mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
433 lines
16 KiB
433 lines
16 KiB
#include <iostream> |
|
#include <fstream> |
|
#include <thread> |
|
#include <exception> |
|
#include <unordered_map> |
|
#include <vector> |
|
|
|
#include <opencv2/gapi.hpp> |
|
#include <opencv2/highgui.hpp> // cv::CommandLineParser |
|
#include <opencv2/core/utils/filesystem.hpp> |
|
|
|
#if defined(_WIN32) |
|
#include <windows.h> |
|
#endif |
|
|
|
#include "pipeline_modeling_tool/dummy_source.hpp" |
|
#include "pipeline_modeling_tool/utils.hpp" |
|
#include "pipeline_modeling_tool/pipeline_builder.hpp" |
|
|
|
enum class AppMode { |
|
REALTIME, |
|
BENCHMARK |
|
}; |
|
|
|
static AppMode strToAppMode(const std::string& mode_str) { |
|
if (mode_str == "realtime") { |
|
return AppMode::REALTIME; |
|
} else if (mode_str == "benchmark") { |
|
return AppMode::BENCHMARK; |
|
} else { |
|
throw std::logic_error("Unsupported AppMode: " + mode_str + |
|
"\nPlease chose between: realtime and benchmark"); |
|
} |
|
} |
|
|
|
template <typename T> |
|
T read(const cv::FileNode& node) { |
|
return static_cast<T>(node); |
|
} |
|
|
|
static cv::FileNode check_and_get_fn(const cv::FileNode& fn, |
|
const std::string& field, |
|
const std::string& uplvl) { |
|
const bool is_map = fn.isMap(); |
|
if (!is_map || fn[field].empty()) { |
|
throw std::logic_error(uplvl + " must contain field: " + field); |
|
} |
|
return fn[field]; |
|
} |
|
|
|
static cv::FileNode check_and_get_fn(const cv::FileStorage& fs, |
|
const std::string& field, |
|
const std::string& uplvl) { |
|
auto fn = fs[field]; |
|
if (fn.empty()) { |
|
throw std::logic_error(uplvl + " must contain field: " + field); |
|
} |
|
return fn; |
|
} |
|
|
|
template <typename T, typename FileT> |
|
T check_and_read(const FileT& f, |
|
const std::string& field, |
|
const std::string& uplvl) { |
|
auto fn = check_and_get_fn(f, field, uplvl); |
|
return read<T>(fn); |
|
} |
|
|
|
template <typename T> |
|
cv::optional<T> readOpt(const cv::FileNode& fn) { |
|
return fn.empty() ? cv::optional<T>() : cv::optional<T>(read<T>(fn)); |
|
} |
|
|
|
template <typename T> |
|
std::vector<T> readList(const cv::FileNode& fn, |
|
const std::string& field, |
|
const std::string& uplvl) { |
|
auto fn_field = check_and_get_fn(fn, field, uplvl); |
|
if (!fn_field.isSeq()) { |
|
throw std::logic_error(field + " in " + uplvl + " must be a sequence"); |
|
} |
|
|
|
std::vector<T> vec; |
|
for (auto iter : fn_field) { |
|
vec.push_back(read<T>(iter)); |
|
} |
|
return vec; |
|
} |
|
|
|
template <typename T> |
|
std::vector<T> readVec(const cv::FileNode& fn, |
|
const std::string& field, |
|
const std::string& uplvl) { |
|
auto fn_field = check_and_get_fn(fn, field, uplvl); |
|
|
|
std::vector<T> vec; |
|
fn_field >> vec; |
|
return vec; |
|
} |
|
|
|
static int strToPrecision(const std::string& precision) { |
|
static std::unordered_map<std::string, int> str_to_precision = { |
|
{"U8", CV_8U}, {"FP32", CV_32F}, {"FP16", CV_16F} |
|
}; |
|
auto it = str_to_precision.find(precision); |
|
if (it == str_to_precision.end()) { |
|
throw std::logic_error("Unsupported precision: " + precision); |
|
} |
|
return it->second; |
|
} |
|
|
|
template <> |
|
OutputDescr read<OutputDescr>(const cv::FileNode& fn) { |
|
auto dims = readVec<int>(fn, "dims", "output"); |
|
auto str_prec = check_and_read<std::string>(fn, "precision", "output"); |
|
return OutputDescr{dims, strToPrecision(str_prec)}; |
|
} |
|
|
|
template <> |
|
Edge read<Edge>(const cv::FileNode& fn) { |
