mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1179 lines
40 KiB
1179 lines
40 KiB
/* |
|
* Copyright (c) 2011. Philipp Wagner <bytefish[at]gmx[dot]de>. |
|
* Released to public domain under terms of the BSD Simplified license. |
|
* |
|
* Redistribution and use in source and binary forms, with or without |
|
* modification, are permitted provided that the following conditions are met: |
|
* * Redistributions of source code must retain the above copyright |
|
* notice, this list of conditions and the following disclaimer. |
|
* * Redistributions in binary form must reproduce the above copyright |
|
* notice, this list of conditions and the following disclaimer in the |
|
* documentation and/or other materials provided with the distribution. |
|
* * Neither the name of the organization nor the names of its contributors |
|
* may be used to endorse or promote products derived from this software |
|
* without specific prior written permission. |
|
* |
|
* See <http://www.opensource.org/licenses/bsd-license> |
|
*/ |
|
|
|
#include "precomp.hpp" |
|
#include <iostream> |
|
#include <map> |
|
#include <set> |
|
|
|
namespace cv |
|
{ |
|
|
|
// Removes duplicate elements in a given vector. |
|
template<typename _Tp> |
|
inline std::vector<_Tp> remove_dups(const std::vector<_Tp>& src) { |
|
typedef typename std::set<_Tp>::const_iterator constSetIterator; |
|
typedef typename std::vector<_Tp>::const_iterator constVecIterator; |
|
std::set<_Tp> set_elems; |
|
for (constVecIterator it = src.begin(); it != src.end(); ++it) |
|
set_elems.insert(*it); |
|
std::vector<_Tp> elems; |
|
for (constSetIterator it = set_elems.begin(); it != set_elems.end(); ++it) |
|
elems.push_back(*it); |
|
return elems; |
|
} |
|
|
|
static Mat argsort(InputArray _src, bool ascending=true) |
|
{ |
|
Mat src = _src.getMat(); |
|
if (src.rows != 1 && src.cols != 1) { |
|
String error_message = "Wrong shape of input matrix! Expected a matrix with one row or column."; |
|
CV_Error(Error::StsBadArg, error_message); |
|
} |
|
int flags = SORT_EVERY_ROW | (ascending ? SORT_ASCENDING : SORT_DESCENDING); |
|
Mat sorted_indices; |
|
sortIdx(src.reshape(1,1),sorted_indices,flags); |
|
return sorted_indices; |
|
} |
|
|
|
static Mat asRowMatrix(InputArrayOfArrays src, int rtype, double alpha=1, double beta=0) { |
|
// make sure the input data is a vector of matrices or vector of vector |
|
if(src.kind() != _InputArray::STD_VECTOR_MAT && src.kind() != _InputArray::STD_ARRAY_MAT && |
|
src.kind() != _InputArray::STD_VECTOR_VECTOR) { |
|
String error_message = "The data is expected as InputArray::STD_VECTOR_MAT (a std::vector<Mat>) or _InputArray::STD_VECTOR_VECTOR (a std::vector< std::vector<...> >)."; |
|
CV_Error(Error::StsBadArg, error_message); |
|
} |
|
// number of samples |
|
size_t n = src.total(); |
|
// return empty matrix if no matrices given |
|
if(n == 0) |
|
return Mat(); |
|
// dimensionality of (reshaped) samples |
|
size_t d = src.getMat(0).total(); |
|
// create data matrix |
|
Mat data((int)n, (int)d, rtype); |
|
// now copy data |
|
for(int i = 0; i < (int)n; i++) { |
|
// make sure data can be reshaped, throw exception if not! |
|
if(src.getMat(i).total() != d) { |
|
String error_message = format("Wrong number of elements in matrix #%d! Expected %d was %d.", i, (int)d, (int)src.getMat(i).total()); |
|
CV_Error(Error::StsBadArg, error_message); |
|
} |
|
// get a hold of the current row |
|
Mat xi = data.row(i); |
|
// make reshape happy by cloning for non-continuous matrices |
|
if(src.getMat(i).isContinuous()) { |
|
src.getMat(i).reshape(1, 1).convertTo(xi, rtype, alpha, beta); |
|
} else { |
|
src.getMat(i).clone().reshape(1, 1).convertTo(xi, rtype, alpha, beta); |
|
} |
|
} |
|
return data; |
|
} |
|
|
|
static void sortMatrixColumnsByIndices(InputArray _src, InputArray _indices, OutputArray _dst) { |
|
if(_indices.getMat().type() != CV_32SC1) { |
|
CV_Error(Error::StsUnsupportedFormat, "cv::sortColumnsByIndices only works on integer indices!"); |
|
} |
|
Mat src = _src.getMat(); |
|
std::vector<int> indices = _indices.getMat(); |
|
_dst.create(src.rows, src.cols, src.type()); |
|
Mat dst = _dst.getMat(); |
|
