Open Source Computer Vision Library https://opencv.org/
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

567 lines
23 KiB

import numpy as np
import cv2 as cv
import argparse
import os
'''
You can download the converted onnx model from https://drive.google.com/drive/folders/1wLtxyao4ItAg8tt4Sb63zt6qXzhcQoR6?usp=sharing
or convert the model yourself.
You can get the original pre-trained Jasper model from NVIDIA : https://ngc.nvidia.com/catalog/models/nvidia:jasper_pyt_onnx_fp16_amp/files
Download and unzip : `$ wget --content-disposition https://api.ngc.nvidia.com/v2/models/nvidia/jasper_pyt_onnx_fp16_amp/versions/20.10.0/zip -O jasper_pyt_onnx_fp16_amp_20.10.0.zip && unzip -o ./jasper_pyt_onnx_fp16_amp_20.10.0.zip && unzip -o ./jasper_pyt_onnx_fp16_amp.zip`
you can get the script to convert the model here : https://gist.github.com/spazewalker/507f1529e19aea7e8417f6e935851a01
You can convert the model using the following steps:
1. Import onnx and load the original model
```
import onnx
model = onnx.load("./jasper-onnx/1/model.onnx")
```
3. Change data type of input layer
```
inp = model.graph.input[0]
model.graph.input.remove(inp)
inp.type.tensor_type.elem_type = 1
model.graph.input.insert(0,inp)
```
4. Change the data type of output layer
```
out = model.graph.output[0]
model.graph.output.remove(out)
out.type.tensor_type.elem_type = 1
model.graph.output.insert(0,out)
```
5. Change the data type of every initializer and cast it's values from FP16 to FP32
```
for i,init in enumerate(model.graph.initializer):
model.graph.initializer.remove(init)
init.data_type = 1
init.raw_data = np.frombuffer(init.raw_data, count=np.product(init.dims), dtype=np.float16).astype(np.float32).tobytes()
model.graph.initializer.insert(i,init)
```
6. Add an additional reshape node to handle the inconsistant input from python and c++ of openCV.
see https://github.com/opencv/opencv/issues/19091
Make & insert a new node with 'Reshape' operation & required initializer
```
tensor = numpy_helper.from_array(np.array([0,64,-1]),name='shape_reshape')
model.graph.initializer.insert(0,tensor)
node = onnx.helper.make_node(op_type='Reshape',inputs=['input__0','shape_reshape'], outputs=['input_reshaped'], name='reshape__0')
model.graph.node.insert(0,node)
model.graph.node[1].input[0] = 'input_reshaped'
```
7. Finally save the model
```
with open('jasper_dynamic_input_float.onnx','wb') as f:
onnx.save_model(model,f)
```
Original Repo : https://github.com/NVIDIA/DeepLearningExamples/tree/master/PyTorch/SpeechRecognition/Jasper
'''
class FilterbankFeatures:
def __init__(self,
sample_rate=16000, window_size=0.02, window_stride=0.01,
n_fft=512, preemph=0.97, n_filt=64, lowfreq=0,
highfreq=None, log=True, dither=1e-5):
'''
Initializes pre-processing class. Default values are the values used by the Jasper
architecture for pre-processing. For more details, refer to the paper here:
https://arxiv.org/abs/1904.03288
'''
self.win_length = int(sample_rate * window_size) # frame size
self.hop_length = int(sample_rate * window_stride) # stride
self.n_fft = n_fft or 2 ** np.ceil(np.log2(self.win_length))
self.log = log
self.dither = dither
self.n_filt = n_filt
self.preemph = preemph
highfreq = highfreq or sample_rate / 2
self.window_tensor = np.hanning(self.win_length)
self.filterbanks = self.mel(sample_rate, self.n_fft, n_mels=n_filt, fmin=lowfreq, fmax=highfreq)
self.filterbanks.dtype=np.float32
self.filterbanks = np.expand_dims(self.filterbanks,0)
def normalize_batch(self, x, seq_len):
'''
Normalizes the features.