|
auto from = check_and_read<std::string>(fn, "from", "edge"); |
|
auto to = check_and_read<std::string>(fn, "to", "edge"); |
|
|
|
auto splitNameAndPort = [](const std::string& str) { |
|
auto pos = str.find(':'); |
|
auto name = |
|
pos == std::string::npos ? str : std::string(str.c_str(), pos); |
|
size_t port = |
|
pos == std::string::npos ? 0 : std::atoi(str.c_str() + pos + 1); |
|
return std::make_pair(name, port); |
|
}; |
|
|
|
auto p1 = splitNameAndPort(from); |
|
auto p2 = splitNameAndPort(to); |
|
return Edge{Edge::P{p1.first, p1.second}, Edge::P{p2.first, p2.second}}; |
|
} |
|
|
|
static std::string getModelsPath() { |
|
static char* models_path_c = std::getenv("PIPELINE_MODELS_PATH"); |
|
static std::string models_path = models_path_c ? models_path_c : "."; |
|
return models_path; |
|
} |
|
|
|
template <> |
|
ModelPath read<ModelPath>(const cv::FileNode& fn) { |
|
using cv::utils::fs::join; |
|
if (!fn["xml"].empty() && !fn["bin"].empty()) { |
|
return ModelPath{LoadPath{join(getModelsPath(), fn["xml"].string()), |
|
join(getModelsPath(), fn["bin"].string())}}; |
|
} else if (!fn["blob"].empty()){ |
|
return ModelPath{ImportPath{join(getModelsPath(), fn["blob"].string())}}; |
|
} else { |
|
const std::string emsg = R""""( |
|
Path to OpenVINO model must be specified in either of two formats: |
|
1. |
|
xml: path to *.xml |
|
bin: path to *.bin |
|
2. |
|
blob: path to *.blob |
|
)""""; |
|
throw std::logic_error(emsg); |
|
} |
|
} |
|
|
|
static PLMode strToPLMode(const std::string& mode_str) { |
|
if (mode_str == "streaming") { |
|
return PLMode::STREAMING; |
|
} else if (mode_str == "regular") { |
|
return PLMode::REGULAR; |
|
} else { |
|
throw std::logic_error("Unsupported PLMode: " + mode_str + |
|
"\nPlease chose between: streaming and regular"); |
|
} |
|
} |
|
|
|
static std::vector<std::string> parseExecList(const std::string& exec_list) { |
|
std::vector<std::string> pl_types; |
|
std::stringstream ss(exec_list); |
|
std::string pl_type; |
|
while (getline(ss, pl_type, ',')) { |
|
pl_types.push_back(pl_type); |
|
} |
|
return pl_types; |
|
} |
|
|
|
static void loadConfig(const std::string& filename, |
|
std::map<std::string, std::string>& config) { |
|
cv::FileStorage fs(filename, cv::FileStorage::READ); |
|
if (!fs.isOpened()) { |
|
throw std::runtime_error("Failed to load config: " + filename); |
|
} |
|
|
|
cv::FileNode root = fs.root(); |
|
for (auto it = root.begin(); it != root.end(); ++it) { |
|
auto device = *it; |
|
if (!device.isMap()) { |
|
throw std::runtime_error("Failed to parse config: " + filename); |
|
} |
|
for (auto item : device) { |
|
config.emplace(item.name(), item.string()); |
|
} |
|
} |
|
} |
|
|
|
int main(int argc, char* argv[]) { |
|
#if defined(_WIN32) |
|
timeBeginPeriod(1); |
|
#endif |
|
try { |
|
const std::string keys = |
|
"{ h help | | Print this help message. }" |
|
"{ cfg | | Path to the config which is either" |
|
" YAML file or string. }" |
|
"{ load_config | | Optional. Path to XML/YAML/JSON file" |
|
" to load custom IE parameters. }" |
|
"{ cache_dir | | Optional. Enables caching of loaded models" |
|
" to specified directory. }" |
|
"{ log_file | | Optional. If file is specified, app will" |
|
" dump expanded execution information. }" |
|
"{ pl_mode | streaming | Optional. Pipeline mode: streaming/regular" |
|
" if it's specified will be applied for" |
|
" every pipeline. }" |
|
"{ qc | 1 | Optional. Calculated automatically by G-API" |
|
" if set to 0. If it's specified will be" |
|
