mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
2040 lines
64 KiB
2040 lines
64 KiB
/*M/////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// |
|
// License Agreement |
|
// For Open Source Computer Vision Library |
|
// |
|
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. |
|
// Copyright (C) 2009-2011, Willow Garage Inc., all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
// |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistribution's of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistribution's in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other materials provided with the distribution. |
|
// |
|
// * The name of the copyright holders may not be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors "as is" and |
|
// any express or implied warranties, including, but not limited to, the implied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall the Intel Corporation or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
// |
|
//M*/ |
|
|
|
#include "precomp.hpp" |
|
#include <climits> |
|
|
|
namespace cv |
|
{ |
|
|
|
template<typename T> static inline Scalar rawToScalar(const T& v) |
|
{ |
|
Scalar s; |
|
typedef typename DataType<T>::channel_type T1; |
|
int i, n = DataType<T>::channels; |
|
for( i = 0; i < n; i++ ) |
|
s.val[i] = ((T1*)&v)[i]; |
|
return s; |
|
} |
|
|
|
/****************************************************************************************\ |
|
* sum * |
|
\****************************************************************************************/ |
|
|
|
template<typename T, typename ST> |
|
static int sum_(const T* src0, const uchar* mask, ST* dst, int len, int cn ) |
|
{ |
|
const T* src = src0; |
|
if( !mask ) |
|
{ |
|
int i=0; |
|
int k = cn % 4; |
|
if( k == 1 ) |
|
{ |
|
ST s0 = dst[0]; |
|
|
|
#if CV_ENABLE_UNROLLED |
|
for(; i <= len - 4; i += 4, src += cn*4 ) |
|
s0 += src[0] + src[cn] + src[cn*2] + src[cn*3]; |
|
#endif |
|
for( ; i < len; i++, src += cn ) |
|
s0 += src[0]; |
|
dst[0] = s0; |
|
} |
|
else if( k == 2 ) |
|
{ |
|
ST s0 = dst[0], s1 = dst[1]; |
|
for( i = 0; i < len; i++, src += cn ) |
|
{ |
|
s0 += src[0]; |
|
s1 += src[1]; |
|
} |
|
dst[0] = s0; |
|
dst[1] = s1; |
|
} |
|
else if( k == 3 ) |
|
{ |
|
ST s0 = dst[0], s1 = dst[1], s2 = dst[2]; |
|
for( i = 0; i < len; i++, src += cn ) |
|
{ |
|
s0 += src[0]; |
|
s1 += src[1]; |
|
s2 += src[2]; |
|
} |
|
dst[0] = s0; |
|
dst[1] = s1; |
|
dst[2] = s2; |
|
} |
|
|
|
for( ; k < cn; k += 4 ) |
|
{ |
|
src = src0 + k; |
|
ST s0 = dst[k], s1 = dst[k+1], s2 = dst[k+2], s3 = dst[k+3]; |
|
for( i = 0; i < len; i++, src += cn ) |
|
{ |
|
s0 += src[0]; s1 += src[1]; |
|
s2 += src[2]; s3 += src[3]; |
|
} |
|
dst[k] = s0; |
|
dst[k+1] = s1; |
|
dst[k+2] = s2; |
|
dst[k+3] = s3; |
|
} |
|
return len; |
|
} |
|
|
|
int i, nzm = 0; |
|
if( cn == 1 ) |
|
{ |
|
ST s = dst[0]; |
|
for( i = 0; i < len; i++ ) |
|
if( mask[i] ) |
|
{ |
|
s += src[i]; |
|
nzm++; |
|
} |
|
dst[0] = s; |
|
} |
|
else if( cn == 3 ) |
|
{ |
|
ST s0 = dst[0], s1 = dst[1], s2 = dst[2]; |
|
for( i = 0; i < len; i++, src += 3 ) |
|
if( mask[i] ) |
|
{ |
|
s0 += src[0]; |
|
s1 += src[1]; |
|
s2 += src[2]; |
|
nzm++; |
|
} |
|
dst[0] = s0; |
|
dst[1] = s1; |
|
dst[2] = s2; |
|
} |
|
else |
|
{ |
|
for( i = 0; i < len; i++, src += cn ) |
|
if( mask[i] ) |
|
{ |
|
int k = 0; |
|
#if CV_ENABLE_UNROLLED |
|
for( ; k <= cn - 4; k += 4 ) |
|
{ |
|
ST s0, s1; |
|
s0 = dst[k] + src[k]; |
|
s1 = dst[k+1] + src[k+1]; |
|
dst[k] = s0; dst[k+1] = s1; |
|
s0 = dst[k+2] + src[k+2]; |
|
s1 = dst[k+3] + src[k+3]; |
|
dst[k+2] = s0; dst[k+3] = s1; |
|
} |
|
#endif |
|
for( ; k < cn; k++ ) |
|
dst[k] += src[k]; |
|
nzm++; |
|
} |
|
} |
|
return nzm; |
|
} |
|
|
|
|
|
static int sum8u( const uchar* src, const uchar* mask, int* dst, int len, int cn ) |
|
{ return sum_(src, mask, dst, len, cn); } |
|
|
|
static int sum8s( const schar* src, const uchar* mask, int* dst, int len, int cn ) |
|
{ return sum_(src, mask, dst, len, cn); } |
|
|
|
static int sum16u( const ushort* src, const uchar* mask, int* dst, int len, int cn ) |
|
{ return sum_(src, mask, dst, len, cn); } |
|
|
|
static int sum16s( const short* src, const uchar* mask, int* dst, int len, int cn ) |
|
{ return sum_(src, mask, dst, len, cn); } |
|
|
|
static int sum32s( const int* src, const uchar* mask, double* dst, int len, int cn ) |
|
{ return sum_(src, mask, dst, len, cn); } |
|
|
|
static int sum32f( const float* src, const uchar* mask, double* dst, int len, int cn ) |
|
{ return sum_(src, mask, dst, len, cn); } |
|
|
|
static int sum64f( const double* src, const uchar* mask, double* dst, int len, int cn ) |
|
{ return sum_(src, mask, dst, len, cn); } |
|
|
|
typedef int (*SumFunc)(const uchar*, const uchar* mask, uchar*, int, int); |
|
|
|
static SumFunc sumTab[] = |
|
{ |
|
(SumFunc)GET_OPTIMIZED(sum8u), (SumFunc)sum8s, |
|
(SumFunc)sum16u, (SumFunc)sum16s, |
|
(SumFunc)sum32s, |
|
(SumFunc)GET_OPTIMIZED(sum32f), (SumFunc)sum64f, |
|
0 |
|
}; |
|
|
|
template<typename T> |
|
static int countNonZero_(const T* src, int len ) |
|
{ |
|
int i=0, nz = 0; |
|
#if CV_ENABLE_UNROLLED |
|
for(; i <= len - 4; i += 4 ) |
|
nz += (src[i] != 0) + (src[i+1] != 0) + (src[i+2] != 0) + (src[i+3] != 0); |
|
#endif |
|
for( ; i < len; i++ ) |
|
nz += src[i] != 0; |
|
return nz; |
|
} |
|
|
|
static int countNonZero8u( const uchar* src, int len ) |
|
{ |
|
int i=0, nz = 0; |
|
#if CV_SSE2 |
|
if(USE_SSE2)//5x-6x |
|
{ |
|
__m128i pattern = _mm_setzero_si128 (); |
|
static uchar tab[256]; |
|
static volatile bool initialized = false; |
|
if( !initialized ) |
|
{ |
|
// we compute inverse popcount table, |
|
// since we pass (img[x] == 0) mask as index in the table. |
|
for( int j = 0; j < 256; j++ ) |
|
{ |
|
int val = 0; |
|
for( int mask = 1; mask < 256; mask += mask ) |
|
val += (j & mask) == 0; |
|
tab[j] = (uchar)val; |
|
} |
|
initialized = true; |
|
} |
|
|
|
for (; i<=len-16; i+=16) |
|
{ |
|
__m128i r0 = _mm_loadu_si128((const __m128i*)(src+i)); |
|
int val = _mm_movemask_epi8(_mm_cmpeq_epi8(r0, pattern)); |
|
nz += tab[val & 255] + tab[val >> 8]; |
|
} |
|
} |
|
#endif |
|
for( ; i < len; i++ ) |
|
nz += src[i] != 0; |
|
return nz; |
|
} |
|
|
|
static int countNonZero16u( const ushort* src, int len ) |
|
{ return countNonZero_(src, len); } |
|
|
|
static int countNonZero32s( const int* src, int len ) |
|
{ return countNonZero_(src, len); } |
|
|
|
static int countNonZero32f( const float* src, int len ) |
|
{ return countNonZero_(src, len); } |
|
|
|
static int countNonZero64f( const double* src, int len ) |
|
{ return countNonZero_(src, len); } |
|
|
|
typedef int (*CountNonZeroFunc)(const uchar*, int); |
|
|
|
static CountNonZeroFunc countNonZeroTab[] = |
|
{ |
|
(CountNonZeroFunc)GET_OPTIMIZED(countNonZero8u), (CountNonZeroFunc)GET_OPTIMIZED(countNonZero8u), |
|
(CountNonZeroFunc)GET_OPTIMIZED(countNonZero16u), (CountNonZeroFunc)GET_OPTIMIZED(countNonZero16u), |
|
(CountNonZeroFunc)GET_OPTIMIZED(countNonZero32s), (CountNonZeroFunc)GET_OPTIMIZED(countNonZero32f), |
|
(CountNonZeroFunc)GET_OPTIMIZED(countNonZero64f), 0 |
|
}; |
|
|
|
|
|
template<typename T, typename ST, typename SQT> |
|