'''
x_mean = np.zeros((seq_len.shape[0], x.shape[1]), dtype=x.dtype)
x_std = np.zeros((seq_len.shape[0], x.shape[1]), dtype=x.dtype)
for i in range(x.shape[0]):
x_mean[i, :] = np.mean(x[i, :, :seq_len[i]],axis=1)
x_std[i, :] = np.std(x[i, :, :seq_len[i]],axis=1)
# make sure x_std is not zero
x_std += 1e-10
return (x - np.expand_dims(x_mean,2)) / np.expand_dims(x_std,2)
def calculate_features(self, x, seq_len):
'''
Calculates filterbank features.
args:
x : mono channel audio
seq_len : length of the audio sample
returns:
x : filterbank features
'''
dtype = x.dtype
seq_len = np.ceil(seq_len / self.hop_length)
seq_len = np.array(seq_len,dtype=np.int32)
# dither
if self.dither > 0:
x += self.dither * np.random.randn(*x.shape)
# do preemphasis
if self.preemph is not None:
x = np.concatenate(
(np.expand_dims(x[0],-1), x[1:] - self.preemph * x[:-1]), axis=0)
# Short Time Fourier Transform
x = self.stft(x, n_fft=self.n_fft, hop_length=self.hop_length,
win_length=self.win_length,
fft_window=self.window_tensor)
# get power spectrum
x = (x**2).sum(-1)
# dot with filterbank energies
x = np.matmul(np.array(self.filterbanks,dtype=x.dtype), x)
# log features if required
if self.log:
x = np.log(x + 1e-20)
# normalize if required
x = self.normalize_batch(x, seq_len).astype(dtype)
return x
# Mel Frequency calculation
def hz_to_mel(self, frequencies):
'''
Converts frequencies from hz to mel scale. Input can be a number or a vector.
'''
frequencies = np.asanyarray(frequencies)
f_min = 0.0
f_sp = 200.0 / 3
mels = (frequencies - f_min) / f_sp
# Fill in the log-scale part
min_log_hz = 1000.0 # beginning of log region (Hz)
min_log_mel = (min_log_hz - f_min) / f_sp # same (Mels)
logstep = np.log(6.4) / 27.0 # step size for log region
if frequencies.ndim:
# If we have array data, vectorize
log_t = frequencies >= min_log_hz
mels[log_t] = min_log_mel + np.log(frequencies[log_t] / min_log_hz) / logstep
elif frequencies >= min_log_hz:
# If we have scalar data, directly
mels = min_log_mel + np.log(frequencies / min_log_hz) / logstep
return mels
def mel_to_hz(self, mels):
'''
Converts frequencies from mel to hz scale. Input can be a number or a vector.
'''
mels = np.asanyarray(mels)
# Fill in the linear scale
f_min = 0.0
f_sp = 200.0 / 3
freqs = f_min + f_sp * mels
# And now the nonlinear scale
min_log_hz = 1000.0 # beginning of log region (Hz)
min_log_mel = (min_log_hz - f_min) / f_sp # same (Mels)
logstep = np.log(6.4) / 27.0 # step size for log region
if mels.ndim:
# If we have vector data, vectorize
log_t = mels >= min_log_mel
freqs[log_t] = min_log_hz * np.exp(logstep * (mels[log_t] - min_log_mel))
elif mels >= min_log_mel:
# If we have scalar data, check directly
freqs = min_log_hz * np.exp(logstep * (mels - min_log_mel))
return freqs
def mel_frequencies(self, n_mels=128, fmin=0.0, fmax=11025.0):
'''
Calculates n mel frequencies between 2 frequencies
args:
n_mels : number of bands
fmin : min frequency
fmax : max frequency
returns:
mels : vector of mel frequencies
'''
# 'Center freqs' of mel bands - uniformly spaced between limits
min_mel = self.hz_to_mel(fmin)
max_mel = self.hz_to_mel(fmax)
mels = np.linspace(min_mel, max_mel, n_mels)
return self.mel_to_hz(mels)
def mel(self, sr, n_fft, n_mels=128, fmin=0.0, fmax=None, dtype=np.float32):
'''
Generates mel filterbank
args:
sr : Sampling rate
n_fft : number of FFT components
n_mels : number of Mel bands to generate
fmin : lowest frequency (in Hz)
fmax : highest frequency (in Hz). sr/2.0 if None
dtype : the data type of the output basis.
