mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
264 lines
7.9 KiB
264 lines
7.9 KiB
/*M/////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// |
|
// License Agreement |
|
// For Open Source Computer Vision Library |
|
// |
|
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. |
|
// Copyright (C) 2009, Willow Garage Inc., all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
// |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistribution's of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistribution's in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other materials provided with the distribution. |
|
// |
|
// * The name of the copyright holders may not be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors "as is" and |
|
// any express or implied warranties, including, but not limited to, the implied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall the Intel Corporation or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
// |
|
//M*/ |
|
|
|
#include "test_precomp.hpp" |
|
|
|
#include <algorithm> |
|
#include <vector> |
|
#include <iostream> |
|
|
|
using namespace cv; |
|
using namespace cv::flann; |
|
|
|
//-------------------------------------------------------------------------------- |
|
class NearestNeighborTest : public cvtest::BaseTest |
|
{ |
|
public: |
|
NearestNeighborTest() {} |
|
protected: |
|
static const int minValue = 0; |
|
static const int maxValue = 1; |
|
static const int dims = 30; |
|
static const int featuresCount = 2000; |
|
static const int K = 1; // * should also test 2nd nn etc.? |
|
|
|
|
|
virtual void run( int start_from ); |
|
virtual void createModel( const Mat& data ) = 0; |
|
virtual int findNeighbors( Mat& points, Mat& neighbors ) = 0; |
|
virtual int checkGetPoins( const Mat& data ); |
|
virtual int checkFindBoxed(); |
|
virtual int checkFind( const Mat& data ); |
|
virtual void releaseModel() = 0; |
|
}; |
|
|
|
int NearestNeighborTest::checkGetPoins( const Mat& ) |
|
{ |
|
return cvtest::TS::OK; |
|
} |
|
|
|
int NearestNeighborTest::checkFindBoxed() |
|
{ |
|
return cvtest::TS::OK; |
|
} |
|
|
|
int NearestNeighborTest::checkFind( const Mat& data ) |
|
{ |
|
int code = cvtest::TS::OK; |
|
int pointsCount = 1000; |
|
float noise = 0.2f; |
|
|
|
RNG rng; |
|
Mat points( pointsCount, dims, CV_32FC1 ); |
|
Mat results( pointsCount, K, CV_32SC1 ); |
|
|
|
std::vector<int> fmap( pointsCount ); |
|
for( int pi = 0; pi < pointsCount; pi++ ) |
|
{ |
|
int fi = rng.next() % featuresCount; |
|
fmap[pi] = fi; |
|
for( int d = 0; d < dims; d++ ) |
|
points.at<float>(pi, d) = data.at<float>(fi, d) + rng.uniform(0.0f, 1.0f) * noise; |
|
} |
|
|
|
code = findNeighbors( points, results ); |
|
|
|
if( code == cvtest::TS::OK ) |
|
{ |
|
int correctMatches = 0; |
|
for( int pi = 0; pi < pointsCount; pi++ ) |
|
{ |
|
if( fmap[pi] == results.at<int>(pi, 0) ) |
|
correctMatches++; |
|
} |
|
|
|
double correctPerc = correctMatches / (double)pointsCount; |
|
if (correctPerc < .75) |
|
{ |
|
ts->printf( cvtest::TS::LOG, "correct_perc = %d\n", correctPerc ); |
|
code = cvtest::TS::FAIL_BAD_ACCURACY; |
|
} |
|
} |
|
|
|
return code; |
|
} |
|
|
|
void NearestNeighborTest::run( int /*start_from*/ ) { |
|
int code = cvtest::TS::OK, tempCode; |
|
Mat desc( featuresCount, dims, CV_32FC1 ); |
|
randu( desc, Scalar(minValue), Scalar(maxValue) ); |
|
|
|
createModel( desc ); |
|
|
|
tempCode = checkGetPoins( desc ); |
|
if( tempCode != cvtest::TS::OK ) |
|
{ |
|
ts->printf( cvtest::TS::LOG, "bad accuracy of GetPoints \n" ); |
|
code = tempCode; |
|
} |
|
|
|
tempCode = checkFindBoxed(); |
