysTimePrev) / cvTickFreq < self.microTime): |
|
if (cap.grab()): |
|
frame = [] |
|
frame = np.asarray(frame) |
|
frame = cap.retrieve(frame, audioBaseIndex) |
|
|
|
for i in range(len(frame[1][0])): |
|
buffer.append(frame[1][0][i]) |
|
|
|
sysTimeCurr = cv.getTickCount() |
|
buffer_size = len(buffer) |
|
if (buffer_size >= step): |
|
|
|
section = list(section) |
|
currentSamples += step |
|
|
|
del section[0:step] |
|
section.extend(buffer[0:step]) |
|
del buffer[0:step] |
|
|
|
section = np.asarray(section) |
|
|
|
if currentSamples < frameSize: |
|
xmin = 0 |
|
xmax = (currentSamples) / samplingRate |
|
else: |
|
xmin = (currentSamples - frameSize) / samplingRate + 1 |
|
xmax = (currentSamples) / samplingRate |
|
|
|
if self.graph == "ampl": |
|
imgAmplitude = self.drawAmplitude(section) |
|
imgAmplitude = self.drawAmplitudeScale(imgAmplitude, section, samplingRate, xmin, xmax) |
|
cv.imshow("Display amplitude graph", imgAmplitude) |
|
cv.waitKey(self.waitTime) |
|
|
|
elif self.graph == "spec": |
|
stft = self.STFT(section) |
|
imgSpec = self.drawSpectrogram(stft) |
|
imgSpec = self.drawSpectrogramColorbar(imgSpec, section, samplingRate, stft, xmin, xmax) |
|
cv.imshow("Display spectrogram", imgSpec) |
|
cv.waitKey(self.waitTime) |
|
|
|
elif self.graph == "ampl_and_spec": |
|
imgAmplitude = self.drawAmplitude(section) |
|
stft = self.STFT(section) |
|
imgSpec = self.drawSpectrogram(stft) |
|
|
|
imgAmplitude = self.drawAmplitudeScale(imgAmplitude, section, samplingRate, xmin, xmax) |
|
imgSpec = self.drawSpectrogramColorbar(imgSpec, section, samplingRate, stft, xmin, xmax) |
|
|
|
imgTotal = self.concatenateImages(imgAmplitude, imgSpec) |
|
cv.imshow("Display amplitude graph and spectrogram", imgTotal) |
|
cv.waitKey(self.waitTime) |
|
else: |
|
break |
|
|
|
|
|
def initAndCheckArgs(self, args): |
|
if args.inputType != "file" and args.inputType != "microphone": |
|
print("Error: ", args.inputType, " input method doesnt exist") |
|
return False |
|
if args.draw != "static" and args.draw != "dynamic": |
|
print("Error: ", args.draw, " draw type doesnt exist") |
|
return False |
|
if args.graph != "ampl" and args.graph != "spec" and args.graph != "ampl_and_spec": |
|
print("Error: ", args.graph, " type of graph doesnt exist") |
|
return False |
|
if args.windowType != "Rect" and args.windowType != "Hann" and args.windowType != "Hamming": |
|
print("Error: ", args.windowType, " type of window doesnt exist") |
|
return False |
|
if args.windLen <= 0: |
|
print("Error: windLen = ", args.windLen, " - incorrect value. Must be > 0") |
|
return False |
|
if args.overlap <= 0: |
|
print("Error: overlap = ", args.overlap, " - incorrect value. Must be > 0") |
|
return False |
|
if args.rows <= 0: |
|
print("Error: rows = ", args.rows, " - incorrect value. Must be > 0") |
|
return False |
|
if args.cols <= 0: |
|
print("Error: cols = ", args.cols, " - incorrect value. Must be > 0") |
|
return False |
|
if args.xmarkup < 2: |
|
print("Error: xmarkup = ", args.xmarkup, " - incorrect value. Must be >= 2") |
|
return False |
|
if args.ymarkup < 2: |
|
print("Error: ymarkup = ", args.ymarkup, " - incorrect value. Must be >= 2") |
|
return False |
|
if args.zmarkup < 2: |
|
print("Error: zmarkup = ", args.zmarkup, " - incorrect value. Must be >= 2") |
|
return False |
|
if args.microTime <= 0: |
|
print("Error: microTime = ", args.microTime, " - incorrect value. Must be > 0") |
|
return False |
|