for(size_t idx = 0; idx < indices.size(); idx++) { |
|
Mat originalCol = src.col(indices[idx]); |
|
Mat sortedCol = dst.col((int)idx); |
|
originalCol.copyTo(sortedCol); |
|
} |
|
} |
|
|
|
static Mat sortMatrixColumnsByIndices(InputArray src, InputArray indices) { |
|
Mat dst; |
|
sortMatrixColumnsByIndices(src, indices, dst); |
|
return dst; |
|
} |
|
|
|
|
|
template<typename _Tp> static bool |
|
isSymmetric_(InputArray src) { |
|
Mat _src = src.getMat(); |
|
if(_src.cols != _src.rows) |
|
return false; |
|
for (int i = 0; i < _src.rows; i++) { |
|
for (int j = 0; j < _src.cols; j++) { |
|
_Tp a = _src.at<_Tp> (i, j); |
|
_Tp b = _src.at<_Tp> (j, i); |
|
if (a != b) { |
|
return false; |
|
} |
|
} |
|
} |
|
return true; |
|
} |
|
|
|
template<typename _Tp> static bool |
|
isSymmetric_(InputArray src, double eps) { |
|
Mat _src = src.getMat(); |
|
if(_src.cols != _src.rows) |
|
return false; |
|
for (int i = 0; i < _src.rows; i++) { |
|
for (int j = 0; j < _src.cols; j++) { |
|
_Tp a = _src.at<_Tp> (i, j); |
|
_Tp b = _src.at<_Tp> (j, i); |
|
if (std::abs(a - b) > eps) { |
|
return false; |
|
} |
|
} |
|
} |
|
return true; |
|
} |
|
|
|
static bool isSymmetric(InputArray src, double eps=1e-16) |
|
{ |
|
Mat m = src.getMat(); |
|
switch (m.type()) { |
|
case CV_8SC1: return isSymmetric_<char>(m); break; |
|
case CV_8UC1: |
|
return isSymmetric_<unsigned char>(m); break; |
|
case CV_16SC1: |
|
return isSymmetric_<short>(m); break; |
|
case CV_16UC1: |
|
return isSymmetric_<unsigned short>(m); break; |
|
case CV_32SC1: |
|
return isSymmetric_<int>(m); break; |
|
case CV_32FC1: |
|
return isSymmetric_<float>(m, eps); break; |
|
case CV_64FC1: |
|
return isSymmetric_<double>(m, eps); break; |
|
default: |
|
break; |
|
} |
|
return false; |
|
} |
|
|
|
|
|
//------------------------------------------------------------------------------ |
|
// cv::subspaceProject |
|
//------------------------------------------------------------------------------ |
|
Mat LDA::subspaceProject(InputArray _W, InputArray _mean, InputArray _src) { |
|
// get data matrices |
|
Mat W = _W.getMat(); |
|
Mat mean = _mean.getMat(); |
|
Mat src = _src.getMat(); |
|
// get number of samples and dimension |
|
int n = src.rows; |
|
int d = src.cols; |
|
// make sure the data has the correct shape |
|
if(W.rows != d) { |
|
String error_message = format("Wrong shapes for given matrices. Was size(src) = (%d,%d), size(W) = (%d,%d).", src.rows, src.cols, W.rows, W.cols); |
|
CV_Error(Error::StsBadArg, error_message); |
|
} |
|
// make sure mean is correct if not empty |
|
if(!mean.empty() && (mean.total() != (size_t) d)) { |
|
String error_message = format("Wrong mean shape for the given data matrix. Expected %d, but was %d.", d, mean.total()); |
|
CV_Error(Error::StsBadArg, error_message); |
|
} |
|
// create temporary matrices |
|
Mat X, Y; |
|
// make sure you operate on correct type |
|
src.convertTo(X, W.type()); |
|
// safe to do, because of above assertion |
|
if(!mean.empty()) { |
|
for(int i=0; i<n; i++) { |
|
Mat r_i = X.row(i); |
|
subtract(r_i, mean.reshape(1,1), r_i); |
|
} |
|
} |
|
// finally calculate projection as Y = (X-mean)*W |
|
gemm(X, W, 1.0, Mat(), 0.0, Y); |
|
return Y; |
|
} |
|
|
|
//------------------------------------------------------------------------------ |
|
// cv::subspaceReconstruct |
|
//------------------------------------------------------------------------------ |
|
Mat LDA::subspaceReconstruct(InputArray _W, InputArray _mean, InputArray _src) |
|
{ |
|
// get data matrices |
|
Mat W = _W.getMat(); |
|
Mat mean = _mean.getMat(); |
|
Mat src = _src.getMat(); |
|
// get number of samples and dimension |
|
int n = src.rows; |
|
int d = src.cols; |
|
// make sure the data has the correct shape |
|
if(W.cols != d) { |
|
String error_message = format("Wrong shapes for given matrices. Was size(src) = (%d,%d), size(W) = (%d,%d).", src.rows, src.cols, W.rows, W.cols); |
|
CV_Error(Error::StsBadArg, error_message); |
|
} |
|
// make sure mean is correct if not empty |
|
if(!mean.empty() && (mean.total() != (size_t) W.rows)) { |
|
String error_message = format("Wrong mean shape for the given eigenvector matrix. Expected %d, but was %d.", W.cols, mean.total()); |