|
if( tempCode != cvtest::TS::OK ) |
|
{ |
|
ts->printf( cvtest::TS::LOG, "bad accuracy of FindBoxed \n" ); |
|
code = tempCode; |
|
} |
|
|
|
tempCode = checkFind( desc ); |
|
if( tempCode != cvtest::TS::OK ) |
|
{ |
|
ts->printf( cvtest::TS::LOG, "bad accuracy of Find \n" ); |
|
code = tempCode; |
|
} |
|
|
|
releaseModel(); |
|
|
|
ts->set_failed_test_info( code ); |
|
} |
|
|
|
//-------------------------------------------------------------------------------- |
|
class CV_LSHTest : public NearestNeighborTest |
|
{ |
|
public: |
|
CV_LSHTest() {} |
|
protected: |
|
virtual void createModel( const Mat& data ); |
|
virtual int findNeighbors( Mat& points, Mat& neighbors ); |
|
virtual void releaseModel(); |
|
struct CvLSH* lsh; |
|
CvMat desc; |
|
}; |
|
|
|
void CV_LSHTest::createModel( const Mat& data ) |
|
{ |
|
desc = data; |
|
lsh = cvCreateMemoryLSH( data.cols, data.rows, 70, 20, CV_32FC1 ); |
|
cvLSHAdd( lsh, &desc ); |
|
} |
|
|
|
int CV_LSHTest::findNeighbors( Mat& points, Mat& neighbors ) |
|
{ |
|
const int emax = 20; |
|
Mat dist( points.rows, neighbors.cols, CV_64FC1); |
|
CvMat _dist = dist, _points = points, _neighbors = neighbors; |
|
cvLSHQuery( lsh, &_points, &_neighbors, &_dist, neighbors.cols, emax ); |
|
return cvtest::TS::OK; |
|
} |
|
|
|
void CV_LSHTest::releaseModel() |
|
{ |
|
cvReleaseLSH( &lsh ); |
|
} |
|
|
|
//-------------------------------------------------------------------------------- |
|
class CV_FeatureTreeTest_C : public NearestNeighborTest |
|
{ |
|
public: |
|
CV_FeatureTreeTest_C() {} |
|
protected: |
|
virtual int findNeighbors( Mat& points, Mat& neighbors ); |
|
virtual void releaseModel(); |
|
CvFeatureTree* tr; |
|
CvMat desc; |
|
}; |
|
|
|
int CV_FeatureTreeTest_C::findNeighbors( Mat& points, Mat& neighbors ) |
|
{ |
|
const int emax = 20; |
|
Mat dist( points.rows, neighbors.cols, CV_64FC1); |
|
CvMat _dist = dist, _points = points, _neighbors = neighbors; |
|
cvFindFeatures( tr, &_points, &_neighbors, &_dist, neighbors.cols, emax ); |
|
return cvtest::TS::OK; |
|
} |
|
|
|
void CV_FeatureTreeTest_C::releaseModel() |
|
{ |
|
cvReleaseFeatureTree( tr ); |
|
} |
|
|
|
//-------------------------------------- |
|
class CV_SpillTreeTest_C : public CV_FeatureTreeTest_C |
|
{ |
|
public: |
|
CV_SpillTreeTest_C() {} |
|
protected: |
|
virtual void createModel( const Mat& data ); |
|
}; |
|
|
|
void CV_SpillTreeTest_C::createModel( const Mat& data ) |
|
{ |
|
desc = data; |
|
tr = cvCreateSpillTree( &desc ); |
|
} |
|
|
|
//-------------------------------------- |
|
class CV_KDTreeTest_C : public CV_FeatureTreeTest_C |
|
{ |
|
public: |
|
CV_KDTreeTest_C() {} |
|
protected: |
|
virtual void createModel( const Mat& data ); |
|
virtual int checkFindBoxed(); |
|
}; |
|
|
|
void CV_KDTreeTest_C::createModel( const Mat& data ) |
|
{ |
|
desc = data; |
|
tr = cvCreateKDTree( &desc ); |
|
} |
|
|
|
int CV_KDTreeTest_C::checkFindBoxed() |
|
{ |
|
Mat min(1, dims, CV_32FC1 ), max(1, dims, CV_32FC1 ), indices( 1, 1, CV_32SC1 ); |
|
float l = minValue, r = maxValue; |
|
min.setTo(Scalar(l)), max.setTo(Scalar(r)); |
|
CvMat _min = min, _max = max, _indices = indices; |
|
// TODO check indices |
|
if( cvFindFeaturesBoxed( tr, &_min, &_max, &_indices ) != featuresCount ) |
|
return cvtest::TS::FAIL_BAD_ACCURACY; |
|
return cvtest::TS::OK; |
|
} |
|
|
|
|
|
TEST(Features2d_LSH, regression) { CV_LSHTest test; test.safe_run(); } |
|
TEST(Features2d_SpillTree, regression) { CV_SpillTreeTest_C test; test.safe_run(); } |
|
TEST(Features2d_KDTree_C, regression) { CV_KDTreeTest_C test; test.safe_run(); }
|
|
|