Open Source Computer Vision Library https://opencv.org/
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 
Dmitry Kurtaev d17d3b66aa Fix face recognition JS sample 6 years ago
..
face_detector Update face detection network in samples 6 years ago
CMakeLists.txt cmake(samples): use LINK_PRIVATE in target_link_libraries 6 years ago
README.md Remove preprocessing parameters from README 6 years ago
action_recognition.py Merge pull request #14627 from l-bat:demo_kinetics 6 years ago
classification.cpp Add a file with preprocessing parameters for deep learning networks 6 years ago
classification.py Add a file with preprocessing parameters for deep learning networks 6 years ago
colorization.cpp samples: use findFile() in dnn 6 years ago
colorization.py Make Intel's Inference Engine backend is default if no preferable backend is specified. 7 years ago
common.hpp dnn/samples: handle not set env vars gracefully 6 years ago
common.py samples: use findFile() in dnn 6 years ago
custom_layers.hpp Merge pull request #12264 from dkurt:dnn_remove_forward_method 6 years ago
edge_detection.py Fix edge_detection.py sample for Python 3 6 years ago
fast_neural_style.py samples: use findFile() in dnn 6 years ago
js_face_recognition.html Fix face recognition JS sample 6 years ago
mask_rcnn.py samples: use findFile() in dnn 6 years ago
mobilenet_ssd_accuracy.py samples: use findFile() in dnn 6 years ago
models.yml dnn/samples: add googlenet to model zoo 6 years ago
object_detection.cpp dnn: use AsyncArray 6 years ago
object_detection.py dnn: use AsyncArray 6 years ago
openpose.cpp Fix openpose samples 6 years ago
openpose.py Fix openpose samples 6 years ago
segmentation.cpp Add a file with preprocessing parameters for deep learning networks 6 years ago
segmentation.py Add a file with preprocessing parameters for deep learning networks 6 years ago
shrink_tf_graph_weights.py Text TensorFlow graphs parsing. MobileNet-SSD for 90 classes. 7 years ago
text_detection.cpp core: repair CV_Assert() messages 6 years ago
text_detection.py Merge pull request #13432 from vishwesh5:patch-1 6 years ago
tf_text_graph_common.py fix tf_text_graph_common tensor_content type bug 6 years ago
tf_text_graph_faster_rcnn.py StridedSlice from TensorFlow 6 years ago
tf_text_graph_mask_rcnn.py Enable ResNet-based Mask-RCNN models from TensorFlow Object Detection API 6 years ago
tf_text_graph_ssd.py extends regex matching for conv group of layers 6 years ago

README.md

OpenCV deep learning module samples

Model Zoo

Check a wiki for a list of tested models.

If OpenCV is built with Intel's Inference Engine support you can use Intel's pre-trained models.

There are different preprocessing parameters such mean subtraction or scale factors for different models. You may check the most popular models and their parameters at models.yml configuration file. It might be also used for aliasing samples parameters. In example,

python object_detection.py opencv_fd --model /path/to/caffemodel --config /path/to/prototxt

Check -h option to know which values are used by default:

python object_detection.py opencv_fd -h

Face detection

An origin model with single precision floating point weights has been quantized using TensorFlow framework. To achieve the best accuracy run the model on BGR images resized to 300x300 applying mean subtraction of values (104, 177, 123) for each blue, green and red channels correspondingly.

The following are accuracy metrics obtained using COCO object detection evaluation tool on FDDB dataset (see script) applying resize to 300x300 and keeping an origin images' sizes.

AP - Average Precision                            | FP32/FP16 | UINT8          | FP32/FP16 | UINT8          |
AR - Average Recall                               | 300x300   | 300x300        | any size  | any size       |
--------------------------------------------------|-----------|----------------|-----------|----------------|
AP @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] | 0.408     | 0.408          | 0.378     | 0.328 (-0.050) |
AP @[ IoU=0.50      | area=   all | maxDets=100 ] | 0.849     | 0.849          | 0.797     | 0.790 (-0.007) |
AP @[ IoU=0.75      | area=   all | maxDets=100 ] | 0.251     | 0.251          | 0.208     | 0.140 (-0.068) |
AP @[ IoU=0.50:0.95 | area= small | maxDets=100 ] | 0.050     | 0.051 (+0.001) | 0.107     | 0.070 (-0.037) |
AP @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] | 0.381     | 0.379 (-0.002) | 0.380     | 0.368 (-0.012) |
AP @[ IoU=0.50:0.95 | area= large | maxDets=100 ] | 0.455     | 0.455          | 0.412     | 0.337 (-0.075) |
AR @[ IoU=0.50:0.95 | area=   all | maxDets=  1 ] | 0.299     | 0.299          | 0.279     | 0.246 (-0.033) |
AR @[ IoU=0.50:0.95 | area=   all | maxDets= 10 ] | 0.482     | 0.482          | 0.476     | 0.436 (-0.040) |
AR @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] | 0.496     | 0.496          | 0.491     | 0.451 (-0.040) |
AR @[ IoU=0.50:0.95 | area= small | maxDets=100 ] | 0.189     | 0.193 (+0.004) | 0.284     | 0.232 (-0.052) |
AR @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] | 0.481     | 0.480 (-0.001) | 0.470     | 0.458 (-0.012) |
AR @[ IoU=0.50:0.95 | area= large | maxDets=100 ] | 0.528     | 0.528          | 0.520     | 0.462 (-0.058) |

References