|
CV_Error(Error::StsBadArg, error_message); |
|
} |
|
// initialize temporary matrices |
|
Mat X, Y; |
|
// copy data & make sure we are using the correct type |
|
src.convertTo(Y, W.type()); |
|
// calculate the reconstruction |
|
gemm(Y, W, 1.0, Mat(), 0.0, X, GEMM_2_T); |
|
// safe to do because of above assertion |
|
if(!mean.empty()) { |
|
for(int i=0; i<n; i++) { |
|
Mat r_i = X.row(i); |
|
add(r_i, mean.reshape(1,1), r_i); |
|
} |
|
} |
|
return X; |
|
} |
|
|
|
|
|
class EigenvalueDecomposition { |
|
private: |
|
|
|
// Holds the data dimension. |
|
int n; |
|
|
|
// Stores real/imag part of a complex division. |
|
double cdivr, cdivi; |
|
|
|
// Pointer to internal memory. |
|
double *d, *e, *ort; |
|
double **V, **H; |
|
|
|
// Holds the computed eigenvalues. |
|
Mat _eigenvalues; |
|
|
|
// Holds the computed eigenvectors. |
|
Mat _eigenvectors; |
|
|
|
// Allocates memory. |
|
template<typename _Tp> |
|
_Tp *alloc_1d(int m) { |
|
return new _Tp[m]; |
|
} |
|
|
|
// Allocates memory. |
|
template<typename _Tp> |
|
_Tp *alloc_1d(int m, _Tp val) { |
|
_Tp *arr = alloc_1d<_Tp> (m); |
|
for (int i = 0; i < m; i++) |
|
arr[i] = val; |
|
return arr; |
|
} |
|
|
|
// Allocates memory. |
|
template<typename _Tp> |
|
_Tp **alloc_2d(int m, int _n) { |
|
_Tp **arr = new _Tp*[m]; |
|
for (int i = 0; i < m; i++) |
|
arr[i] = new _Tp[_n]; |
|
return arr; |
|
} |
|
|
|
// Allocates memory. |
|
template<typename _Tp> |
|
_Tp **alloc_2d(int m, int _n, _Tp val) { |
|
_Tp **arr = alloc_2d<_Tp> (m, _n); |
|
for (int i = 0; i < m; i++) { |
|
for (int j = 0; j < _n; j++) { |
|
arr[i][j] = val; |
|
} |
|
} |
|
return arr; |
|
} |
|
|
|
void cdiv(double xr, double xi, double yr, double yi) { |
|
double r, dv; |
|
if (std::abs(yr) > std::abs(yi)) { |
|
r = yi / yr; |
|
dv = yr + r * yi; |
|
cdivr = (xr + r * xi) / dv; |
|
cdivi = (xi - r * xr) / dv; |
|
} else { |
|
r = yr / yi; |
|
dv = yi + r * yr; |
|
cdivr = (r * xr + xi) / dv; |
|
cdivi = (r * xi - xr) / dv; |
|
} |
|
} |
|
|
|
// Nonsymmetric reduction from Hessenberg to real Schur form. |
|
|
|
void hqr2() { |
|
|
|
// This is derived from the Algol procedure hqr2, |
|
// by Martin and Wilkinson, Handbook for Auto. Comp., |
|
// Vol.ii-Linear Algebra, and the corresponding |
|
// Fortran subroutine in EISPACK. |
|
|
|
// Initialize |
|
int nn = this->n; |
|
int n1 = nn - 1; |
|
int low = 0; |
|
int high = nn - 1; |
|
double eps = std::pow(2.0, -52.0); |
|
double exshift = 0.0; |
|
double p = 0, q = 0, r = 0, s = 0, z = 0, t, w, x, y; |
|
|
|
// Store roots isolated by balanc and compute matrix norm |
|
|
|
double norm = 0.0; |
|
for (int i = 0; i < nn; i++) { |
|
if (i < low || i > high) { |
|
d[i] = H[i][i]; |
|
e[i] = 0.0; |
|
} |
|
for (int j = std::max(i - 1, 0); j < nn; j++) { |
|
norm = norm + std::abs(H[i][j]); |
|
} |
|
} |
|
|
|
// Outer loop over eigenvalue index |
|
int iter = 0; |
|
while (n1 >= low) { |
|
|
|
// Look for single small sub-diagonal element |
|
int l = n1; |
|
while (l > low) { |
|
if (norm < FLT_EPSILON) { |
|
break; |
|
} |
|
s = std::abs(H[l - 1][l - 1]) + std::abs(H[l][l]); |
|
if (s == 0.0) { |
|
s = norm; |
|
} |
|
if (std::abs(H[l][l - 1]) < eps * s) { |
|
break; |
|
} |
|
l--; |
|
} |
|
|
|
// Check for convergence |
|
// One root found |
|
|
|
if (l == n1) { |
|
H[n1][n1] = H[n1][n1] + exshift; |
|
d[n1] = H[n1][n1]; |
|
e[n1] = 0.0; |
|
n1--; |
|
iter = 0; |
|
|
|
// Two roots found |
|
|
|
} else if (l == n1 - 1) { |
|
w = H[n1][n1 - 1] * H[n1 - 1][n1]; |
|
p = (H[n1 - 1][n1 - 1] - H[n1][n1]) / 2.0; |
|
q = p * p + w; |
|
z = std::sqrt(std::abs(q)); |
|
H[n1][n1] = H[n1][n1] + exshift; |
|
H[n1 - 1][n1 - 1] = H[n1 - 1][n1 - 1] + exshift; |
|
x = H[n1][n1]; |
|
|
|
// Real pair |
|
|
|
if (q >= 0) { |
|
if (p >= 0) { |
|
z = p + z; |
|
} else { |
|
z = p - z; |
|
} |
|
d[n1 - 1] = x + z; |
|
d[n1] = d[n1 - 1]; |
|
if (z != 0.0) { |
|
d[n1] = x - w / z; |
|
} |
|
e[n1 - 1] = 0.0; |
|
e[n1] = 0.0; |
|
x = H[n1][n1 - 1]; |
|
s = std::abs(x) + std::abs(z); |
|
p = x / s; |
|
q = z / s; |
|
r = std::sqrt(p * p + q * q); |
|
p = p / r; |
|
q = q / r; |
|
|
|
// Row modification |
|
|
|
for (int j = n1 - 1; j < nn; j++) { |