static int sumsqr_(const T* src0, const uchar* mask, ST* sum, SQT* sqsum, int len, int cn ) |
|
{ |
|
const T* src = src0; |
|
|
|
if( !mask ) |
|
{ |
|
int i; |
|
int k = cn % 4; |
|
|
|
if( k == 1 ) |
|
{ |
|
ST s0 = sum[0]; |
|
SQT sq0 = sqsum[0]; |
|
for( i = 0; i < len; i++, src += cn ) |
|
{ |
|
T v = src[0]; |
|
s0 += v; sq0 += (SQT)v*v; |
|
} |
|
sum[0] = s0; |
|
sqsum[0] = sq0; |
|
} |
|
else if( k == 2 ) |
|
{ |
|
ST s0 = sum[0], s1 = sum[1]; |
|
SQT sq0 = sqsum[0], sq1 = sqsum[1]; |
|
for( i = 0; i < len; i++, src += cn ) |
|
{ |
|
T v0 = src[0], v1 = src[1]; |
|
s0 += v0; sq0 += (SQT)v0*v0; |
|
s1 += v1; sq1 += (SQT)v1*v1; |
|
} |
|
sum[0] = s0; sum[1] = s1; |
|
sqsum[0] = sq0; sqsum[1] = sq1; |
|
} |
|
else if( k == 3 ) |
|
{ |
|
ST s0 = sum[0], s1 = sum[1], s2 = sum[2]; |
|
SQT sq0 = sqsum[0], sq1 = sqsum[1], sq2 = sqsum[2]; |
|
for( i = 0; i < len; i++, src += cn ) |
|
{ |
|
T v0 = src[0], v1 = src[1], v2 = src[2]; |
|
s0 += v0; sq0 += (SQT)v0*v0; |
|
s1 += v1; sq1 += (SQT)v1*v1; |
|
s2 += v2; sq2 += (SQT)v2*v2; |
|
} |
|
sum[0] = s0; sum[1] = s1; sum[2] = s2; |
|
sqsum[0] = sq0; sqsum[1] = sq1; sqsum[2] = sq2; |
|
} |
|
|
|
for( ; k < cn; k += 4 ) |
|
{ |
|
src = src0 + k; |
|
ST s0 = sum[k], s1 = sum[k+1], s2 = sum[k+2], s3 = sum[k+3]; |
|
SQT sq0 = sqsum[k], sq1 = sqsum[k+1], sq2 = sqsum[k+2], sq3 = sqsum[k+3]; |
|
for( i = 0; i < len; i++, src += cn ) |
|
{ |
|
T v0, v1; |
|
v0 = src[0], v1 = src[1]; |
|
s0 += v0; sq0 += (SQT)v0*v0; |
|
s1 += v1; sq1 += (SQT)v1*v1; |
|
v0 = src[2], v1 = src[3]; |
|
s2 += v0; sq2 += (SQT)v0*v0; |
|
s3 += v1; sq3 += (SQT)v1*v1; |
|
} |
|
sum[k] = s0; sum[k+1] = s1; |
|
sum[k+2] = s2; sum[k+3] = s3; |
|
sqsum[k] = sq0; sqsum[k+1] = sq1; |
|
sqsum[k+2] = sq2; sqsum[k+3] = sq3; |
|
} |
|
return len; |
|
} |
|
|
|
int i, nzm = 0; |
|
|
|
if( cn == 1 ) |
|
{ |
|
ST s0 = sum[0]; |
|
SQT sq0 = sqsum[0]; |
|
for( i = 0; i < len; i++ ) |
|
if( mask[i] ) |
|
{ |
|
T v = src[i]; |
|
s0 += v; sq0 += (SQT)v*v; |
|
nzm++; |
|
} |
|
sum[0] = s0; |
|
sqsum[0] = sq0; |
|
} |
|
else if( cn == 3 ) |
|
{ |
|
ST s0 = sum[0], s1 = sum[1], s2 = sum[2]; |
|
SQT sq0 = sqsum[0], sq1 = sqsum[1], sq2 = sqsum[2]; |
|
for( i = 0; i < len; i++, src += 3 ) |
|
if( mask[i] ) |
|
{ |
|
T v0 = src[0], v1 = src[1], v2 = src[2]; |
|
s0 += v0; sq0 += (SQT)v0*v0; |
|
s1 += v1; sq1 += (SQT)v1*v1; |
|
s2 += v2; sq2 += (SQT)v2*v2; |
|
nzm++; |
|
} |
|
sum[0] = s0; sum[1] = s1; sum[2] = s2; |
|
sqsum[0] = sq0; sqsum[1] = sq1; sqsum[2] = sq2; |
|
} |
|
else |
|
{ |
|
for( i = 0; i < len; i++, src += cn ) |
|
if( mask[i] ) |
|
{ |
|
for( int k = 0; k < cn; k++ ) |
|
{ |
|
T v = src[k]; |
|
ST s = sum[k] + v; |
|
SQT sq = sqsum[k] + (SQT)v*v; |
|
sum[k] = s; sqsum[k] = sq; |
|
} |
|
nzm++; |
|
} |
|
} |
|
return nzm; |
|
} |
|
|
|
|
|
static int sqsum8u( const uchar* src, const uchar* mask, int* sum, int* sqsum, int len, int cn ) |
|
{ return sumsqr_(src, mask, sum, sqsum, len, cn); } |
|
|
|
static int sqsum8s( const schar* src, const uchar* mask, int* sum, int* sqsum, int len, int cn ) |
|
{ return sumsqr_(src, mask, sum, sqsum, len, cn); } |
|
|
|
static int sqsum16u( const ushort* src, const uchar* mask, int* sum, double* sqsum, int len, int cn ) |
|
{ return sumsqr_(src, mask, sum, sqsum, len, cn); } |
|
|
|
static int sqsum16s( const short* src, const uchar* mask, int* sum, double* sqsum, int len, int cn ) |
|
{ return sumsqr_(src, mask, sum, sqsum, len, cn); } |
|
|
|
static int sqsum32s( const int* src, const uchar* mask, double* sum, double* sqsum, int len, int cn ) |
|
{ return sumsqr_(src, mask, sum, sqsum, len, cn); } |
|
|
|
static int sqsum32f( const float* src, const uchar* mask, double* sum, double* sqsum, int len, int cn ) |
|
{ return sumsqr_(src, mask, sum, sqsum, len, cn); } |
|
|
|
static int sqsum64f( const double* src, const uchar* mask, double* sum, double* sqsum, int len, int cn ) |
|
{ return sumsqr_(src, mask, sum, sqsum, len, cn); } |
|
|
|
typedef int (*SumSqrFunc)(const uchar*, const uchar* mask, uchar*, uchar*, int, int); |
|
|
|
static SumSqrFunc sumSqrTab[] = |
|
{ |
|
(SumSqrFunc)GET_OPTIMIZED(sqsum8u), (SumSqrFunc)sqsum8s, (SumSqrFunc)sqsum16u, (SumSqrFunc)sqsum16s, |
|
(SumSqrFunc)sqsum32s, (SumSqrFunc)GET_OPTIMIZED(sqsum32f), (SumSqrFunc)sqsum64f, 0 |
|
}; |
|
|
|
} |
|
|
|
cv::Scalar cv::sum( InputArray _src ) |
|
{ |
|
Mat src = _src.getMat(); |
|
int k, cn = src.channels(), depth = src.depth(); |
|
SumFunc func = sumTab[depth]; |
|
|
|
CV_Assert( cn <= 4 && func != 0 ); |
|
|
|
const Mat* arrays[] = {&src, 0}; |
|
uchar* ptrs[1]; |
|
NAryMatIterator it(arrays, ptrs); |
|
Scalar s; |
|
int total = (int)it.size, blockSize = total, intSumBlockSize = 0; |
|
int j, count = 0; |
|
AutoBuffer<int> _buf; |
|
int* buf = (int*)&s[0]; |
|
size_t esz = 0; |
|
bool blockSum = depth < CV_32S; |
|
|
|
if( blockSum ) |
|
{ |
|
intSumBlockSize = depth <= CV_8S ? (1 << 23) : (1 << 15); |
|
blockSize = std::min(blockSize, intSumBlockSize); |
|
_buf.allocate(cn); |
|
buf = _buf; |
|
|
|
for( k = 0; k < cn; k++ ) |
|
buf[k] = 0; |
|
esz = src.elemSize(); |
|
} |
|
|
|
for( size_t i = 0; i < it.nplanes; i++, ++it ) |
|
{ |
|
for( j = 0; j < total; j += blockSize ) |
|
{ |
|
int bsz = std::min(total - j, blockSize); |
|
func( ptrs[0], 0, (uchar*)buf, bsz, cn ); |
|
count += bsz; |
|
if( blockSum && (count + blockSize >= intSumBlockSize || (i+1 >= it.nplanes && j+bsz >= total)) ) |
|
{ |
|
for( k = 0; k < cn; k++ ) |
|
{ |
|
s[k] += buf[k]; |
|
buf[k] = 0; |
|
} |
|
count = 0; |
|
} |
|
ptrs[0] += bsz*esz; |
|
} |
|
} |
|
return s; |
|
} |
|
|
|
int cv::countNonZero( InputArray _src ) |
|
{ |
|
Mat src = _src.getMat(); |
|
CountNonZeroFunc func = countNonZeroTab[src.depth()]; |
|
|
|
CV_Assert( src.channels() == 1 && func != 0 ); |
|
|
|
const Mat* arrays[] = {&src, 0}; |
|
uchar* ptrs[1]; |
|
NAryMatIterator it(arrays, ptrs); |
|
int total = (int)it.size, nz = 0; |
|
|
|
for( size_t i = 0; i < it.nplanes; i++, ++it ) |
|
nz += func( ptrs[0], total ); |
|
|
|
return nz; |
|
} |
|
|
|
cv::Scalar cv::mean( InputArray _src, InputArray _mask ) |
|
{ |
|
Mat src = _src.getMat(), mask = _mask.getMat(); |
|
CV_Assert( mask.empty() || mask.type() == CV_8U ); |
|
|
|
int k, cn = src.channels(), depth = src.depth(); |
|
SumFunc func = sumTab[depth]; |
|
|
|
CV_Assert( cn <= 4 && func != 0 ); |
|
|
|
const Mat* arrays[] = {&src, &mask, 0}; |
|
uchar* ptrs[2]; |
|
NAryMatIterator it(arrays, ptrs); |
|
Scalar s; |
|
int total = (int)it.size, blockSize = total, intSumBlockSize = 0; |
|
int j, count = 0; |
|
AutoBuffer<int> _buf; |
|
int* buf = (int*)&s[0]; |
|
bool blockSum = depth <= CV_16S; |
|
size_t esz = 0, nz0 = 0; |
|
|
|
if( blockSum ) |
|
{ |
|
intSumBlockSize = depth <= CV_8S ? (1 << 23) : (1 << 15); |
|
blockSize = std::min(blockSize, intSumBlockSize); |
|
_buf.allocate(cn); |
|
buf = _buf; |
|
|
|
for( k = 0; k < cn; k++ ) |
|
buf[k] = 0; |
|
esz = src.elemSize(); |
|
} |
|
|
|
for( size_t i = 0; i < it.nplanes; i++, ++it ) |
|
{ |
|
for( j = 0; j < total; j += blockSize ) |
|
{ |
|
int bsz = std::min(total - j, blockSize); |
|
int nz = func( ptrs[0], ptrs[1], (uchar*)buf, bsz, cn ); |
|
count += nz; |
|
nz0 += nz; |
|
if( blockSum && (count + blockSize >= intSumBlockSize || (i+1 >= it.nplanes && j+bsz >= total)) ) |