returns:
mels : Mel transform matrix
'''
# default Max freq = half of sampling rate
if fmax is None:
fmax = float(sr) / 2
# Initialize the weights
n_mels = int(n_mels)
weights = np.zeros((n_mels, int(1 + n_fft // 2)), dtype=dtype)
# Center freqs of each FFT bin
fftfreqs = np.linspace(0, float(sr) / 2, int(1 + n_fft // 2), endpoint=True)
# 'Center freqs' of mel bands - uniformly spaced between limits
mel_f = self.mel_frequencies(n_mels + 2, fmin=fmin, fmax=fmax)
fdiff = np.diff(mel_f)
ramps = np.subtract.outer(mel_f, fftfreqs)
for i in range(n_mels):
# lower and upper slopes for all bins
lower = -ramps[i] / fdiff[i]
upper = ramps[i + 2] / fdiff[i + 1]
# .. then intersect them with each other and zero
weights[i] = np.maximum(0, np.minimum(lower, upper))
# Using Slaney-style mel which is scaled to be approx constant energy per channel
enorm = 2.0 / (mel_f[2 : n_mels + 2] - mel_f[:n_mels])
weights *= enorm[:, np.newaxis]
return weights
# STFT preperation
def pad_window_center(self, data, size, axis=-1, **kwargs):
'''
Centers the data and pads.
args:
data : Vector to be padded and centered
size : Length to pad data
axis : Axis along which to pad and center the data
kwargs : arguments passed to np.pad
return : centered and padded data
'''
kwargs.setdefault("mode", "constant")
n = data.shape[axis]
lpad = int((size - n) // 2)
lengths = [(0, 0)] * data.ndim
lengths[axis] = (lpad, int(size - n - lpad))
if lpad < 0:
raise Exception(
("Target size ({:d}) must be at least input size ({:d})").format(size, n)
)
return np.pad(data, lengths, **kwargs)
def frame(self, x, frame_length, hop_length):
'''
Slices a data array into (overlapping) frames.
args:
x : array to frame
frame_length : length of frame
hop_length : Number of steps to advance between frames
return : A framed view of `x`
'''
if x.shape[-1] < frame_length:
raise Exception(
"Input is too short (n={:d})"
" for frame_length={:d}".format(x.shape[-1], frame_length)
)
x = np.asfortranarray(x)
n_frames = 1 + (x.shape[-1] - frame_length) // hop_length
strides = np.asarray(x.strides)
new_stride = np.prod(strides[strides > 0] // x.itemsize) * x.itemsize
shape = list(x.shape)[:-1] + [frame_length, n_frames]
strides = list(strides) + [hop_length * new_stride]
return np.lib.stride_tricks.as_strided(x, shape=shape, strides=strides)
def dtype_r2c(self, d, default=np.complex64):
'''
Find the complex numpy dtype corresponding to a real dtype.
args:
d : The real-valued dtype to convert to complex.
default : The default complex target type, if `d` does not match a known dtype
return : The complex dtype
'''
mapping = {
np.dtype(np.float32): np.complex64,
np.dtype(np.float64): np.complex128,
}
dt = np.dtype(d)
if dt.kind == "c":
return dt
return np.dtype(mapping.get(dt, default))
def stft(self, y, n_fft, hop_length=None, win_length=None, fft_window=None, pad_mode='reflect', return_complex=False):
'''
Short Time Fourier Transform. The STFT represents a signal in the time-frequency
domain by computing discrete Fourier transforms (DFT) over short overlapping windows.
args:
y : input signal
n_fft : length of the windowed signal after padding with zeros.
hop_length : number of audio samples between adjacent STFT columns.
win_length : Each frame of audio is windowed by window of length win_length and
then padded with zeros to match n_fft
fft_window : a vector or array of length `n_fft` having values computed by a
window function
pad_mode : mode while padding the singnal
return_complex : returns array with complex data type if `True`
return : Matrix of short-term Fourier transform coefficients.
'''
if win_length is None:
win_length = n_fft
if hop_length is None:
hop_length = int(win_length // 4)
if y.ndim!=1:
raise Exception(f'Invalid input shape. Only Mono Channeled audio supported. Input must have shape (Audio,). Got {y.shape}')
# Pad the window out to n_fft size
fft_window = self.pad_window_center(fft_window, n_fft)
# Reshape so that the window can be broadcast
fft_window = fft_window.reshape((-1, 1))
# Pad the time series so that frames are centered
y = np.pad(y, int(n_fft // 2), mode=pad_mode)
# Window the time series.
y_frames = self.frame(y, frame_length=n_fft, hop_length=hop_length)
# Convert data type to complex
dtype = self.dtype_r2c(y.dtype)
# Pre-allocate the STFT matrix
stft_matrix = np.empty( (int(1 + n_fft // 2), y_frames.shape[-1]), dtype=dtype, order="F")
stft_matrix = np.fft.rfft( fft_window * y_frames, axis=0)
return stft_matrix if return_complex==True else np.stack((stft_matrix.real,stft_matrix.imag),axis=-1)
class Decoder:
'''
Used for decoding the output of jasper model.