|
z = H[n1 - 1][j]; |
|
H[n1 - 1][j] = q * z + p * H[n1][j]; |
|
H[n1][j] = q * H[n1][j] - p * z; |
|
} |
|
|
|
// Column modification |
|
|
|
for (int i = 0; i <= n1; i++) { |
|
z = H[i][n1 - 1]; |
|
H[i][n1 - 1] = q * z + p * H[i][n1]; |
|
H[i][n1] = q * H[i][n1] - p * z; |
|
} |
|
|
|
// Accumulate transformations |
|
|
|
for (int i = low; i <= high; i++) { |
|
z = V[i][n1 - 1]; |
|
V[i][n1 - 1] = q * z + p * V[i][n1]; |
|
V[i][n1] = q * V[i][n1] - p * z; |
|
} |
|
|
|
// Complex pair |
|
|
|
} else { |
|
d[n1 - 1] = x + p; |
|
d[n1] = x + p; |
|
e[n1 - 1] = z; |
|
e[n1] = -z; |
|
} |
|
n1 = n1 - 2; |
|
iter = 0; |
|
|
|
// No convergence yet |
|
|
|
} else { |
|
|
|
// Form shift |
|
|
|
x = H[n1][n1]; |
|
y = 0.0; |
|
w = 0.0; |
|
if (l < n1) { |
|
y = H[n1 - 1][n1 - 1]; |
|
w = H[n1][n1 - 1] * H[n1 - 1][n1]; |
|
} |
|
|
|
// Wilkinson's original ad hoc shift |
|
|
|
if (iter == 10) { |
|
exshift += x; |
|
for (int i = low; i <= n1; i++) { |
|
H[i][i] -= x; |
|
} |
|
s = std::abs(H[n1][n1 - 1]) + std::abs(H[n1 - 1][n1 - 2]); |
|
x = y = 0.75 * s; |
|
w = -0.4375 * s * s; |
|
} |
|
|
|
// MATLAB's new ad hoc shift |
|
|
|
if (iter == 30) { |
|
s = (y - x) / 2.0; |
|
s = s * s + w; |
|
if (s > 0) { |
|
s = std::sqrt(s); |
|
if (y < x) { |
|
s = -s; |
|
} |
|
s = x - w / ((y - x) / 2.0 + s); |
|
for (int i = low; i <= n1; i++) { |
|
H[i][i] -= s; |
|
} |
|
exshift += s; |
|
x = y = w = 0.964; |
|
} |
|
} |
|
|
|
iter = iter + 1; // (Could check iteration count here.) |
|
|
|
// Look for two consecutive small sub-diagonal elements |
|
int m = n1 - 2; |
|
while (m >= l) { |
|
z = H[m][m]; |
|
r = x - z; |
|
s = y - z; |
|
p = (r * s - w) / H[m + 1][m] + H[m][m + 1]; |
|
q = H[m + 1][m + 1] - z - r - s; |
|
r = H[m + 2][m + 1]; |
|
s = std::abs(p) + std::abs(q) + std::abs(r); |
|
p = p / s; |
|
q = q / s; |
|
r = r / s; |
|
if (m == l) { |
|
break; |
|
} |
|
if (std::abs(H[m][m - 1]) * (std::abs(q) + std::abs(r)) < eps * (std::abs(p) |
|
* (std::abs(H[m - 1][m - 1]) + std::abs(z) + std::abs( |
|
H[m + 1][m + 1])))) { |
|
break; |
|
} |
|
m--; |
|
} |
|
|
|
for (int i = m + 2; i <= n1; i++) { |
|
H[i][i - 2] = 0.0; |
|
if (i > m + 2) { |
|
H[i][i - 3] = 0.0; |
|
} |
|
} |
|
|
|
// Double QR step involving rows l:n and columns m:n |
|
|
|
for (int k = m; k < n1; k++) { |
|
bool notlast = (k != n1 - 1); |
|
if (k != m) { |
|
p = H[k][k - 1]; |
|
q = H[k + 1][k - 1]; |
|
r = (notlast ? H[k + 2][k - 1] : 0.0); |
|
x = std::abs(p) + std::abs(q) + std::abs(r); |
|
if (x != 0.0) { |
|
p = p / x; |
|
q = q / x; |
|
r = r / x; |
|
} |
|
} |
|
if (x == 0.0) { |
|
break; |
|
} |
|
s = std::sqrt(p * p + q * q + r * r); |
|
if (p < 0) { |
|
s = -s; |
|
} |
|
if (s != 0) { |
|
if (k != m) { |
|
H[k][k - 1] = -s * x; |
|
} else if (l != m) { |
|
H[k][k - 1] = -H[k][k - 1]; |
|
} |
|
p = p + s; |
|
x = p / s; |
|
y = q / s; |
|
z = r / s; |
|
q = q / p; |
|
r = r / p; |
|
|
|
// Row modification |
|
|
|
for (int j = k; j < nn; j++) { |
|
p = H[k][j] + q * H[k + 1][j]; |
|
if (notlast) { |
|
p = p + r * H[k + 2][j]; |
|
H[k + 2][j] = H[k + 2][j] - p * z; |
|
} |
|
H[k][j] = H[k][j] - p * x; |
|
H[k + 1][j] = H[k + 1][j] - p * y; |
|
} |
|
|
|
// Column modification |
|
|
|
for (int i = 0; i <= std::min(n1, k + 3); i++) { |
|
p = x * H[i][k] + y * H[i][k + 1]; |
|
if (notlast) { |
|
p = p + z * H[i][k + 2]; |
|
H[i][k + 2] = H[i][k + 2] - p * r; |
|
} |
|
H[i][k] = H[i][k] - p; |
|
H[i][k + 1] = H[i][k + 1] - p * q; |
|
} |
|
|
|
// Accumulate transformations |
|
|
|
for (int i = low; i <= high; i++) { |
|
p = x * V[i][k] + y * V[i][k + 1]; |
|
if (notlast) { |
|
p = p + z * V[i][k + 2]; |
|
V[i][k + 2] = V[i][k + 2] - p * r; |
|
} |
|
V[i][k] = V[i][k] - p; |
|
V[i][k + 1] = V[i][k + 1] - p * q; |
|
} |
|
} // (s != 0) |
|
} // k loop |
|
} // check convergence |
|
} // while (n1 >= low) |
|
|
|
// Backsubstitute to find vectors of upper triangular form |
|
|
|
if (norm < FLT_EPSILON) { |
|
return; |
|
} |
|
|
|
for (n1 = nn - 1; n1 >= 0; n1--) { |
|
p = d[n1]; |
|
q = e[n1]; |
|
|
|
// Real vector |
|
|
|
if (q == 0) { |
|
int l = n1; |
|
H[n1][n1] = 1.0; |
|
for (int i = n1 - 1; i >= 0; i--) { |
|
w = H[i][i] - p; |