|
{ |
|
for( k = 0; k < cn; k++ ) |
|
{ |
|
s[k] += buf[k]; |
|
buf[k] = 0; |
|
} |
|
count = 0; |
|
} |
|
ptrs[0] += bsz*esz; |
|
if( ptrs[1] ) |
|
ptrs[1] += bsz; |
|
} |
|
} |
|
return s*(nz0 ? 1./nz0 : 0); |
|
} |
|
|
|
|
|
void cv::meanStdDev( InputArray _src, OutputArray _mean, OutputArray _sdv, InputArray _mask ) |
|
{ |
|
Mat src = _src.getMat(), mask = _mask.getMat(); |
|
CV_Assert( mask.empty() || mask.type() == CV_8U ); |
|
|
|
int k, cn = src.channels(), depth = src.depth(); |
|
SumSqrFunc func = sumSqrTab[depth]; |
|
|
|
CV_Assert( func != 0 ); |
|
|
|
const Mat* arrays[] = {&src, &mask, 0}; |
|
uchar* ptrs[2]; |
|
NAryMatIterator it(arrays, ptrs); |
|
int total = (int)it.size, blockSize = total, intSumBlockSize = 0; |
|
int j, count = 0, nz0 = 0; |
|
AutoBuffer<double> _buf(cn*4); |
|
double *s = (double*)_buf, *sq = s + cn; |
|
int *sbuf = (int*)s, *sqbuf = (int*)sq; |
|
bool blockSum = depth <= CV_16S, blockSqSum = depth <= CV_8S; |
|
size_t esz = 0; |
|
|
|
for( k = 0; k < cn; k++ ) |
|
s[k] = sq[k] = 0; |
|
|
|
if( blockSum ) |
|
{ |
|
intSumBlockSize = 1 << 15; |
|
blockSize = std::min(blockSize, intSumBlockSize); |
|
sbuf = (int*)(sq + cn); |
|
if( blockSqSum ) |
|
sqbuf = sbuf + cn; |
|
for( k = 0; k < cn; k++ ) |
|
sbuf[k] = sqbuf[k] = 0; |
|
esz = src.elemSize(); |
|
} |
|
|
|
for( size_t i = 0; i < it.nplanes; i++, ++it ) |
|
{ |
|
for( j = 0; j < total; j += blockSize ) |
|
{ |
|
int bsz = std::min(total - j, blockSize); |
|
int nz = func( ptrs[0], ptrs[1], (uchar*)sbuf, (uchar*)sqbuf, bsz, cn ); |
|
count += nz; |
|
nz0 += nz; |
|
if( blockSum && (count + blockSize >= intSumBlockSize || (i+1 >= it.nplanes && j+bsz >= total)) ) |
|
{ |
|
for( k = 0; k < cn; k++ ) |
|
{ |
|
s[k] += sbuf[k]; |
|
sbuf[k] = 0; |
|
} |
|
if( blockSqSum ) |
|
{ |
|
for( k = 0; k < cn; k++ ) |
|
{ |
|
sq[k] += sqbuf[k]; |
|
sqbuf[k] = 0; |
|
} |
|
} |
|
count = 0; |
|
} |
|
ptrs[0] += bsz*esz; |
|
if( ptrs[1] ) |
|
ptrs[1] += bsz; |
|
} |
|
} |
|
|
|
double scale = nz0 ? 1./nz0 : 0.; |
|
for( k = 0; k < cn; k++ ) |
|
{ |
|
s[k] *= scale; |
|
sq[k] = std::sqrt(std::max(sq[k]*scale - s[k]*s[k], 0.)); |
|
} |
|
|
|
for( j = 0; j < 2; j++ ) |
|
{ |
|
const double* sptr = j == 0 ? s : sq; |
|
_OutputArray _dst = j == 0 ? _mean : _sdv; |
|
if( !_dst.needed() ) |
|
continue; |
|
|
|
if( !_dst.fixedSize() ) |
|
_dst.create(cn, 1, CV_64F, -1, true); |
|
Mat dst = _dst.getMat(); |
|
int dcn = (int)dst.total(); |
|
CV_Assert( dst.type() == CV_64F && dst.isContinuous() && |
|
(dst.cols == 1 || dst.rows == 1) && dcn >= cn ); |
|
double* dptr = dst.ptr<double>(); |
|
for( k = 0; k < cn; k++ ) |
|
dptr[k] = sptr[k]; |
|
for( ; k < dcn; k++ ) |
|
dptr[k] = 0; |
|
} |
|
} |
|
|
|
/****************************************************************************************\ |
|
* minMaxLoc * |
|
\****************************************************************************************/ |
|
|
|
namespace cv |
|
{ |
|
|
|
template<typename T, typename WT> static void |
|
minMaxIdx_( const T* src, const uchar* mask, WT* _minVal, WT* _maxVal, |
|
size_t* _minIdx, size_t* _maxIdx, int len, size_t startIdx ) |
|
{ |
|
WT minVal = *_minVal, maxVal = *_maxVal; |
|
size_t minIdx = *_minIdx, maxIdx = *_maxIdx; |
|
|
|
if( !mask ) |
|
{ |
|
for( int i = 0; i < len; i++ ) |
|
{ |
|
T val = src[i]; |
|
if( val < minVal ) |
|
{ |
|
minVal = val; |
|
minIdx = startIdx + i; |
|
} |
|
if( val > maxVal ) |
|
{ |
|
maxVal = val; |
|
maxIdx = startIdx + i; |
|
} |
|
} |
|
} |
|
else |
|
{ |
|
for( int i = 0; i < len; i++ ) |
|
{ |
|
T val = src[i]; |
|
if( mask[i] && val < minVal ) |
|
{ |
|
minVal = val; |
|
minIdx = startIdx + i; |
|
} |
|
if( mask[i] && val > maxVal ) |
|
{ |
|
maxVal = val; |
|
maxIdx = startIdx + i; |
|
} |
|
} |
|
} |
|
|
|
*_minIdx = minIdx; |
|
*_maxIdx = maxIdx; |
|
*_minVal = minVal; |
|
*_maxVal = maxVal; |
|
} |
|
|
|
static void minMaxIdx_8u(const uchar* src, const uchar* mask, int* minval, int* maxval, |
|
size_t* minidx, size_t* maxidx, int len, size_t startidx ) |
|
{ minMaxIdx_(src, mask, minval, maxval, minidx, maxidx, len, startidx ); } |
|
|
|
static void minMaxIdx_8s(const schar* src, const uchar* mask, int* minval, int* maxval, |
|
size_t* minidx, size_t* maxidx, int len, size_t startidx ) |
|
{ minMaxIdx_(src, mask, minval, maxval, minidx, maxidx, len, startidx ); } |
|
|
|
static void minMaxIdx_16u(const ushort* src, const uchar* mask, int* minval, int* maxval, |
|
size_t* minidx, size_t* maxidx, int len, size_t startidx ) |
|
{ minMaxIdx_(src, mask, minval, maxval, minidx, maxidx, len, startidx ); } |
|
|
|
static void minMaxIdx_16s(const short* src, const uchar* mask, int* minval, int* maxval, |
|
size_t* minidx, size_t* maxidx, int len, size_t startidx ) |
|
{ minMaxIdx_(src, mask, minval, maxval, minidx, maxidx, len, startidx ); } |
|
|
|
static void minMaxIdx_32s(const int* src, const uchar* mask, int* minval, int* maxval, |
|
size_t* minidx, size_t* maxidx, int len, size_t startidx ) |
|
{ minMaxIdx_(src, mask, minval, maxval, minidx, maxidx, len, startidx ); } |
|
|
|
static void minMaxIdx_32f(const float* src, const uchar* mask, float* minval, float* maxval, |
|
size_t* minidx, size_t* maxidx, int len, size_t startidx ) |
|
{ minMaxIdx_(src, mask, minval, maxval, minidx, maxidx, len, startidx ); } |
|
|
|
static void minMaxIdx_64f(const double* src, const uchar* mask, double* minval, double* maxval, |
|
size_t* minidx, size_t* maxidx, int len, size_t startidx ) |
|
{ minMaxIdx_(src, mask, minval, maxval, minidx, maxidx, len, startidx ); } |
|
|
|
typedef void (*MinMaxIdxFunc)(const uchar*, const uchar*, int*, int*, size_t*, size_t*, int, size_t); |
|
|
|
static MinMaxIdxFunc minmaxTab[] = |
|
{ |
|
(MinMaxIdxFunc)GET_OPTIMIZED(minMaxIdx_8u), (MinMaxIdxFunc)GET_OPTIMIZED(minMaxIdx_8s), |
|
(MinMaxIdxFunc)GET_OPTIMIZED(minMaxIdx_16u), (MinMaxIdxFunc)GET_OPTIMIZED(minMaxIdx_16s), |
|
(MinMaxIdxFunc)GET_OPTIMIZED(minMaxIdx_32s), |
|
(MinMaxIdxFunc)GET_OPTIMIZED(minMaxIdx_32f), (MinMaxIdxFunc)GET_OPTIMIZED(minMaxIdx_64f), |
|
0 |
|
}; |
|
|
|
static void ofs2idx(const Mat& a, size_t ofs, int* idx) |
|
{ |
|
int i, d = a.dims; |
|
if( ofs > 0 ) |
|
{ |
|
ofs--; |
|
for( i = d-1; i >= 0; i-- ) |
|
{ |
|
int sz = a.size[i]; |
|
idx[i] = (int)(ofs % sz); |
|
ofs /= sz; |
|
} |
|
} |
|
else |
|
{ |
|
for( i = d-1; i >= 0; i-- ) |
|
idx[i] = -1; |
|
} |
|
} |
|
|
|
} |
|
|
|
void cv::minMaxIdx(InputArray _src, double* minVal, |
|
double* maxVal, int* minIdx, int* maxIdx, |
|
InputArray _mask) |
|
{ |
|
Mat src = _src.getMat(), mask = _mask.getMat(); |
|
int depth = src.depth(), cn = src.channels(); |
|
|
|
CV_Assert( (cn == 1 && (mask.empty() || mask.type() == CV_8U)) || |
|
(cn >= 1 && mask.empty() && !minIdx && !maxIdx) ); |
|
MinMaxIdxFunc func = minmaxTab[depth]; |
|
CV_Assert( func != 0 ); |
|
|
|
const Mat* arrays[] = {&src, &mask, 0}; |
|
uchar* ptrs[2]; |
|
NAryMatIterator it(arrays, ptrs); |
|
|
|
size_t minidx = 0, maxidx = 0; |
|
int iminval = INT_MAX, imaxval = INT_MIN; |
|
float fminval = FLT_MAX, fmaxval = -FLT_MAX; |
|
double dminval = DBL_MAX, dmaxval = -DBL_MAX; |
|
size_t startidx = 1; |
|