if args.frameSizeTime <= 0: |
|
print("Error: frameSizeTime = ", args.frameSizeTime, " - incorrect value. Must be > 0") |
|
return False |
|
if args.updateTime <= 0: |
|
print("Error: updateTime = ", args.updateTime, " - incorrect value. Must be > 0") |
|
return False |
|
if args.waitTime < 0: |
|
print("Error: waitTime = ", args.waitTime, " - incorrect value. Must be >= 0") |
|
return False |
|
return True |
|
|
|
|
|
if __name__ == "__main__": |
|
|
|
parser = argparse.ArgumentParser(formatter_class=argparse.RawDescriptionHelpFormatter, |
|
description='''this sample draws a volume graph and/or spectrogram of audio/video files and microphone\nDefault usage: ./Spectrogram.exe''') |
|
|
|
parser.add_argument("-i", "--inputType", dest="inputType", type=str, default="file", help="file or microphone") |
|
parser.add_argument("-d", "--draw", dest="draw", type=str, default="static", |
|
help="type of drawing: static - for plotting graph(s) across the entire input audio; dynamic - for plotting graph(s) in a time-updating window") |
|
parser.add_argument("-g", "--graph", dest="graph", type=str, default="ampl_and_spec", |
|
help="type of graph: amplitude graph or/and spectrogram. Please use tags below : ampl - draw the amplitude graph; spec - draw the spectrogram; ampl_and_spec - draw the amplitude graph and spectrogram on one image under each other") |
|
|
|
parser.add_argument("-a", "--audio", dest="audio", type=str, default='Megamind.avi', |
|
help="name and path to file") |
|
parser.add_argument("-s", "--audioStream", dest="audioStream", type=int, default=1, |
|
help=" CAP_PROP_AUDIO_STREAM value") |
|
|
|
parser.add_argument("-t", '--windowType', dest="windowType", type=str, default="Rect", |
|
help="type of window for STFT. Please use tags below : Rect/Hann/Hamming") |
|
parser.add_argument("-l", '--windLen', dest="windLen", type=int, default=256, help="size of window for STFT") |
|
parser.add_argument("-o", '--overlap', dest="overlap", type=int, default=128, help="overlap of windows for STFT") |
|
|
|
parser.add_argument("-gd", '--grid', dest="enableGrid", type=bool, default=False, help="grid on amplitude graph(on/off)") |
|
|
|
parser.add_argument("-r", '--rows', dest="rows", type=int, default=400, help="rows of output image") |
|
parser.add_argument("-c", '--cols', dest="cols", type=int, default=900, help="cols of output image") |
|
|
|
parser.add_argument("-x", '--xmarkup', dest="xmarkup", type=int, default=5, |
|
help="number of x axis divisions (time asix)") |
|
parser.add_argument("-y", '--ymarkup', dest="ymarkup", type=int, default=5, |
|
help="number of y axis divisions (frequency or/and amplitude axis)") # ? |
|
parser.add_argument("-z", '--zmarkup', dest="zmarkup", type=int, default=5, |
|
help="number of z axis divisions (colorbar)") # ? |
|
|
|
parser.add_argument("-m", '--microTime', dest="microTime", type=int, default=20, |
|
help="time of recording audio with microphone in seconds") |
|
parser.add_argument("-f", '--frameSizeTime', dest="frameSizeTime", type=int, default=5, |
|
help="size of sliding window in seconds") |
|
parser.add_argument("-u", '--updateTime', dest="updateTime", type=int, default=1, |
|
help="update time of sliding window in seconds") |
|
parser.add_argument("-w", '--waitTime', dest="waitTime", type=int, default=10, |
|
help="parameter to cv.waitKey() for dynamic update, takes values in milliseconds") |
|
|
|
args = parser.parse_args() |
|
|
|
AudioDrawing(args).Draw()
|
|
|