|
r = 0.0; |
|
for (int j = l; j <= n1; j++) { |
|
r = r + H[i][j] * H[j][n1]; |
|
} |
|
if (e[i] < 0.0) { |
|
z = w; |
|
s = r; |
|
} else { |
|
l = i; |
|
if (e[i] == 0.0) { |
|
if (w != 0.0) { |
|
H[i][n1] = -r / w; |
|
} else { |
|
H[i][n1] = -r / (eps * norm); |
|
} |
|
|
|
// Solve real equations |
|
|
|
} else { |
|
x = H[i][i + 1]; |
|
y = H[i + 1][i]; |
|
q = (d[i] - p) * (d[i] - p) + e[i] * e[i]; |
|
t = (x * s - z * r) / q; |
|
H[i][n1] = t; |
|
if (std::abs(x) > std::abs(z)) { |
|
H[i + 1][n1] = (-r - w * t) / x; |
|
} else { |
|
H[i + 1][n1] = (-s - y * t) / z; |
|
} |
|
} |
|
|
|
// Overflow control |
|
|
|
t = std::abs(H[i][n1]); |
|
if ((eps * t) * t > 1) { |
|
for (int j = i; j <= n1; j++) { |
|
H[j][n1] = H[j][n1] / t; |
|
} |
|
} |
|
} |
|
} |
|
// Complex vector |
|
} else if (q < 0) { |
|
int l = n1 - 1; |
|
|
|
// Last vector component imaginary so matrix is triangular |
|
|
|
if (std::abs(H[n1][n1 - 1]) > std::abs(H[n1 - 1][n1])) { |
|
H[n1 - 1][n1 - 1] = q / H[n1][n1 - 1]; |
|
H[n1 - 1][n1] = -(H[n1][n1] - p) / H[n1][n1 - 1]; |
|
} else { |
|
cdiv(0.0, -H[n1 - 1][n1], H[n1 - 1][n1 - 1] - p, q); |
|
H[n1 - 1][n1 - 1] = cdivr; |
|
H[n1 - 1][n1] = cdivi; |
|
} |
|
H[n1][n1 - 1] = 0.0; |
|
H[n1][n1] = 1.0; |
|
for (int i = n1 - 2; i >= 0; i--) { |
|
double ra, sa, vr, vi; |
|
ra = 0.0; |
|
sa = 0.0; |
|
for (int j = l; j <= n1; j++) { |
|
ra = ra + H[i][j] * H[j][n1 - 1]; |
|
sa = sa + H[i][j] * H[j][n1]; |
|
} |
|
w = H[i][i] - p; |
|
|
|
if (e[i] < 0.0) { |
|
z = w; |
|
r = ra; |
|
s = sa; |
|
} else { |
|
l = i; |
|
if (e[i] == 0) { |
|
cdiv(-ra, -sa, w, q); |
|
H[i][n1 - 1] = cdivr; |
|
H[i][n1] = cdivi; |
|
} else { |
|
|
|
// Solve complex equations |
|
|
|
x = H[i][i + 1]; |
|
y = H[i + 1][i]; |
|
vr = (d[i] - p) * (d[i] - p) + e[i] * e[i] - q * q; |
|
vi = (d[i] - p) * 2.0 * q; |
|
if (vr == 0.0 && vi == 0.0) { |
|
vr = eps * norm * (std::abs(w) + std::abs(q) + std::abs(x) |
|
+ std::abs(y) + std::abs(z)); |
|
} |
|
cdiv(x * r - z * ra + q * sa, |
|
x * s - z * sa - q * ra, vr, vi); |
|
H[i][n1 - 1] = cdivr; |
|
H[i][n1] = cdivi; |
|
if (std::abs(x) > (std::abs(z) + std::abs(q))) { |
|
H[i + 1][n1 - 1] = (-ra - w * H[i][n1 - 1] + q |
|
* H[i][n1]) / x; |
|
H[i + 1][n1] = (-sa - w * H[i][n1] - q * H[i][n1 |
|
- 1]) / x; |
|
} else { |
|
cdiv(-r - y * H[i][n1 - 1], -s - y * H[i][n1], z, |
|
q); |
|
H[i + 1][n1 - 1] = cdivr; |
|
H[i + 1][n1] = cdivi; |
|
} |
|
} |
|
|
|
// Overflow control |
|
|
|
t = std::max(std::abs(H[i][n1 - 1]), std::abs(H[i][n1])); |
|
if ((eps * t) * t > 1) { |
|
for (int j = i; j <= n1; j++) { |
|
H[j][n1 - 1] = H[j][n1 - 1] / t; |
|
H[j][n1] = H[j][n1] / t; |
|
} |
|
} |
|
} |
|
} |
|
} |
|
} |
|
|
|
// Vectors of isolated roots |
|
|
|
for (int i = 0; i < nn; i++) { |
|
if (i < low || i > high) { |
|
for (int j = i; j < nn; j++) { |
|
V[i][j] = H[i][j]; |
|
} |
|
} |
|
} |
|
|
|
// Back transformation to get eigenvectors of original matrix |
|
|
|
for (int j = nn - 1; j >= low; j--) { |
|
for (int i = low; i <= high; i++) { |
|
z = 0.0; |
|
for (int k = low; k <= std::min(j, high); k++) { |
|
z = z + V[i][k] * H[k][j]; |
|
} |
|
V[i][j] = z; |
|
} |
|
} |
|
} |
|
|
|
// Nonsymmetric reduction to Hessenberg form. |
|
void orthes() { |
|
// This is derived from the Algol procedures orthes and ortran, |
|
// by Martin and Wilkinson, Handbook for Auto. Comp., |
|
// Vol.ii-Linear Algebra, and the corresponding |
|
// Fortran subroutines in EISPACK. |
|
int low = 0; |
|
int high = n - 1; |
|
|
|
for (int m = low + 1; m < high; m++) { |
|
|
|
// Scale column. |
|
|
|
double scale = 0.0; |
|
for (int i = m; i <= high; i++) { |
|
scale = scale + std::abs(H[i][m - 1]); |
|
} |
|
if (scale != 0.0) { |
|
|
|
// Compute Householder transformation. |
|
|
|
double h = 0.0; |
|
for (int i = high; i >= m; i--) { |
|
ort[i] = H[i][m - 1] / scale; |
|
h += ort[i] * ort[i]; |
|
} |
|
double g = std::sqrt(h); |
|
if (ort[m] > 0) { |
|
g = -g; |
|
} |
|
h = h - ort[m] * g; |
|
ort[m] = ort[m] - g; |
|
|
|
// Apply Householder similarity transformation |
|
// H = (I-u*u'/h)*H*(I-u*u')/h) |
|
|
|
for (int j = m; j < n; j++) { |
|
double f = 0.0; |
|
for (int i = high; i >= m; i--) { |