int *minval = &iminval, *maxval = &imaxval; |
|
int planeSize = (int)it.size*cn; |
|
|
|
if( depth == CV_32F ) |
|
minval = (int*)&fminval, maxval = (int*)&fmaxval; |
|
else if( depth == CV_64F ) |
|
minval = (int*)&dminval, maxval = (int*)&dmaxval; |
|
|
|
for( size_t i = 0; i < it.nplanes; i++, ++it, startidx += planeSize ) |
|
func( ptrs[0], ptrs[1], minval, maxval, &minidx, &maxidx, planeSize, startidx ); |
|
|
|
if( minidx == 0 ) |
|
dminval = dmaxval = 0; |
|
else if( depth == CV_32F ) |
|
dminval = fminval, dmaxval = fmaxval; |
|
else if( depth <= CV_32S ) |
|
dminval = iminval, dmaxval = imaxval; |
|
|
|
if( minVal ) |
|
*minVal = dminval; |
|
if( maxVal ) |
|
*maxVal = dmaxval; |
|
|
|
if( minIdx ) |
|
ofs2idx(src, minidx, minIdx); |
|
if( maxIdx ) |
|
ofs2idx(src, maxidx, maxIdx); |
|
} |
|
|
|
void cv::minMaxLoc( InputArray _img, double* minVal, double* maxVal, |
|
Point* minLoc, Point* maxLoc, InputArray mask ) |
|
{ |
|
Mat img = _img.getMat(); |
|
CV_Assert(img.dims <= 2); |
|
|
|
minMaxIdx(_img, minVal, maxVal, (int*)minLoc, (int*)maxLoc, mask); |
|
if( minLoc ) |
|
std::swap(minLoc->x, minLoc->y); |
|
if( maxLoc ) |
|
std::swap(maxLoc->x, maxLoc->y); |
|
} |
|
|
|
/****************************************************************************************\ |
|
* norm * |
|
\****************************************************************************************/ |
|
|
|
namespace cv |
|
{ |
|
|
|
float normL2Sqr_(const float* a, const float* b, int n) |
|
{ |
|
int j = 0; float d = 0.f; |
|
#if CV_SSE |
|
if( USE_SSE2 ) |
|
{ |
|
float CV_DECL_ALIGNED(16) buf[4]; |
|
__m128 d0 = _mm_setzero_ps(), d1 = _mm_setzero_ps(); |
|
|
|
for( ; j <= n - 8; j += 8 ) |
|
{ |
|
__m128 t0 = _mm_sub_ps(_mm_loadu_ps(a + j), _mm_loadu_ps(b + j)); |
|
__m128 t1 = _mm_sub_ps(_mm_loadu_ps(a + j + 4), _mm_loadu_ps(b + j + 4)); |
|
d0 = _mm_add_ps(d0, _mm_mul_ps(t0, t0)); |
|
d1 = _mm_add_ps(d1, _mm_mul_ps(t1, t1)); |
|
} |
|
_mm_store_ps(buf, _mm_add_ps(d0, d1)); |
|
d = buf[0] + buf[1] + buf[2] + buf[3]; |
|
} |
|
else |
|
#endif |
|
{ |
|
for( ; j <= n - 4; j += 4 ) |
|
{ |
|
float t0 = a[j] - b[j], t1 = a[j+1] - b[j+1], t2 = a[j+2] - b[j+2], t3 = a[j+3] - b[j+3]; |
|
d += t0*t0 + t1*t1 + t2*t2 + t3*t3; |
|
} |
|
} |
|
|
|
for( ; j < n; j++ ) |
|
{ |
|
float t = a[j] - b[j]; |
|
d += t*t; |
|
} |
|
return d; |
|
} |
|
|
|
|
|
float normL1_(const float* a, const float* b, int n) |
|
{ |
|
int j = 0; float d = 0.f; |
|
#if CV_SSE |
|
if( USE_SSE2 ) |
|
{ |
|
float CV_DECL_ALIGNED(16) buf[4]; |
|
static const int CV_DECL_ALIGNED(16) absbuf[4] = {0x7fffffff, 0x7fffffff, 0x7fffffff, 0x7fffffff}; |
|
__m128 d0 = _mm_setzero_ps(), d1 = _mm_setzero_ps(); |
|
__m128 absmask = _mm_load_ps((const float*)absbuf); |
|
|
|
for( ; j <= n - 8; j += 8 ) |
|
{ |
|
__m128 t0 = _mm_sub_ps(_mm_loadu_ps(a + j), _mm_loadu_ps(b + j)); |
|
__m128 t1 = _mm_sub_ps(_mm_loadu_ps(a + j + 4), _mm_loadu_ps(b + j + 4)); |
|
d0 = _mm_add_ps(d0, _mm_and_ps(t0, absmask)); |
|
d1 = _mm_add_ps(d1, _mm_and_ps(t1, absmask)); |
|
} |
|
_mm_store_ps(buf, _mm_add_ps(d0, d1)); |
|
d = buf[0] + buf[1] + buf[2] + buf[3]; |
|
} |
|
else |
|
#endif |
|
{ |
|
for( ; j <= n - 4; j += 4 ) |
|
{ |
|
d += std::abs(a[j] - b[j]) + std::abs(a[j+1] - b[j+1]) + |
|
std::abs(a[j+2] - b[j+2]) + std::abs(a[j+3] - b[j+3]); |
|
} |
|
} |
|
|
|
for( ; j < n; j++ ) |
|
d += std::abs(a[j] - b[j]); |
|
return d; |
|
} |
|
|
|
int normL1_(const uchar* a, const uchar* b, int n) |
|
{ |
|
int j = 0, d = 0; |
|
#if CV_SSE |
|
if( USE_SSE2 ) |
|
{ |
|
__m128i d0 = _mm_setzero_si128(); |
|
|
|
for( ; j <= n - 16; j += 16 ) |
|
{ |
|
__m128i t0 = _mm_loadu_si128((const __m128i*)(a + j)); |
|
__m128i t1 = _mm_loadu_si128((const __m128i*)(b + j)); |
|
|
|
d0 = _mm_add_epi32(d0, _mm_sad_epu8(t0, t1)); |
|
} |
|
|
|
for( ; j <= n - 4; j += 4 ) |
|
{ |
|
__m128i t0 = _mm_cvtsi32_si128(*(const int*)(a + j)); |
|
__m128i t1 = _mm_cvtsi32_si128(*(const int*)(b + j)); |
|
|
|
d0 = _mm_add_epi32(d0, _mm_sad_epu8(t0, t1)); |
|
} |
|
d = _mm_cvtsi128_si32(_mm_add_epi32(d0, _mm_unpackhi_epi64(d0, d0))); |
|
} |
|
else |
|
#endif |
|
{ |
|
for( ; j <= n - 4; j += 4 ) |
|
{ |
|
d += std::abs(a[j] - b[j]) + std::abs(a[j+1] - b[j+1]) + |
|
std::abs(a[j+2] - b[j+2]) + std::abs(a[j+3] - b[j+3]); |
|
} |
|
} |
|
for( ; j < n; j++ ) |
|
d += std::abs(a[j] - b[j]); |
|
return d; |
|
} |
|
|
|
static const uchar popCountTable[] = |
|
{ |
|
0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4, 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, |
|
1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, |
|
1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, |
|
2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7, |
|
1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, |
|
2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7, |
|
2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7, |
|
3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7, 4, 5, 5, 6, 5, 6, 6, 7, 5, 6, 6, 7, 6, 7, 7, 8 |
|
}; |
|
|
|
static const uchar popCountTable2[] = |
|
{ |
|
0, 1, 1, 1, 1, 2, 2, 2, 1, 2, 2, 2, 1, 2, 2, 2, 1, 2, 2, 2, 2, 3, 3, 3, 2, 3, 3, 3, 2, 3, 3, 3, |
|
1, 2, 2, 2, 2, 3, 3, 3, 2, 3, 3, 3, 2, 3, 3, 3, 1, 2, 2, 2, 2, 3, 3, 3, 2, 3, 3, 3, 2, 3, 3, 3, |
|
1, 2, 2, 2, 2, 3, 3, 3, 2, 3, 3, 3, 2, 3, 3, 3, 2, 3, 3, 3, 3, 4, 4, 4, 3, 4, 4, 4, 3, 4, 4, 4, |
|
2, 3, 3, 3, 3, 4, 4, 4, 3, 4, 4, 4, 3, 4, 4, 4, 2, 3, 3, 3, 3, 4, 4, 4, 3, 4, 4, 4, 3, 4, 4, 4, |
|
1, 2, 2, 2, 2, 3, 3, 3, 2, 3, 3, 3, 2, 3, 3, 3, 2, 3, 3, 3, 3, 4, 4, 4, 3, 4, 4, 4, 3, 4, 4, 4, |
|
2, 3, 3, 3, 3, 4, 4, 4, 3, 4, 4, 4, 3, 4, 4, 4, 2, 3, 3, 3, 3, 4, 4, 4, 3, 4, 4, 4, 3, 4, 4, 4, |
|
1, 2, 2, 2, 2, 3, 3, 3, 2, 3, 3, 3, 2, 3, 3, 3, 2, 3, 3, 3, 3, 4, 4, 4, 3, 4, 4, 4, 3, 4, 4, 4, |
|
2, 3, 3, 3, 3, 4, 4, 4, 3, 4, 4, 4, 3, 4, 4, 4, 2, 3, 3, 3, 3, 4, 4, 4, 3, 4, 4, 4, 3, 4, 4, 4 |
|
}; |
|
|
|
static const uchar popCountTable4[] = |
|
{ |
|
0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, |
|
1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, |
|
1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, |
|
1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, |
|
1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, |
|
1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, |
|
1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, |
|
1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 |
|
}; |
|
|
|
static int normHamming(const uchar* a, int n) |
|
{ |
|
int i = 0, result = 0; |
|
#if CV_NEON |
|
if (CPU_HAS_NEON_FEATURE) |
|
{ |
|
uint32x4_t bits = vmovq_n_u32(0); |
|
for (; i <= n - 16; i += 16) { |
|
uint8x16_t A_vec = vld1q_u8 (a + i); |
|
uint8x16_t bitsSet = vcntq_u8 (A_vec); |
|
uint16x8_t bitSet8 = vpaddlq_u8 (bitsSet); |
|
uint32x4_t bitSet4 = vpaddlq_u16 (bitSet8); |
|
bits = vaddq_u32(bits, bitSet4); |
|
} |
|
uint64x2_t bitSet2 = vpaddlq_u32 (bits); |
|
result = vgetq_lane_s32 (vreinterpretq_s32_u64(bitSet2),0); |
|
result += vgetq_lane_s32 (vreinterpretq_s32_u64(bitSet2),2); |
|
} |
|
else |
|
#endif |
|
for( ; i <= n - 4; i += 4 ) |
|
result += popCountTable[a[i]] + popCountTable[a[i+1]] + |
|
popCountTable[a[i+2]] + popCountTable[a[i+3]]; |
|
for( ; i < n; i++ ) |
|