" applied for every pipeline. }" |
|
"{ app_mode | realtime | Application mode (realtime/benchmark). }" |
|
"{ drop_frames | false | Drop frames if they come earlier than pipeline is completed. }" |
|
"{ exec_list | | A comma-separated list of pipelines that" |
|
" will be executed. Spaces around commas" |
|
" are prohibited. }"; |
|
|
|
cv::CommandLineParser cmd(argc, argv, keys); |
|
if (cmd.has("help")) { |
|
cmd.printMessage(); |
|
return 0; |
|
} |
|
|
|
const auto cfg = cmd.get<std::string>("cfg"); |
|
const auto load_config = cmd.get<std::string>("load_config"); |
|
const auto cached_dir = cmd.get<std::string>("cache_dir"); |
|
const auto log_file = cmd.get<std::string>("log_file"); |
|
const auto cmd_pl_mode = strToPLMode(cmd.get<std::string>("pl_mode")); |
|
const auto qc = cmd.get<int>("qc"); |
|
const auto app_mode = strToAppMode(cmd.get<std::string>("app_mode")); |
|
const auto exec_str = cmd.get<std::string>("exec_list"); |
|
const auto drop_frames = cmd.get<bool>("drop_frames"); |
|
|
|
cv::FileStorage fs; |
|
if (cfg.empty()) { |
|
throw std::logic_error("Config must be specified via --cfg option"); |
|
} |
|
// NB: *.yml |
|
if (cfg.size() < 5) { |
|
throw std::logic_error("--cfg string must contain at least 5 symbols" |
|
" to determine if it's a file (*.yml) a or string"); |
|
} |
|
if (cfg.substr(cfg.size() - 4, cfg.size()) == ".yml") { |
|
if (!fs.open(cfg, cv::FileStorage::READ)) { |
|
throw std::logic_error("Failed to open config file: " + cfg); |
|
} |
|
} else { |
|
fs = cv::FileStorage(cfg, cv::FileStorage::FORMAT_YAML | |
|
cv::FileStorage::MEMORY); |
|
} |
|
|
|
std::map<std::string, std::string> config; |
|
if (!load_config.empty()) { |
|
loadConfig(load_config, config); |
|
} |
|
// NB: Takes priority over config from file |
|
if (!cached_dir.empty()) { |
|
config = |
|
std::map<std::string, std::string>{{"CACHE_DIR", cached_dir}}; |
|
} |
|
|
|
const double work_time_ms = |
|
check_and_read<double>(fs, "work_time", "Config"); |
|
if (work_time_ms < 0) { |
|
throw std::logic_error("work_time must be positive"); |
|
} |
|
|
|
auto pipelines_fn = check_and_get_fn(fs, "Pipelines", "Config"); |
|
if (!pipelines_fn.isMap()) { |
|
throw std::logic_error("Pipelines field must be a map"); |
|
} |
|
|
|
auto exec_list = !exec_str.empty() ? parseExecList(exec_str) |
|
: pipelines_fn.keys(); |
|
|
|
|
|
std::vector<Pipeline::Ptr> pipelines; |
|
pipelines.reserve(exec_list.size()); |
|
// NB: Build pipelines based on config information |
|
PipelineBuilder builder; |
|
for (const auto& name : exec_list) { |
|
const auto& pl_fn = check_and_get_fn(pipelines_fn, name, "Pipelines"); |
|
builder.setName(name); |
|
// NB: Set source |
|
{ |
|
const auto& src_fn = check_and_get_fn(pl_fn, "source", name); |
|
auto src_name = |
|
check_and_read<std::string>(src_fn, "name", "source"); |
|
auto latency = |
|
check_and_read<double>(src_fn, "latency", "source"); |
|
auto output = |
|
check_and_read<OutputDescr>(src_fn, "output", "source"); |
|
// NB: In case BENCHMARK mode sources work with zero latency. |
|
if (app_mode == AppMode::BENCHMARK) { |
|
latency = 0.0; |
|
} |
|
auto src = std::make_shared<DummySource>(latency, output, drop_frames); |
|
builder.setSource(src_name, src); |
|
} |
|
|
|
const auto& nodes_fn = check_and_get_fn(pl_fn, "nodes", name); |
|
if (!nodes_fn.isSeq()) { |
|
throw std::logic_error("nodes in " + name + " must be a sequence"); |
|
} |
|
for (auto node_fn : nodes_fn) { |
|
auto node_name = |
|
check_and_read<std::string>(node_fn, "name", "node"); |