|
f += ort[i] * H[i][j]; |
|
} |
|
f = f / h; |
|
for (int i = m; i <= high; i++) { |
|
H[i][j] -= f * ort[i]; |
|
} |
|
} |
|
|
|
for (int i = 0; i <= high; i++) { |
|
double f = 0.0; |
|
for (int j = high; j >= m; j--) { |
|
f += ort[j] * H[i][j]; |
|
} |
|
f = f / h; |
|
for (int j = m; j <= high; j++) { |
|
H[i][j] -= f * ort[j]; |
|
} |
|
} |
|
ort[m] = scale * ort[m]; |
|
H[m][m - 1] = scale * g; |
|
} |
|
} |
|
|
|
// Accumulate transformations (Algol's ortran). |
|
|
|
for (int i = 0; i < n; i++) { |
|
for (int j = 0; j < n; j++) { |
|
V[i][j] = (i == j ? 1.0 : 0.0); |
|
} |
|
} |
|
|
|
for (int m = high - 1; m > low; m--) { |
|
if (H[m][m - 1] != 0.0) { |
|
for (int i = m + 1; i <= high; i++) { |
|
ort[i] = H[i][m - 1]; |
|
} |
|
for (int j = m; j <= high; j++) { |
|
double g = 0.0; |
|
for (int i = m; i <= high; i++) { |
|
g += ort[i] * V[i][j]; |
|
} |
|
// Double division avoids possible underflow |
|
g = (g / ort[m]) / H[m][m - 1]; |
|
for (int i = m; i <= high; i++) { |
|
V[i][j] += g * ort[i]; |
|
} |
|
} |
|
} |
|
} |
|
} |
|
|
|
// Releases all internal working memory. |
|
void release() { |
|
// releases the working data |
|
delete[] d; |
|
delete[] e; |
|
delete[] ort; |
|
for (int i = 0; i < n; i++) { |
|
delete[] H[i]; |
|
delete[] V[i]; |
|
} |
|
delete[] H; |
|
delete[] V; |
|
} |
|
|
|
// Computes the Eigenvalue Decomposition for a matrix given in H. |
|
void compute() { |
|
// Allocate memory for the working data. |
|
V = alloc_2d<double> (n, n, 0.0); |
|
d = alloc_1d<double> (n); |
|
e = alloc_1d<double> (n); |
|
ort = alloc_1d<double> (n); |
|
CV_TRY { |
|
// Reduce to Hessenberg form. |
|
orthes(); |
|
// Reduce Hessenberg to real Schur form. |
|
hqr2(); |
|
// Copy eigenvalues to OpenCV Matrix. |
|
_eigenvalues.create(1, n, CV_64FC1); |
|
for (int i = 0; i < n; i++) { |
|
_eigenvalues.at<double> (0, i) = d[i]; |
|
} |
|
// Copy eigenvectors to OpenCV Matrix. |
|
_eigenvectors.create(n, n, CV_64FC1); |
|
for (int i = 0; i < n; i++) |
|
for (int j = 0; j < n; j++) |
|
_eigenvectors.at<double> (i, j) = V[i][j]; |
|
// Deallocate the memory by releasing all internal working data. |
|
release(); |
|
} |
|
CV_CATCH_ALL |
|
{ |
|
release(); |
|
CV_RETHROW(); |
|
} |
|
} |
|
|
|
public: |
|
// Initializes & computes the Eigenvalue Decomposition for a general matrix |
|
// given in src. This function is a port of the EigenvalueSolver in JAMA, |
|
// which has been released to public domain by The MathWorks and the |
|
// National Institute of Standards and Technology (NIST). |
|
EigenvalueDecomposition(InputArray src, bool fallbackSymmetric = true) { |
|
compute(src, fallbackSymmetric); |
|
} |
|
|
|
// This function computes the Eigenvalue Decomposition for a general matrix |
|
// given in src. This function is a port of the EigenvalueSolver in JAMA, |
|
// which has been released to public domain by The MathWorks and the |
|
// National Institute of Standards and Technology (NIST). |
|
void compute(InputArray src, bool fallbackSymmetric) |
|
{ |
|
CV_INSTRUMENT_REGION() |
|
|
|
if(fallbackSymmetric && isSymmetric(src)) { |
|
// Fall back to OpenCV for a symmetric matrix! |
|
cv::eigen(src, _eigenvalues, _eigenvectors); |
|
} else { |
|
Mat tmp; |
|
// Convert the given input matrix to double. Is there any way to |
|
// prevent allocating the temporary memory? Only used for copying |
|
// into working memory and deallocated after. |
|
src.getMat().convertTo(tmp, CV_64FC1); |
|
// Get dimension of the matrix. |
|
this->n = tmp.cols; |
|
// Allocate the matrix data to work on. |
|
this->H = alloc_2d<double> (n, n); |
|
// Now safely copy the data. |
|
for (int i = 0; i < tmp.rows; i++) { |
|
for (int j = 0; j < tmp.cols; j++) { |
|
this->H[i][j] = tmp.at<double>(i, j); |
|
} |
|
} |
|
// Deallocates the temporary matrix before computing. |
|
tmp.release(); |
|
// Performs the eigenvalue decomposition of H. |
|
compute(); |
|
} |
|
} |
|
|
|
~EigenvalueDecomposition() {} |
|
|
|
// Returns the eigenvalues of the Eigenvalue Decomposition. |
|
Mat eigenvalues() const { return _eigenvalues; } |
|
// Returns the eigenvectors of the Eigenvalue Decomposition. |
|
Mat eigenvectors() const { return _eigenvectors; } |