result += popCountTable[a[i]]; |
|
return result; |
|
} |
|
|
|
int normHamming(const uchar* a, const uchar* b, int n) |
|
{ |
|
int i = 0, result = 0; |
|
#if CV_NEON |
|
if (CPU_HAS_NEON_FEATURE) |
|
{ |
|
uint32x4_t bits = vmovq_n_u32(0); |
|
for (; i <= n - 16; i += 16) { |
|
uint8x16_t A_vec = vld1q_u8 (a + i); |
|
uint8x16_t B_vec = vld1q_u8 (b + i); |
|
uint8x16_t AxorB = veorq_u8 (A_vec, B_vec); |
|
uint8x16_t bitsSet = vcntq_u8 (AxorB); |
|
uint16x8_t bitSet8 = vpaddlq_u8 (bitsSet); |
|
uint32x4_t bitSet4 = vpaddlq_u16 (bitSet8); |
|
bits = vaddq_u32(bits, bitSet4); |
|
} |
|
uint64x2_t bitSet2 = vpaddlq_u32 (bits); |
|
result = vgetq_lane_s32 (vreinterpretq_s32_u64(bitSet2),0); |
|
result += vgetq_lane_s32 (vreinterpretq_s32_u64(bitSet2),2); |
|
} |
|
else |
|
#endif |
|
for( ; i <= n - 4; i += 4 ) |
|
result += popCountTable[a[i] ^ b[i]] + popCountTable[a[i+1] ^ b[i+1]] + |
|
popCountTable[a[i+2] ^ b[i+2]] + popCountTable[a[i+3] ^ b[i+3]]; |
|
for( ; i < n; i++ ) |
|
result += popCountTable[a[i] ^ b[i]]; |
|
return result; |
|
} |
|
|
|
static int normHamming(const uchar* a, int n, int cellSize) |
|
{ |
|
if( cellSize == 1 ) |
|
return normHamming(a, n); |
|
const uchar* tab = 0; |
|
if( cellSize == 2 ) |
|
tab = popCountTable2; |
|
else if( cellSize == 4 ) |
|
tab = popCountTable4; |
|
else |
|
CV_Error( CV_StsBadSize, "bad cell size (not 1, 2 or 4) in normHamming" ); |
|
int i = 0, result = 0; |
|
#if CV_ENABLE_UNROLLED |
|
for( ; i <= n - 4; i += 4 ) |
|
result += tab[a[i]] + tab[a[i+1]] + tab[a[i+2]] + tab[a[i+3]]; |
|
#endif |
|
for( ; i < n; i++ ) |
|
result += tab[a[i]]; |
|
return result; |
|
} |
|
|
|
int normHamming(const uchar* a, const uchar* b, int n, int cellSize) |
|
{ |
|
if( cellSize == 1 ) |
|
return normHamming(a, b, n); |
|
const uchar* tab = 0; |
|
if( cellSize == 2 ) |
|
tab = popCountTable2; |
|
else if( cellSize == 4 ) |
|
tab = popCountTable4; |
|
else |
|
CV_Error( CV_StsBadSize, "bad cell size (not 1, 2 or 4) in normHamming" ); |
|
int i = 0, result = 0; |
|
#if CV_ENABLE_UNROLLED |
|
for( ; i <= n - 4; i += 4 ) |
|
result += tab[a[i] ^ b[i]] + tab[a[i+1] ^ b[i+1]] + |
|
tab[a[i+2] ^ b[i+2]] + tab[a[i+3] ^ b[i+3]]; |
|
#endif |
|
for( ; i < n; i++ ) |
|
result += tab[a[i] ^ b[i]]; |
|
return result; |
|
} |
|
|
|
|
|
template<typename T, typename ST> int |
|
normInf_(const T* src, const uchar* mask, ST* _result, int len, int cn) |
|
{ |
|
ST result = *_result; |
|
if( !mask ) |
|
{ |
|
result = std::max(result, normInf<T, ST>(src, len*cn)); |
|
} |
|
else |
|
{ |
|
for( int i = 0; i < len; i++, src += cn ) |
|
if( mask[i] ) |
|
{ |
|
for( int k = 0; k < cn; k++ ) |
|
result = std::max(result, ST(fast_abs(src[k]))); |
|
} |
|
} |
|
*_result = result; |
|
return 0; |
|
} |
|
|
|
template<typename T, typename ST> int |
|
normL1_(const T* src, const uchar* mask, ST* _result, int len, int cn) |
|
{ |
|
ST result = *_result; |
|
if( !mask ) |
|
{ |
|
result += normL1<T, ST>(src, len*cn); |
|
} |
|
else |
|
{ |
|
for( int i = 0; i < len; i++, src += cn ) |
|
if( mask[i] ) |
|
{ |
|
for( int k = 0; k < cn; k++ ) |
|
result += fast_abs(src[k]); |
|
} |
|
} |
|
*_result = result; |
|
return 0; |
|
} |
|
|
|
template<typename T, typename ST> int |
|
normL2_(const T* src, const uchar* mask, ST* _result, int len, int cn) |
|
{ |
|
ST result = *_result; |
|
if( !mask ) |
|
{ |
|
result += normL2Sqr<T, ST>(src, len*cn); |
|
} |
|
else |
|
{ |
|
for( int i = 0; i < len; i++, src += cn ) |
|
if( mask[i] ) |
|
{ |
|
for( int k = 0; k < cn; k++ ) |
|
{ |
|
T v = src[k]; |
|
result += (ST)v*v; |
|
} |
|
} |
|
} |
|
*_result = result; |
|
return 0; |
|
} |
|
|
|
template<typename T, typename ST> int |
|
normDiffInf_(const T* src1, const T* src2, const uchar* mask, ST* _result, int len, int cn) |
|
{ |
|
ST result = *_result; |
|
if( !mask ) |
|
{ |
|
result = std::max(result, normInf<T, ST>(src1, src2, len*cn)); |
|
} |
|
else |
|
{ |
|
for( int i = 0; i < len; i++, src1 += cn, src2 += cn ) |
|
if( mask[i] ) |
|
{ |
|
for( int k = 0; k < cn; k++ ) |
|
result = std::max(result, (ST)std::abs(src1[k] - src2[k])); |
|
} |
|
} |
|
*_result = result; |
|
return 0; |
|
} |
|
|
|
template<typename T, typename ST> int |
|
normDiffL1_(const T* src1, const T* src2, const uchar* mask, ST* _result, int len, int cn) |
|
{ |
|
ST result = *_result; |
|
if( !mask ) |
|
{ |
|
result += normL1<T, ST>(src1, src2, len*cn); |
|
} |
|
else |
|
{ |
|
for( int i = 0; i < len; i++, src1 += cn, src2 += cn ) |
|
if( mask[i] ) |
|
{ |
|
for( int k = 0; k < cn; k++ ) |
|
result += std::abs(src1[k] - src2[k]); |
|
} |
|
} |
|
*_result = result; |
|
return 0; |
|
} |
|
|
|
template<typename T, typename ST> int |
|
normDiffL2_(const T* src1, const T* src2, const uchar* mask, ST* _result, int len, int cn) |
|
{ |
|
ST result = *_result; |
|
if( !mask ) |
|
{ |
|
result += normL2Sqr<T, ST>(src1, src2, len*cn); |
|
} |
|
else |
|
{ |
|
for( int i = 0; i < len; i++, src1 += cn, src2 += cn ) |
|
if( mask[i] ) |
|
{ |
|
for( int k = 0; k < cn; k++ ) |
|
{ |
|
ST v = src1[k] - src2[k]; |
|
result += v*v; |
|
} |
|
} |
|
} |
|
*_result = result; |
|
return 0; |
|
} |
|
|
|
|
|
#define CV_DEF_NORM_FUNC(L, suffix, type, ntype) \ |
|
static int norm##L##_##suffix(const type* src, const uchar* mask, ntype* r, int len, int cn) \ |
|
{ return norm##L##_(src, mask, r, len, cn); } \ |
|
static int normDiff##L##_##suffix(const type* src1, const type* src2, \ |
|
const uchar* mask, ntype* r, int len, int cn) \ |
|
{ return normDiff##L##_(src1, src2, mask, r, (int)len, cn); } |
|
|
|
#define CV_DEF_NORM_ALL(suffix, type, inftype, l1type, l2type) \ |
|
CV_DEF_NORM_FUNC(Inf, suffix, type, inftype) \ |
|
CV_DEF_NORM_FUNC(L1, suffix, type, l1type) \ |
|
CV_DEF_NORM_FUNC(L2, suffix, type, l2type) |
|
|
|
CV_DEF_NORM_ALL(8u, uchar, int, int, int) |
|
CV_DEF_NORM_ALL(8s, schar, int, int, int) |
|
CV_DEF_NORM_ALL(16u, ushort, int, int, double) |
|
CV_DEF_NORM_ALL(16s, short, int, int, double) |
|
CV_DEF_NORM_ALL(32s, int, int, double, double) |
|
CV_DEF_NORM_ALL(32f, float, float, double, double) |
|
CV_DEF_NORM_ALL(64f, double, double, double, double) |
|
|
|
|
|
typedef int (*NormFunc)(const uchar*, const uchar*, uchar*, int, int); |
|
typedef int (*NormDiffFunc)(const uchar*, const uchar*, const uchar*, uchar*, int, int); |
|
|
|
static NormFunc normTab[3][8] = |
|
{ |
|
{ |
|
(NormFunc)GET_OPTIMIZED(normInf_8u), (NormFunc)GET_OPTIMIZED(normInf_8s), (NormFunc)GET_OPTIMIZED(normInf_16u), (NormFunc)GET_OPTIMIZED(normInf_16s), |
|
(NormFunc)GET_OPTIMIZED(normInf_32s), (NormFunc)GET_OPTIMIZED(normInf_32f), (NormFunc)normInf_64f, 0 |
|
}, |
|
{ |
|
(NormFunc)GET_OPTIMIZED(normL1_8u), (NormFunc)GET_OPTIMIZED(normL1_8s), (NormFunc)GET_OPTIMIZED(normL1_16u), (NormFunc)GET_OPTIMIZED(normL1_16s), |
|
(NormFunc)GET_OPTIMIZED(normL1_32s), (NormFunc)GET_OPTIMIZED(normL1_32f), (NormFunc)normL1_64f, 0 |
|
}, |
|
{ |
|
(NormFunc)GET_OPTIMIZED(normL2_8u), (NormFunc)GET_OPTIMIZED(normL2_8s), (NormFunc)GET_OPTIMIZED(normL2_16u), (NormFunc)GET_OPTIMIZED(normL2_16s), |
|
(NormFunc)GET_OPTIMIZED(normL2_32s), (NormFunc)GET_OPTIMIZED(normL2_32f), (NormFunc)normL2_64f, 0 |
|
} |
|
}; |
|
|
|
static NormDiffFunc normDiffTab[3][8] = |