'''
def __init__(self):
labels=[' ','a','b','c','d','e','f','g','h','i','j','k','l','m','n','o','p','q','r','s','t','u','v','w','x','y','z',"'"]
self.labels_map = {i: label for i,label in enumerate(labels)}
self.blank_id = 28
def decode(self,x):
"""
Takes output of Jasper model and performs ctc decoding algorithm to
remove duplicates and special symbol. Returns prediction
"""
x = np.argmax(x,axis=-1)
hypotheses = []
prediction = x.tolist()
# CTC decoding procedure
decoded_prediction = []
previous = self.blank_id
for p in prediction:
if (p != previous or previous == self.blank_id) and p != self.blank_id:
decoded_prediction.append(p)
previous = p
hypothesis = ''.join([self.labels_map[c] for c in decoded_prediction])
hypotheses.append(hypothesis)
return hypotheses
def predict(features, net, decoder):
'''
Passes the features through the Jasper model and decodes the output to english transcripts.
args:
features : input features, calculated using FilterbankFeatures class
net : Jasper model dnn.net object
decoder : Decoder object
return : Predicted text
'''
# make prediction
net.setInput(features)
output = net.forward()
# decode output to transcript
prediction = decoder.decode(output.squeeze(0))
return prediction[0]
def readAudioFile(file, audioStream):
cap = cv.VideoCapture(file)
samplingRate = 16000
params = np.asarray([cv.CAP_PROP_AUDIO_STREAM, audioStream,
cv.CAP_PROP_VIDEO_STREAM, -1,
cv.CAP_PROP_AUDIO_DATA_DEPTH, cv.CV_32F,
cv.CAP_PROP_AUDIO_SAMPLES_PER_SECOND, samplingRate
])
cap.open(file, cv.CAP_ANY, params)
if cap.isOpened() is False:
print("Error : Can't read audio file:", file, "with audioStream = ", audioStream)
return
audioBaseIndex = int (cap.get(cv.CAP_PROP_AUDIO_BASE_INDEX))
inputAudio = []
while(1):
if (cap.grab()):
frame = np.asarray([])
frame = cap.retrieve(frame, audioBaseIndex)
for i in range(len(frame[1][0])):
inputAudio.append(frame[1][0][i])
else:
break
inputAudio = np.asarray(inputAudio, dtype=np.float64)
return inputAudio, samplingRate
def readAudioMicrophone(microTime):
cap = cv.VideoCapture()
samplingRate = 16000
params = np.asarray([cv.CAP_PROP_AUDIO_STREAM, 0,
cv.CAP_PROP_VIDEO_STREAM, -1,
cv.CAP_PROP_AUDIO_DATA_DEPTH, cv.CV_32F,
cv.CAP_PROP_AUDIO_SAMPLES_PER_SECOND, samplingRate
])
cap.open(0, cv.CAP_ANY, params)
if cap.isOpened() is False:
print("Error: Can't open microphone")
print("Error: problems with audio reading, check input arguments")
return
audioBaseIndex = int(cap.get(cv.CAP_PROP_AUDIO_BASE_INDEX))
cvTickFreq = cv.getTickFrequency()
sysTimeCurr = cv.getTickCount()
sysTimePrev = sysTimeCurr
inputAudio = []
while ((sysTimeCurr - sysTimePrev) / cvTickFreq < microTime):
if (cap.grab()):
frame = np.asarray([])
frame = cap.retrieve(frame, audioBaseIndex)
for i in range(len(frame[1][0])):
inputAudio.append(frame[1][0][i])
sysTimeCurr = cv.getTickCount()
else:
print("Error: Grab error")
break
inputAudio = np.asarray(inputAudio, dtype=np.float64)
print("Number of samples: ", len(inputAudio))
return inputAudio, samplingRate
if __name__ == '__main__':
# Computation backends supported by layers
backends = (cv.dnn.DNN_BACKEND_DEFAULT, cv.dnn.DNN_BACKEND_INFERENCE_ENGINE, cv.dnn.DNN_BACKEND_OPENCV)
# Target Devices for computation
targets = (cv.dnn.DNN_TARGET_CPU, cv.dnn.DNN_TARGET_OPENCL, cv.dnn.DNN_TARGET_OPENCL_FP16)
parser = argparse.ArgumentParser(description='This script runs Jasper Speech recognition model',
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('--input_type', type=str, required=True, help='file or microphone')
parser.add_argument('--micro_time', type=int, default=15, help='Duration of microphone work in seconds. Must be more than 6 sec')
parser.add_argument('--input_audio', type=str, help='Path to input audio file. OR Path to a txt file with relative path to multiple audio files in different lines')
parser.add_argument('--audio_stream', type=int, default=0, help='CAP_PROP_AUDIO_STREAM value')
parser.add_argument('--show_spectrogram', action='store_true', help='Whether to show a spectrogram of the input audio.')