|
auto node_type = |
|
check_and_read<std::string>(node_fn, "type", "node"); |
|
if (node_type == "Dummy") { |
|
auto time = |
|
check_and_read<double>(node_fn, "time", node_name); |
|
if (time < 0) { |
|
throw std::logic_error(node_name + " time must be positive"); |
|
} |
|
auto output = |
|
check_and_read<OutputDescr>(node_fn, "output", node_name); |
|
builder.addDummy(node_name, time, output); |
|
} else if (node_type == "Infer") { |
|
InferParams params; |
|
params.path = read<ModelPath>(node_fn); |
|
params.device = |
|
check_and_read<std::string>(node_fn, "device", node_name); |
|
params.input_layers = |
|
readList<std::string>(node_fn, "input_layers", node_name); |
|
params.output_layers = |
|
readList<std::string>(node_fn, "output_layers", node_name); |
|
params.config = config; |
|
builder.addInfer(node_name, params); |
|
} else { |
|
throw std::logic_error("Unsupported node type: " + node_type); |
|
} |
|
} |
|
|
|
const auto edges_fn = check_and_get_fn(pl_fn, "edges", name); |
|
if (!edges_fn.isSeq()) { |
|
throw std::logic_error("edges in " + name + " must be a sequence"); |
|
} |
|
for (auto edge_fn : edges_fn) { |
|
auto edge = read<Edge>(edge_fn); |
|
builder.addEdge(edge); |
|
} |
|
|
|
auto cfg_pl_mode = readOpt<std::string>(pl_fn["mode"]); |
|
// NB: Pipeline mode from config takes priority over cmd. |
|
auto pl_mode = cfg_pl_mode.has_value() |
|
? strToPLMode(cfg_pl_mode.value()) : cmd_pl_mode; |
|
// NB: Using drop_frames with streaming pipelines will follow to |
|
// incorrect performance results. |
|
if (drop_frames && pl_mode == PLMode::STREAMING) { |
|
throw std::logic_error( |
|
"--drop_frames option is supported only for pipelines in \"regular\" mode"); |
|
} |
|
|
|
builder.setMode(pl_mode); |
|
|
|
// NB: Queue capacity from config takes priority over cmd. |
|
auto config_qc = readOpt<int>(pl_fn["queue_capacity"]); |
|
auto queue_capacity = config_qc.has_value() ? config_qc.value() : qc; |
|
// NB: 0 is special constant that means |
|
// queue capacity should be calculated automatically. |
|
if (queue_capacity != 0) { |
|
builder.setQueueCapacity(queue_capacity); |
|
} |
|
|
|
auto dump = readOpt<std::string>(pl_fn["dump"]); |
|
if (dump) { |
|
builder.setDumpFilePath(dump.value()); |
|
} |
|
|
|
pipelines.emplace_back(builder.build()); |
|
} |
|
|
|
// NB: Compille pipelines |
|
for (size_t i = 0; i < pipelines.size(); ++i) { |
|
pipelines[i]->compile(); |
|
} |
|
|
|
// NB: Execute pipelines |
|
std::vector<std::exception_ptr> eptrs(pipelines.size(), nullptr); |
|
std::vector<std::thread> threads(pipelines.size()); |
|
for (size_t i = 0; i < pipelines.size(); ++i) { |
|
threads[i] = std::thread([&, i]() { |
|
try { |
|
pipelines[i]->run(work_time_ms); |
|
} catch (...) { |
|
eptrs[i] = std::current_exception(); |
|
} |
|
}); |
|
} |
|
|
|
std::ofstream file; |
|
if (!log_file.empty()) { |
|
file.open(log_file); |
|
} |
|
|
|
for (size_t i = 0; i < threads.size(); ++i) { |
|
threads[i].join(); |
|
} |
|
|
|
for (size_t i = 0; i < threads.size(); ++i) { |
|
if (eptrs[i] != nullptr) { |
|
try { |
|
std::rethrow_exception(eptrs[i]); |
|
} catch (std::exception& e) { |
|
throw std::logic_error(pipelines[i]->name() + " failed: " + e.what()); |
|
} |
|
} |
|
if (file.is_open()) { |
|
file << pipelines[i]->report().toStr(true) << std::endl; |
|
} |
|
std::cout << pipelines[i]->report().toStr() << std::endl; |
|
} |
|
} catch (const std::exception& e) { |
|
std::cout << e.what() << std::endl; |
|
throw; |
|
} |
|
return 0; |
|
}
|
|
|