|
{ |
|
{ |
|
(NormDiffFunc)GET_OPTIMIZED(normDiffInf_8u), (NormDiffFunc)normDiffInf_8s, |
|
(NormDiffFunc)normDiffInf_16u, (NormDiffFunc)normDiffInf_16s, |
|
(NormDiffFunc)normDiffInf_32s, (NormDiffFunc)GET_OPTIMIZED(normDiffInf_32f), |
|
(NormDiffFunc)normDiffInf_64f, 0 |
|
}, |
|
{ |
|
(NormDiffFunc)GET_OPTIMIZED(normDiffL1_8u), (NormDiffFunc)normDiffL1_8s, |
|
(NormDiffFunc)normDiffL1_16u, (NormDiffFunc)normDiffL1_16s, |
|
(NormDiffFunc)normDiffL1_32s, (NormDiffFunc)GET_OPTIMIZED(normDiffL1_32f), |
|
(NormDiffFunc)normDiffL1_64f, 0 |
|
}, |
|
{ |
|
(NormDiffFunc)GET_OPTIMIZED(normDiffL2_8u), (NormDiffFunc)normDiffL2_8s, |
|
(NormDiffFunc)normDiffL2_16u, (NormDiffFunc)normDiffL2_16s, |
|
(NormDiffFunc)normDiffL2_32s, (NormDiffFunc)GET_OPTIMIZED(normDiffL2_32f), |
|
(NormDiffFunc)normDiffL2_64f, 0 |
|
} |
|
}; |
|
|
|
} |
|
|
|
double cv::norm( InputArray _src, int normType, InputArray _mask ) |
|
{ |
|
Mat src = _src.getMat(), mask = _mask.getMat(); |
|
int depth = src.depth(), cn = src.channels(); |
|
|
|
normType &= 7; |
|
CV_Assert( normType == NORM_INF || normType == NORM_L1 || normType == NORM_L2 || normType == NORM_L2SQR || |
|
((normType == NORM_HAMMING || normType == NORM_HAMMING2) && src.type() == CV_8U) ); |
|
|
|
if( src.isContinuous() && mask.empty() ) |
|
{ |
|
size_t len = src.total()*cn; |
|
if( len == (size_t)(int)len ) |
|
{ |
|
if( depth == CV_32F ) |
|
{ |
|
const float* data = src.ptr<float>(); |
|
|
|
if( normType == NORM_L2 ) |
|
{ |
|
double result = 0; |
|
GET_OPTIMIZED(normL2_32f)(data, 0, &result, (int)len, 1); |
|
return std::sqrt(result); |
|
} |
|
if( normType == NORM_L2SQR ) |
|
{ |
|
double result = 0; |
|
GET_OPTIMIZED(normL2_32f)(data, 0, &result, (int)len, 1); |
|
return result; |
|
} |
|
if( normType == NORM_L1 ) |
|
{ |
|
double result = 0; |
|
GET_OPTIMIZED(normL1_32f)(data, 0, &result, (int)len, 1); |
|
return result; |
|
} |
|
if( normType == NORM_INF ) |
|
{ |
|
float result = 0; |
|
GET_OPTIMIZED(normInf_32f)(data, 0, &result, (int)len, 1); |
|
return result; |
|
} |
|
} |
|
if( depth == CV_8U ) |
|
{ |
|
const uchar* data = src.ptr<uchar>(); |
|
|
|
if( normType == NORM_HAMMING ) |
|
return normHamming(data, (int)len); |
|
|
|
if( normType == NORM_HAMMING2 ) |
|
return normHamming(data, (int)len, 2); |
|
} |
|
} |
|
} |
|
|
|
CV_Assert( mask.empty() || mask.type() == CV_8U ); |
|
|
|
if( normType == NORM_HAMMING || normType == NORM_HAMMING2 ) |
|
{ |
|
if( !mask.empty() ) |
|
{ |
|
Mat temp; |
|
bitwise_and(src, mask, temp); |
|
return norm(temp, normType); |
|
} |
|
int cellSize = normType == NORM_HAMMING ? 1 : 2; |
|
|
|
const Mat* arrays[] = {&src, 0}; |
|
uchar* ptrs[1]; |
|
NAryMatIterator it(arrays, ptrs); |
|
int total = (int)it.size; |
|
int result = 0; |
|
|
|
for( size_t i = 0; i < it.nplanes; i++, ++it ) |
|
result += normHamming(ptrs[0], total, cellSize); |
|
|
|
return result; |
|
} |
|
|
|
NormFunc func = normTab[normType >> 1][depth]; |
|
CV_Assert( func != 0 ); |
|
|
|
const Mat* arrays[] = {&src, &mask, 0}; |
|
uchar* ptrs[2]; |
|
union |
|
{ |
|
double d; |
|
int i; |
|
float f; |
|
} |
|
result; |
|
result.d = 0; |
|
NAryMatIterator it(arrays, ptrs); |
|
int j, total = (int)it.size, blockSize = total, intSumBlockSize = 0, count = 0; |
|
bool blockSum = (normType == NORM_L1 && depth <= CV_16S) || |
|
((normType == NORM_L2 || normType == NORM_L2SQR) && depth <= CV_8S); |
|
int isum = 0; |
|
int *ibuf = &result.i; |
|
size_t esz = 0; |
|
|
|
if( blockSum ) |
|
{ |
|
intSumBlockSize = (normType == NORM_L1 && depth <= CV_8S ? (1 << 23) : (1 << 15))/cn; |
|
blockSize = std::min(blockSize, intSumBlockSize); |
|
ibuf = &isum; |
|
esz = src.elemSize(); |
|
} |
|
|
|
for( size_t i = 0; i < it.nplanes; i++, ++it ) |
|
{ |
|
for( j = 0; j < total; j += blockSize ) |
|
{ |
|
int bsz = std::min(total - j, blockSize); |
|
func( ptrs[0], ptrs[1], (uchar*)ibuf, bsz, cn ); |
|
count += bsz; |
|
if( blockSum && (count + blockSize >= intSumBlockSize || (i+1 >= it.nplanes && j+bsz >= total)) ) |
|
{ |
|
result.d += isum; |
|
isum = 0; |
|
count = 0; |
|
} |
|
ptrs[0] += bsz*esz; |
|
if( ptrs[1] ) |
|
ptrs[1] += bsz; |
|
} |
|
} |
|
|
|
if( normType == NORM_INF ) |
|
{ |
|
if( depth == CV_64F ) |
|
; |
|
else if( depth == CV_32F ) |
|
result.d = result.f; |
|
else |
|
result.d = result.i; |
|
} |
|
else if( normType == NORM_L2 ) |
|
result.d = std::sqrt(result.d); |
|
|
|
return result.d; |
|
} |
|
|
|
|
|
double cv::norm( InputArray _src1, InputArray _src2, int normType, InputArray _mask ) |
|
{ |
|
if( normType & CV_RELATIVE ) |
|
return norm(_src1, _src2, normType & ~CV_RELATIVE, _mask)/(norm(_src2, normType, _mask) + DBL_EPSILON); |
|
|
|
Mat src1 = _src1.getMat(), src2 = _src2.getMat(), mask = _mask.getMat(); |
|
int depth = src1.depth(), cn = src1.channels(); |
|
|
|
CV_Assert( src1.size == src2.size && src1.type() == src2.type() ); |
|
|
|
normType &= 7; |
|
CV_Assert( normType == NORM_INF || normType == NORM_L1 || normType == NORM_L2 || normType == NORM_L2SQR || |
|
((normType == NORM_HAMMING || normType == NORM_HAMMING2) && src1.type() == CV_8U) ); |
|
|
|
if( src1.isContinuous() && src2.isContinuous() && mask.empty() ) |
|
{ |
|
size_t len = src1.total()*src1.channels(); |
|
if( len == (size_t)(int)len ) |
|
{ |
|
if( src1.depth() == CV_32F ) |
|
{ |
|
const float* data1 = src1.ptr<float>(); |
|
const float* data2 = src2.ptr<float>(); |
|
|
|
if( normType == NORM_L2 ) |
|
{ |
|
double result = 0; |
|
GET_OPTIMIZED(normDiffL2_32f)(data1, data2, 0, &result, (int)len, 1); |
|
return std::sqrt(result); |
|
} |
|
if( normType == NORM_L2SQR ) |
|
{ |
|
double result = 0; |
|
GET_OPTIMIZED(normDiffL2_32f)(data1, data2, 0, &result, (int)len, 1); |
|
return result; |
|
} |
|
if( normType == NORM_L1 ) |
|
{ |
|
double result = 0; |
|
GET_OPTIMIZED(normDiffL1_32f)(data1, data2, 0, &result, (int)len, 1); |
|
return result; |
|
} |
|
if( normType == NORM_INF ) |
|
{ |
|
float result = 0; |
|
GET_OPTIMIZED(normDiffInf_32f)(data1, data2, 0, &result, (int)len, 1); |
|
return result; |
|
} |
|
} |
|
} |
|
} |
|
|
|
CV_Assert( mask.empty() || mask.type() == CV_8U ); |
|
|
|
if( normType == NORM_HAMMING || normType == NORM_HAMMING2 ) |
|
{ |
|
if( !mask.empty() ) |
|
{ |
|
Mat temp; |
|
bitwise_xor(src1, src2, temp); |
|
bitwise_and(temp, mask, temp); |
|
return norm(temp, normType); |
|
} |
|
int cellSize = normType == NORM_HAMMING ? 1 : 2; |
|
|
|
const Mat* arrays[] = {&src1, &src2, 0}; |
|
uchar* ptrs[2]; |
|
NAryMatIterator it(arrays, ptrs); |
|
int total = (int)it.size; |
|
int result = 0; |
|
|
|
for( size_t i = 0; i < it.nplanes; i++, ++it ) |
|
result += normHamming(ptrs[0], ptrs[1], total, cellSize); |
|
|
|
return result; |
|
} |
|
|
|
NormDiffFunc func = normDiffTab[normType >> 1][depth]; |
|
CV_Assert( func != 0 ); |
|
|
|
const Mat* arrays[] = {&src1, &src2, &mask, 0}; |
|
uchar* ptrs[3]; |
|
union |
|
{ |
|
double d; |
|
float f; |
|
int i; |
|
unsigned u; |
|
} |
|
result; |
|
result.d = 0; |
|
NAryMatIterator it(arrays, ptrs); |
|
int j, total = (int)it.size, blockSize = total, intSumBlockSize = 0, count = 0; |
|
bool blockSum = (normType == NORM_L1 && depth <= CV_16S) || |
|
((normType == NORM_L2 || normType == NORM_L2SQR) && depth <= CV_8S); |