|
}; |
|
|
|
void eigenNonSymmetric(InputArray _src, OutputArray _evals, OutputArray _evects) |
|
{ |
|
CV_INSTRUMENT_REGION() |
|
|
|
Mat src = _src.getMat(); |
|
int type = src.type(); |
|
size_t n = (size_t)src.rows; |
|
|
|
CV_Assert(src.rows == src.cols); |
|
CV_Assert(type == CV_32F || type == CV_64F); |
|
|
|
Mat src64f; |
|
if (type == CV_32F) |
|
src.convertTo(src64f, CV_32FC1); |
|
else |
|
src64f = src; |
|
|
|
EigenvalueDecomposition eigensystem(src64f, false); |
|
|
|
// EigenvalueDecomposition returns transposed and non-sorted eigenvalues |
|
std::vector<double> eigenvalues64f; |
|
eigensystem.eigenvalues().copyTo(eigenvalues64f); |
|
CV_Assert(eigenvalues64f.size() == n); |
|
|
|
std::vector<int> sort_indexes(n); |
|
cv::sortIdx(eigenvalues64f, sort_indexes, SORT_EVERY_ROW | SORT_DESCENDING); |
|
|
|
std::vector<double> sorted_eigenvalues64f(n); |
|
for (size_t i = 0; i < n; i++) sorted_eigenvalues64f[i] = eigenvalues64f[sort_indexes[i]]; |
|
|
|
Mat(sorted_eigenvalues64f).convertTo(_evals, type); |
|
|
|
if( _evects.needed() ) |
|
{ |
|
Mat eigenvectors64f = eigensystem.eigenvectors().t(); // transpose |
|
CV_Assert((size_t)eigenvectors64f.rows == n); |
|
CV_Assert((size_t)eigenvectors64f.cols == n); |
|
Mat_<double> sorted_eigenvectors64f((int)n, (int)n, CV_64FC1); |
|
for (size_t i = 0; i < n; i++) |
|
{ |
|
double* pDst = sorted_eigenvectors64f.ptr<double>((int)i); |
|
double* pSrc = eigenvectors64f.ptr<double>(sort_indexes[(int)i]); |
|
CV_Assert(pSrc != NULL); |
|
memcpy(pDst, pSrc, n * sizeof(double)); |
|
} |
|
sorted_eigenvectors64f.convertTo(_evects, type); |
|
} |
|
} |
|
|
|
|
|
//------------------------------------------------------------------------------ |
|
// Linear Discriminant Analysis implementation |
|
//------------------------------------------------------------------------------ |
|
|
|
LDA::LDA(int num_components) : _dataAsRow(true), _num_components(num_components) { } |
|
|
|
LDA::LDA(InputArrayOfArrays src, InputArray labels, int num_components) : _dataAsRow(true), _num_components(num_components) |
|
{ |
|
this->compute(src, labels); //! compute eigenvectors and eigenvalues |
|
} |
|
|
|
LDA::~LDA() {} |
|
|
|
void LDA::save(const String& filename) const |
|
{ |
|
FileStorage fs(filename, FileStorage::WRITE); |
|
if (!fs.isOpened()) { |
|
CV_Error(Error::StsError, "File can't be opened for writing!"); |
|
} |
|
this->save(fs); |
|
fs.release(); |
|
} |
|
|
|
// Deserializes this object from a given filename. |
|
void LDA::load(const String& filename) { |
|
FileStorage fs(filename, FileStorage::READ); |
|
if (!fs.isOpened()) |
|
CV_Error(Error::StsError, "File can't be opened for reading!"); |
|
this->load(fs); |
|
fs.release(); |
|
} |
|
|
|
// Serializes this object to a given FileStorage. |
|
void LDA::save(FileStorage& fs) const { |
|
// write matrices |
|
fs << "num_components" << _num_components; |
|
fs << "eigenvalues" << _eigenvalues; |
|
fs << "eigenvectors" << _eigenvectors; |
|
} |
|
|
|
// Deserializes this object from a given FileStorage. |
|
void LDA::load(const FileStorage& fs) { |
|
//read matrices |
|
fs["num_components"] >> _num_components; |
|
fs["eigenvalues"] >> _eigenvalues; |
|
fs["eigenvectors"] >> _eigenvectors; |
|
} |
|
|
|
void LDA::lda(InputArrayOfArrays _src, InputArray _lbls) { |
|
// get data |
|
Mat src = _src.getMat(); |
|
std::vector<int> labels; |
|
// safely copy the labels |
|
{ |
|
Mat tmp = _lbls.getMat(); |
|
for(unsigned int i = 0; i < tmp.total(); i++) { |
|
labels.push_back(tmp.at<int>(i)); |
|
} |
|
} |
|
// turn into row sampled matrix |
|
Mat data; |
|
// ensure working matrix is double precision |
|
src.convertTo(data, CV_64FC1); |
|
// maps the labels, so they're ascending: [0,1,...,C] |
|
std::vector<int> mapped_labels(labels.size()); |
|
std::vector<int> num2label = remove_dups(labels); |
|
std::map<int, int> label2num; |
|
for (int i = 0; i < (int)num2label.size(); i++) |
|
label2num[num2label[i]] = i; |
|
for (size_t i = 0; i < labels.size(); i++) |
|
mapped_labels[i] = label2num[labels[i]]; |
|
// get sample size, dimension |
|
int N = data.rows; |
|
int D = data.cols; |
|
// number of unique labels |