parser.add_argument('--model', type=str, default='jasper.onnx', help='Path to the onnx file of Jasper. default="jasper.onnx"')
parser.add_argument('--output', type=str, help='Path to file where recognized audio transcript must be saved. Leave this to print on console.')
parser.add_argument('--backend', choices=backends, default=cv.dnn.DNN_BACKEND_DEFAULT, type=int,
help='Select a computation backend: '
"%d: automatically (by default) "
"%d: OpenVINO Inference Engine "
"%d: OpenCV Implementation " % backends)
parser.add_argument('--target', choices=targets, default=cv.dnn.DNN_TARGET_CPU, type=int,
help='Select a target device: '
"%d: CPU target (by default) "
"%d: OpenCL "
"%d: OpenCL FP16 " % targets)
args, _ = parser.parse_known_args()
if args.input_audio and not os.path.isfile(args.input_audio):
raise OSError("Input audio file does not exist")
if not os.path.isfile(args.model):
raise OSError("Jasper model file does not exist")
features = []
if args.input_type == "file":
if args.input_audio.endswith('.txt'):
with open(args.input_audio) as f:
content = f.readlines()
content = [x.strip() for x in content]
audio_file_paths = content
for audio_file_path in audio_file_paths:
if not os.path.isfile(audio_file_path):
raise OSError("Audio file({audio_file_path}) does not exist")
else:
audio_file_paths = [args.input_audio]
audio_file_paths = [os.path.abspath(x) for x in audio_file_paths]
# Read audio Files
for audio_file_path in audio_file_paths:
audio = readAudioFile(audio_file_path, args.audio_stream)
if audio is None:
raise Exception(f"Can't read {args.input_audio}. Try a different format")
features.append(audio[0])
elif args.input_type == "microphone":
# Read audio from microphone
audio = readAudioMicrophone(args.micro_time)
if audio is None:
raise Exception(f"Can't open microphone. Try a different format")
features.append(audio[0])
else:
raise Exception(f"input_type {args.input_type} doesn't exist. Please enter 'file' or 'microphone'")
# Get Filterbank Features
feature_extractor = FilterbankFeatures()
for i in range(len(features)):
X = features[i]
seq_len = np.array([X.shape[0]], dtype=np.int32)
features[i] = feature_extractor.calculate_features(x=X, seq_len=seq_len)
# Load Network
net = cv.dnn.readNetFromONNX(args.model)
net.setPreferableBackend(args.backend)
net.setPreferableTarget(args.target)
# Show spectogram if required
if args.show_spectrogram and not args.input_audio.endswith('.txt'):
img = cv.normalize(src=features[0][0], dst=None, alpha=0, beta=255, norm_type=cv.NORM_MINMAX, dtype=cv.CV_8U)
img = cv.applyColorMap(img, cv.COLORMAP_JET)
cv.imshow('spectogram', img)
cv.waitKey(0)
# Initialize decoder
decoder = Decoder()
# Make prediction
prediction = []
print("Predicting...")
for feature in features:
print(f"\rAudio file {len(prediction)+1}/{len(features)}", end='')
prediction.append(predict(feature, net, decoder))
print("")
# save transcript if required
if args.output:
with open(args.output,'w') as f:
for pred in prediction:
f.write(pred+'\n')
print("Transcript was written to {}".format(args.output))
else:
print(prediction)
cv.destroyAllWindows()