|
unsigned isum = 0; |
|
unsigned *ibuf = &result.u; |
|
size_t esz = 0; |
|
|
|
if( blockSum ) |
|
{ |
|
intSumBlockSize = normType == NORM_L1 && depth <= CV_8S ? (1 << 23) : (1 << 15); |
|
blockSize = std::min(blockSize, intSumBlockSize); |
|
ibuf = &isum; |
|
esz = src1.elemSize(); |
|
} |
|
|
|
for( size_t i = 0; i < it.nplanes; i++, ++it ) |
|
{ |
|
for( j = 0; j < total; j += blockSize ) |
|
{ |
|
int bsz = std::min(total - j, blockSize); |
|
func( ptrs[0], ptrs[1], ptrs[2], (uchar*)ibuf, bsz, cn ); |
|
count += bsz; |
|
if( blockSum && (count + blockSize >= intSumBlockSize || (i+1 >= it.nplanes && j+bsz >= total)) ) |
|
{ |
|
result.d += isum; |
|
isum = 0; |
|
count = 0; |
|
} |
|
ptrs[0] += bsz*esz; |
|
ptrs[1] += bsz*esz; |
|
if( ptrs[2] ) |
|
ptrs[2] += bsz; |
|
} |
|
} |
|
|
|
if( normType == NORM_INF ) |
|
{ |
|
if( depth == CV_64F ) |
|
; |
|
else if( depth == CV_32F ) |
|
result.d = result.f; |
|
else |
|
result.d = result.u; |
|
} |
|
else if( normType == NORM_L2 ) |
|
result.d = std::sqrt(result.d); |
|
|
|
return result.d; |
|
} |
|
|
|
|
|
///////////////////////////////////// batch distance /////////////////////////////////////// |
|
|
|
namespace cv |
|
{ |
|
|
|
template<typename _Tp, typename _Rt> |
|
void batchDistL1_(const _Tp* src1, const _Tp* src2, size_t step2, |
|
int nvecs, int len, _Rt* dist, const uchar* mask) |
|
{ |
|
step2 /= sizeof(src2[0]); |
|
if( !mask ) |
|
{ |
|
for( int i = 0; i < nvecs; i++ ) |
|
dist[i] = normL1<_Tp, _Rt>(src1, src2 + step2*i, len); |
|
} |
|
else |
|
{ |
|
_Rt val0 = std::numeric_limits<_Rt>::max(); |
|
for( int i = 0; i < nvecs; i++ ) |
|
dist[i] = mask[i] ? normL1<_Tp, _Rt>(src1, src2 + step2*i, len) : val0; |
|
} |
|
} |
|
|
|
template<typename _Tp, typename _Rt> |
|
void batchDistL2Sqr_(const _Tp* src1, const _Tp* src2, size_t step2, |
|
int nvecs, int len, _Rt* dist, const uchar* mask) |
|
{ |
|
step2 /= sizeof(src2[0]); |
|
if( !mask ) |
|
{ |
|
for( int i = 0; i < nvecs; i++ ) |
|
dist[i] = normL2Sqr<_Tp, _Rt>(src1, src2 + step2*i, len); |
|
} |
|
else |
|
{ |
|
_Rt val0 = std::numeric_limits<_Rt>::max(); |
|
for( int i = 0; i < nvecs; i++ ) |
|
dist[i] = mask[i] ? normL2Sqr<_Tp, _Rt>(src1, src2 + step2*i, len) : val0; |
|
} |
|
} |
|
|
|
template<typename _Tp, typename _Rt> |
|
void batchDistL2_(const _Tp* src1, const _Tp* src2, size_t step2, |
|
int nvecs, int len, _Rt* dist, const uchar* mask) |
|
{ |
|
step2 /= sizeof(src2[0]); |
|
if( !mask ) |
|
{ |
|
for( int i = 0; i < nvecs; i++ ) |
|
dist[i] = std::sqrt(normL2Sqr<_Tp, _Rt>(src1, src2 + step2*i, len)); |
|
} |
|
else |
|
{ |
|
_Rt val0 = std::numeric_limits<_Rt>::max(); |
|
for( int i = 0; i < nvecs; i++ ) |
|
dist[i] = mask[i] ? std::sqrt(normL2Sqr<_Tp, _Rt>(src1, src2 + step2*i, len)) : val0; |
|
} |
|
} |
|
|
|
static void batchDistHamming(const uchar* src1, const uchar* src2, size_t step2, |
|
int nvecs, int len, int* dist, const uchar* mask) |
|
{ |
|
step2 /= sizeof(src2[0]); |
|
if( !mask ) |
|
{ |
|
for( int i = 0; i < nvecs; i++ ) |
|
dist[i] = normHamming(src1, src2 + step2*i, len); |
|
} |
|
else |
|
{ |
|
int val0 = INT_MAX; |
|
for( int i = 0; i < nvecs; i++ ) |
|
dist[i] = mask[i] ? normHamming(src1, src2 + step2*i, len) : val0; |
|
} |
|
} |
|
|
|
static void batchDistHamming2(const uchar* src1, const uchar* src2, size_t step2, |
|
int nvecs, int len, int* dist, const uchar* mask) |
|
{ |
|
step2 /= sizeof(src2[0]); |
|
if( !mask ) |
|
{ |
|
for( int i = 0; i < nvecs; i++ ) |
|
dist[i] = normHamming(src1, src2 + step2*i, len, 2); |
|
} |
|
else |
|
{ |
|
int val0 = INT_MAX; |
|
for( int i = 0; i < nvecs; i++ ) |
|
dist[i] = mask[i] ? normHamming(src1, src2 + step2*i, len, 2) : val0; |
|
} |
|
} |
|
|
|
static void batchDistL1_8u32s(const uchar* src1, const uchar* src2, size_t step2, |
|
int nvecs, int len, int* dist, const uchar* mask) |
|
{ |
|
batchDistL1_<uchar, int>(src1, src2, step2, nvecs, len, dist, mask); |
|
} |
|
|
|
static void batchDistL1_8u32f(const uchar* src1, const uchar* src2, size_t step2, |
|
int nvecs, int len, float* dist, const uchar* mask) |
|
{ |
|
batchDistL1_<uchar, float>(src1, src2, step2, nvecs, len, dist, mask); |
|
} |
|
|
|
static void batchDistL2Sqr_8u32s(const uchar* src1, const uchar* src2, size_t step2, |
|
int nvecs, int len, int* dist, const uchar* mask) |
|
{ |
|
batchDistL2Sqr_<uchar, int>(src1, src2, step2, nvecs, len, dist, mask); |
|
} |
|
|
|
static void batchDistL2Sqr_8u32f(const uchar* src1, const uchar* src2, size_t step2, |
|
int nvecs, int len, float* dist, const uchar* mask) |
|
{ |
|
batchDistL2Sqr_<uchar, float>(src1, src2, step2, nvecs, len, dist, mask); |
|
} |
|
|
|
static void batchDistL2_8u32f(const uchar* src1, const uchar* src2, size_t step2, |
|
int nvecs, int len, float* dist, const uchar* mask) |
|
{ |
|
batchDistL2_<uchar, float>(src1, src2, step2, nvecs, len, dist, mask); |
|
} |
|
|
|
static void batchDistL1_32f(const float* src1, const float* src2, size_t step2, |
|
int nvecs, int len, float* dist, const uchar* mask) |
|
{ |
|
batchDistL1_<float, float>(src1, src2, step2, nvecs, len, dist, mask); |
|
} |
|
|
|
static void batchDistL2Sqr_32f(const float* src1, const float* src2, size_t step2, |
|
int nvecs, int len, float* dist, const uchar* mask) |
|
{ |
|
batchDistL2Sqr_<float, float>(src1, src2, step2, nvecs, len, dist, mask); |
|
} |
|
|
|
static void batchDistL2_32f(const float* src1, const float* src2, size_t step2, |
|
int nvecs, int len, float* dist, const uchar* mask) |
|
{ |
|
batchDistL2_<float, float>(src1, src2, step2, nvecs, len, dist, mask); |
|
} |
|
|
|
typedef void (*BatchDistFunc)(const uchar* src1, const uchar* src2, size_t step2, |
|
int nvecs, int len, uchar* dist, const uchar* mask); |
|
|
|
|
|
struct BatchDistInvoker |
|
{ |
|
BatchDistInvoker( const Mat& _src1, const Mat& _src2, |
|
Mat& _dist, Mat& _nidx, int _K, |
|
const Mat& _mask, int _update, |
|
BatchDistFunc _func) |
|
{ |
|
src1 = &_src1; |
|
src2 = &_src2; |
|
dist = &_dist; |
|
nidx = &_nidx; |
|
K = _K; |
|
mask = &_mask; |
|
update = _update; |
|
func = _func; |
|
} |
|
|
|
void operator()(const BlockedRange& range) const |
|
{ |
|
AutoBuffer<int> buf(src2->rows); |
|
int* bufptr = buf; |
|
|
|
for( int i = range.begin(); i < range.end(); i++ ) |
|
{ |
|
func(src1->ptr(i), src2->ptr(), src2->step, src2->rows, src2->cols, |
|
K > 0 ? (uchar*)bufptr : dist->ptr(i), mask->data ? mask->ptr(i) : 0); |
|
|
|
if( K > 0 ) |
|
{ |
|
int* nidxptr = nidx->ptr<int>(i); |
|
// since positive float's can be compared just like int's, |
|
// we handle both CV_32S and CV_32F cases with a single branch |
|
int* distptr = (int*)dist->ptr(i); |
|
|
|
int j, k; |
|
|
|
for( j = 0; j < src2->rows; j++ ) |
|
{ |
|
int d = bufptr[j]; |
|
if( d < distptr[K-1] ) |
|
{ |
|
for( k = K-2; k >= 0 && distptr[k] > d; k-- ) |
|
{ |
|
nidxptr[k+1] = nidxptr[k]; |
|
distptr[k+1] = distptr[k]; |
|
} |
|
nidxptr[k+1] = j + update; |
|
distptr[k+1] = d; |
|
} |
|
} |
|
} |
|
} |
|
} |
|
|
|
const Mat *src1; |
|
const Mat *src2; |
|
Mat *dist; |
|
Mat *nidx; |
|
const Mat *mask; |
|
int K; |
|
int update; |
|
BatchDistFunc func; |
|
}; |
|
|
|
} |
|
|
|