|
int C = (int)num2label.size(); |
|
// we can't do a LDA on one class, what do you |
|
// want to separate from each other then? |
|
if(C == 1) { |
|
String error_message = "At least two classes are needed to perform a LDA. Reason: Only one class was given!"; |
|
CV_Error(Error::StsBadArg, error_message); |
|
} |
|
// throw error if less labels, than samples |
|
if (labels.size() != static_cast<size_t>(N)) { |
|
String error_message = format("The number of samples must equal the number of labels. Given %d labels, %d samples. ", labels.size(), N); |
|
CV_Error(Error::StsBadArg, error_message); |
|
} |
|
// warn if within-classes scatter matrix becomes singular |
|
if (N < D) { |
|
std::cout << "Warning: Less observations than feature dimension given!" |
|
<< "Computation will probably fail." |
|
<< std::endl; |
|
} |
|
// clip number of components to be a valid number |
|
if ((_num_components <= 0) || (_num_components >= C)) { |
|
_num_components = (C - 1); |
|
} |
|
// holds the mean over all classes |
|
Mat meanTotal = Mat::zeros(1, D, data.type()); |
|
// holds the mean for each class |
|
std::vector<Mat> meanClass(C); |
|
std::vector<int> numClass(C); |
|
// initialize |
|
for (int i = 0; i < C; i++) { |
|
numClass[i] = 0; |
|
meanClass[i] = Mat::zeros(1, D, data.type()); //! Dx1 image vector |
|
} |
|
// calculate sums |
|
for (int i = 0; i < N; i++) { |
|
Mat instance = data.row(i); |
|
int classIdx = mapped_labels[i]; |
|
add(meanTotal, instance, meanTotal); |
|
add(meanClass[classIdx], instance, meanClass[classIdx]); |
|
numClass[classIdx]++; |
|
} |
|
// calculate total mean |
|
meanTotal.convertTo(meanTotal, meanTotal.type(), 1.0 / static_cast<double> (N)); |
|
// calculate class means |
|
for (int i = 0; i < C; i++) { |
|
meanClass[i].convertTo(meanClass[i], meanClass[i].type(), 1.0 / static_cast<double> (numClass[i])); |
|
} |
|
// subtract class means |
|
for (int i = 0; i < N; i++) { |
|
int classIdx = mapped_labels[i]; |
|
Mat instance = data.row(i); |
|
subtract(instance, meanClass[classIdx], instance); |
|
} |
|
// calculate within-classes scatter |
|
Mat Sw = Mat::zeros(D, D, data.type()); |
|
mulTransposed(data, Sw, true); |
|
// calculate between-classes scatter |
|
Mat Sb = Mat::zeros(D, D, data.type()); |
|
for (int i = 0; i < C; i++) { |
|
Mat tmp; |
|
subtract(meanClass[i], meanTotal, tmp); |
|
mulTransposed(tmp, tmp, true); |
|
add(Sb, tmp, Sb); |
|
} |
|
// invert Sw |
|
Mat Swi = Sw.inv(); |
|
// M = inv(Sw)*Sb |
|
Mat M; |
|
gemm(Swi, Sb, 1.0, Mat(), 0.0, M); |
|
EigenvalueDecomposition es(M); |
|
_eigenvalues = es.eigenvalues(); |
|
_eigenvectors = es.eigenvectors(); |
|
// reshape eigenvalues, so they are stored by column |
|
_eigenvalues = _eigenvalues.reshape(1, 1); |
|
// get sorted indices descending by their eigenvalue |
|
std::vector<int> sorted_indices = argsort(_eigenvalues, false); |
|
// now sort eigenvalues and eigenvectors accordingly |
|
_eigenvalues = sortMatrixColumnsByIndices(_eigenvalues, sorted_indices); |
|
_eigenvectors = sortMatrixColumnsByIndices(_eigenvectors, sorted_indices); |
|
// and now take only the num_components and we're out! |
|
_eigenvalues = Mat(_eigenvalues, Range::all(), Range(0, _num_components)); |
|
_eigenvectors = Mat(_eigenvectors, Range::all(), Range(0, _num_components)); |
|
} |
|
|
|
void LDA::compute(InputArrayOfArrays _src, InputArray _lbls) { |
|
switch(_src.kind()) { |
|
case _InputArray::STD_VECTOR_MAT: |
|
case _InputArray::STD_ARRAY_MAT: |
|
lda(asRowMatrix(_src, CV_64FC1), _lbls); |
|
break; |
|
case _InputArray::MAT: |
|
lda(_src.getMat(), _lbls); |
|
break; |
|
default: |
|
String error_message= format("InputArray Datatype %d is not supported.", _src.kind()); |
|
CV_Error(Error::StsBadArg, error_message); |
|
break; |
|
} |
|
} |
|
|
|
// Projects one or more row aligned samples into the LDA subspace. |
|
Mat LDA::project(InputArray src) { |
|
return subspaceProject(_eigenvectors, Mat(), src); |
|
} |
|
|
|
// Reconstructs projections from the LDA subspace from one or more row aligned samples. |
|
Mat LDA::reconstruct(InputArray src) { |
|
return subspaceReconstruct(_eigenvectors, Mat(), src); |
|
} |
|
|
|
}
|
|
|