void cv::batchDistance( InputArray _src1, InputArray _src2, |
|
OutputArray _dist, int dtype, OutputArray _nidx, |
|
int normType, int K, InputArray _mask, |
|
int update, bool crosscheck ) |
|
{ |
|
Mat src1 = _src1.getMat(), src2 = _src2.getMat(), mask = _mask.getMat(); |
|
int type = src1.type(); |
|
CV_Assert( type == src2.type() && src1.cols == src2.cols && |
|
(type == CV_32F || type == CV_8U)); |
|
CV_Assert( _nidx.needed() == (K > 0) ); |
|
|
|
if( dtype == -1 ) |
|
{ |
|
dtype = normType == NORM_HAMMING || normType == NORM_HAMMING2 ? CV_32S : CV_32F; |
|
} |
|
CV_Assert( (type == CV_8U && dtype == CV_32S) || dtype == CV_32F); |
|
|
|
K = std::min(K, src2.rows); |
|
|
|
_dist.create(src1.rows, (K > 0 ? K : src2.rows), dtype); |
|
Mat dist = _dist.getMat(), nidx; |
|
if( _nidx.needed() ) |
|
{ |
|
_nidx.create(dist.size(), CV_32S); |
|
nidx = _nidx.getMat(); |
|
} |
|
|
|
if( update == 0 && K > 0 ) |
|
{ |
|
dist = Scalar::all(dtype == CV_32S ? (double)INT_MAX : (double)FLT_MAX); |
|
nidx = Scalar::all(-1); |
|
} |
|
|
|
if( crosscheck ) |
|
{ |
|
CV_Assert( K == 1 && update == 0 && mask.empty() ); |
|
Mat tdist, tidx; |
|
batchDistance(src2, src1, tdist, dtype, tidx, normType, K, mask, 0, false); |
|
|
|
// if an idx-th element from src1 appeared to be the nearest to i-th element of src2, |
|
// we update the minimum mutual distance between idx-th element of src1 and the whole src2 set. |
|
// As a result, if nidx[idx] = i*, it means that idx-th element of src1 is the nearest |
|
// to i*-th element of src2 and i*-th element of src2 is the closest to idx-th element of src1. |
|
// If nidx[idx] = -1, it means that there is no such ideal couple for it in src2. |
|
// This O(N) procedure is called cross-check and it helps to eliminate some false matches. |
|
if( dtype == CV_32S ) |
|
{ |
|
for( int i = 0; i < tdist.rows; i++ ) |
|
{ |
|
int idx = tidx.at<int>(i); |
|
int d = tdist.at<int>(i), d0 = dist.at<int>(idx); |
|
if( d < d0 ) |
|
{ |
|
dist.at<int>(idx) = d; |
|
nidx.at<int>(idx) = i + update; |
|
} |
|
} |
|
} |
|
else |
|
{ |
|
for( int i = 0; i < tdist.rows; i++ ) |
|
{ |
|
int idx = tidx.at<int>(i); |
|
float d = tdist.at<float>(i), d0 = dist.at<float>(idx); |
|
if( d < d0 ) |
|
{ |
|
dist.at<float>(idx) = d; |
|
nidx.at<int>(idx) = i + update; |
|
} |
|
} |
|
} |
|
return; |
|
} |
|
|
|
BatchDistFunc func = 0; |
|
if( type == CV_8U ) |
|
{ |
|
if( normType == NORM_L1 && dtype == CV_32S ) |
|
func = (BatchDistFunc)batchDistL1_8u32s; |
|
else if( normType == NORM_L1 && dtype == CV_32F ) |
|
func = (BatchDistFunc)batchDistL1_8u32f; |
|
else if( normType == NORM_L2SQR && dtype == CV_32S ) |
|
func = (BatchDistFunc)batchDistL2Sqr_8u32s; |
|
else if( normType == NORM_L2SQR && dtype == CV_32F ) |
|
func = (BatchDistFunc)batchDistL2Sqr_8u32f; |
|
else if( normType == NORM_L2 && dtype == CV_32F ) |
|
func = (BatchDistFunc)batchDistL2_8u32f; |
|
else if( normType == NORM_HAMMING && dtype == CV_32S ) |
|
func = (BatchDistFunc)batchDistHamming; |
|
else if( normType == NORM_HAMMING2 && dtype == CV_32S ) |
|
func = (BatchDistFunc)batchDistHamming2; |
|
} |
|
else if( type == CV_32F && dtype == CV_32F ) |
|
{ |
|
if( normType == NORM_L1 ) |
|
func = (BatchDistFunc)batchDistL1_32f; |
|
else if( normType == NORM_L2SQR ) |
|
func = (BatchDistFunc)batchDistL2Sqr_32f; |
|
else if( normType == NORM_L2 ) |
|
func = (BatchDistFunc)batchDistL2_32f; |
|
} |
|
|
|
if( func == 0 ) |
|
CV_Error_(CV_StsUnsupportedFormat, |
|
("The combination of type=%d, dtype=%d and normType=%d is not supported", |
|
type, dtype, normType)); |
|
|
|
parallel_for(BlockedRange(0, src1.rows), |
|
BatchDistInvoker(src1, src2, dist, nidx, K, mask, update, func)); |
|
} |
|
|
|
|
|
void cv::findNonZero( InputArray _src, OutputArray _idx ) |
|
{ |
|
Mat src = _src.getMat(); |
|
CV_Assert( src.type() == CV_8UC1 ); |
|
int n = countNonZero(src); |
|
if( _idx.kind() == _InputArray::MAT && !_idx.getMatRef().isContinuous() ) |
|
_idx.release(); |
|
_idx.create(n, 1, CV_32SC2); |
|
Mat idx = _idx.getMat(); |
|
CV_Assert(idx.isContinuous()); |
|
Point* idx_ptr = (Point*)idx.data; |
|
|
|
for( int i = 0; i < src.rows; i++ ) |
|
{ |
|
const uchar* bin_ptr = src.ptr(i); |
|
for( int j = 0; j < src.cols; j++ ) |
|
if( bin_ptr[j] ) |
|
*idx_ptr++ = Point(j, i); |
|
} |
|
} |
|
|
|
|
|
CV_IMPL CvScalar cvSum( const CvArr* srcarr ) |
|
{ |
|
cv::Scalar sum = cv::sum(cv::cvarrToMat(srcarr, false, true, 1)); |
|
if( CV_IS_IMAGE(srcarr) ) |
|
{ |
|
int coi = cvGetImageCOI((IplImage*)srcarr); |
|
if( coi ) |
|
{ |
|
CV_Assert( 0 < coi && coi <= 4 ); |
|
sum = cv::Scalar(sum[coi-1]); |
|
} |
|
} |
|
return sum; |
|
} |
|
|
|
CV_IMPL int cvCountNonZero( const CvArr* imgarr ) |
|
{ |
|
cv::Mat img = cv::cvarrToMat(imgarr, false, true, 1); |
|
if( img.channels() > 1 ) |
|
cv::extractImageCOI(imgarr, img); |
|
return countNonZero(img); |
|
} |
|
|
|
|
|
CV_IMPL CvScalar |
|
cvAvg( const void* imgarr, const void* maskarr ) |
|
{ |
|
cv::Mat img = cv::cvarrToMat(imgarr, false, true, 1); |
|
cv::Scalar mean = !maskarr ? cv::mean(img) : cv::mean(img, cv::cvarrToMat(maskarr)); |
|
if( CV_IS_IMAGE(imgarr) ) |
|
{ |
|
int coi = cvGetImageCOI((IplImage*)imgarr); |
|
if( coi ) |
|
{ |
|
CV_Assert( 0 < coi && coi <= 4 ); |
|
mean = cv::Scalar(mean[coi-1]); |
|
} |
|
} |
|
return mean; |
|
} |
|
|
|
|
|
CV_IMPL void |
|
cvAvgSdv( const CvArr* imgarr, CvScalar* _mean, CvScalar* _sdv, const void* maskarr ) |
|
{ |
|
cv::Scalar mean, sdv; |
|
|
|
cv::Mat mask; |
|
if( maskarr ) |
|
mask = cv::cvarrToMat(maskarr); |
|
|
|
cv::meanStdDev(cv::cvarrToMat(imgarr, false, true, 1), mean, sdv, mask ); |
|
|
|
if( CV_IS_IMAGE(imgarr) ) |
|
{ |
|
int coi = cvGetImageCOI((IplImage*)imgarr); |
|
if( coi ) |
|
{ |
|
CV_Assert( 0 < coi && coi <= 4 ); |
|
mean = cv::Scalar(mean[coi-1]); |
|
sdv = cv::Scalar(sdv[coi-1]); |
|
} |
|
} |
|
|
|
if( _mean ) |
|
*(cv::Scalar*)_mean = mean; |
|
if( _sdv ) |
|
*(cv::Scalar*)_sdv = sdv; |
|
} |
|
|
|
|
|
CV_IMPL void |
|
cvMinMaxLoc( const void* imgarr, double* _minVal, double* _maxVal, |
|
CvPoint* _minLoc, CvPoint* _maxLoc, const void* maskarr ) |
|
{ |
|
cv::Mat mask, img = cv::cvarrToMat(imgarr, false, true, 1); |
|
if( maskarr ) |
|
mask = cv::cvarrToMat(maskarr); |
|
if( img.channels() > 1 ) |
|
cv::extractImageCOI(imgarr, img); |
|
|
|
cv::minMaxLoc( img, _minVal, _maxVal, |
|
(cv::Point*)_minLoc, (cv::Point*)_maxLoc, mask ); |
|
} |
|
|
|
|
|
CV_IMPL double |
|
cvNorm( const void* imgA, const void* imgB, int normType, const void* maskarr ) |
|
{ |
|
cv::Mat a, mask; |
|
if( !imgA ) |
|
{ |
|
imgA = imgB; |
|
imgB = 0; |
|
} |
|
|
|
a = cv::cvarrToMat(imgA, false, true, 1); |
|
if( maskarr ) |
|
mask = cv::cvarrToMat(maskarr); |
|
|
|
if( a.channels() > 1 && CV_IS_IMAGE(imgA) && cvGetImageCOI((const IplImage*)imgA) > 0 ) |
|
cv::extractImageCOI(imgA, a); |
|
|
|
if( !imgB ) |
|
return !maskarr ? cv::norm(a, normType) : cv::norm(a, normType, mask); |
|
|
|
cv::Mat b = cv::cvarrToMat(imgB, false, true, 1); |
|
if( b.channels() > 1 && CV_IS_IMAGE(imgB) && cvGetImageCOI((const IplImage*)imgB) > 0 ) |
|
cv::extractImageCOI(imgB, b); |
|
|
|
return !maskarr ? cv::norm(a, b, normType) : cv::norm(a, b, normType, mask); |
|
}
|
|
|