Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
838 lines
32 KiB
838 lines
32 KiB
/********************************************************************* |
|
* Software License Agreement (BSD License) |
|
* |
|
* Copyright (c) 2009, Willow Garage, Inc. |
|
* All rights reserved. |
|
* |
|
* Redistribution and use in source and binary forms, with or without |
|
* modification, are permitted provided that the following conditions |
|
* are met: |
|
* |
|
* * Redistributions of source code must retain the above copyright |
|
* notice, this list of conditions and the following disclaimer. |
|
* * Redistributions in binary form must reproduce the above |
|
* copyright notice, this list of conditions and the following |
|
* disclaimer in the documentation and/or other materials provided |
|
* with the distribution. |
|
* * Neither the name of the Willow Garage nor the names of its |
|
* contributors may be used to endorse or promote products derived |
|
* from this software without specific prior written permission. |
|
* |
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS |
|
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE |
|
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, |
|
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, |
|
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
|
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER |
|
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN |
|
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
|
* POSSIBILITY OF SUCH DAMAGE. |
|
*********************************************************************/ |
|
|
|
/** Authors: Ethan Rublee, Vincent Rabaud, Gary Bradski */ |
|
|
|
#include "precomp.hpp" |
|
|
|
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// |
|
|
|
namespace |
|
{ |
|
|
|
/** Function that computes the Harris response in a 9 x 9 patch at a given point in an image |
|
* @param patch the 9 x 9 patch |
|
* @param k the k in the Harris formula |
|
* @param dX_offsets pre-computed offset to get all the interesting dX values |
|
* @param dY_offsets pre-computed offset to get all the interesting dY values |
|
* @return |
|
*/ |
|
template<typename PatchType, typename SumType> |
|
inline float harris(const cv::Mat& patch, float k, const std::vector<int> &dX_offsets, |
|
const std::vector<int> &dY_offsets) |
|
{ |
|
float a = 0, b = 0, c = 0; |
|
|
|
static cv::Mat_<SumType> dX(9, 7), dY(7, 9); |
|
SumType * dX_data = reinterpret_cast<SumType*> (dX.data), *dY_data = reinterpret_cast<SumType*> (dY.data); |
|
SumType * dX_data_end = dX_data + 9 * 7; |
|
PatchType * patch_data = reinterpret_cast<PatchType*> (patch.data); |
|
int two_row_offset = 2 * patch.step1(); |
|
std::vector<int>::const_iterator dX_offset = dX_offsets.begin(), dY_offset = dY_offsets.begin(); |
|
// Compute the differences |
|
for (; dX_data != dX_data_end; ++dX_data, ++dY_data, ++dX_offset, ++dY_offset) |
|
{ |
|
*dX_data = (SumType)(*(patch_data + *dX_offset)) - (SumType)(*(patch_data + *dX_offset - 2)); |
|
*dY_data = (SumType)(*(patch_data + *dY_offset)) - (SumType)(*(patch_data + *dY_offset - two_row_offset)); |
|
} |
|
|
|
// Compute the Scharr result |
|
dX_data = reinterpret_cast<SumType*> (dX.data); |
|
dY_data = reinterpret_cast<SumType*> (dY.data); |
|
for (size_t v = 0; v <= 6; v++, dY_data += 2) |
|
{ |
|
for (size_t u = 0; u <= 6; u++, ++dX_data, ++dY_data) |
|
{ |
|
// 1, 2 for Sobel, 3 and 10 for Scharr |
|
float Ix = (float)(1 * (*dX_data + *(dX_data + 14)) + 2 * (*(dX_data + 7))); |
|
float Iy = (float)(1 * (*dY_data + *(dY_data + 2)) + 2 * (*(dY_data + 1))); |
|
|
|
a += Ix * Ix; |
|
b += Iy * Iy; |
|
c += Ix * Iy; |
|
} |
|
} |
|
|
|
return ((a * b - c * c) - (k * ((a + b) * (a + b)))); |
|
} |
|
|
|
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// |
|
|
|
/** Class used to compute the cornerness of specific points in an image */ |
|
struct HarrisResponse |
|
{ |
|
/** Constructor |
|
* @param image the image on which the cornerness will be computed (only its step is used |
|
* @param k the k in the Harris formula |
|
*/ |
|
explicit HarrisResponse(const cv::Mat& image, double k = 0.04); |
|
|
|
/** Compute the cornerness for given keypoints |
|
* @param kpts points at which the cornerness is computed and stored |
|
*/ |
|
void operator()(std::vector<cv::KeyPoint>& kpts) const; |
|
private: |
|
/** The cached image to analyze */ |
|
cv::Mat image_; |
|
|
|
/** The k factor in the Harris corner detection */ |
|
double k_; |
|
|
|
/** The offset in X to compute the differences */ |
|
std::vector<int> dX_offsets_; |
|
|
|
/** The offset in Y to compute the differences */ |
|
std::vector<int> dY_offsets_; |
|
}; |
|
|
|
/** Constructor |
|
* @param image the image on which the cornerness will be computed (only its step is used |
|
* @param k the k in the Harris formula |
|
*/ |
|
HarrisResponse::HarrisResponse(const cv::Mat& image, double k) : |
|
image_(image), k_(k) |
|
{ |
|
// Compute the offsets for the Harris corners once and for all |
|
dX_offsets_.resize(7 * 9); |
|
dY_offsets_.resize(7 * 9); |
|
std::vector<int>::iterator dX_offsets = dX_offsets_.begin(), dY_offsets = dY_offsets_.begin(); |
|
unsigned int image_step = image.step1(); |
|
for (size_t y = 0; y <= 6 * image_step; y += image_step) |
|
{ |
|
int dX_offset = y + 2, dY_offset = y + 2 * image_step; |
|
for (size_t x = 0; x <= 6; ++x) |
|
{ |
|
*(dX_offsets++) = dX_offset++; |
|
*(dY_offsets++) = dY_offset++; |
|
} |
|
for (size_t x = 7; x <= 8; ++x) |
|
*(dY_offsets++) = dY_offset++; |
|
} |
|
|
|
for (size_t y = 7 * image_step; y <= 8 * image_step; y += image_step) |
|
{ |
|
int dX_offset = y + 2; |
|
for (size_t x = 0; x <= 6; ++x) |
|
*(dX_offsets++) = dX_offset++; |
|
} |
|
} |
|
|
|
/** Compute the cornerness for given keypoints |
|
* @param kpts points at which the cornerness is computed and stored |
|
*/ |
|
void HarrisResponse::operator()(std::vector<cv::KeyPoint>& kpts) const |
|
{ |
|
// Those parameters are used to match the OpenCV computation of Harris corners |
|
float scale = (1 << 2) * 7.0f * 255.0f; |
|
scale = 1.0f / scale; |
|
float scale_sq_sq = scale * scale * scale * scale; |
|
|
|
// define it to 1 if you want to compare to what OpenCV computes |
|
#define HARRIS_TEST 0 |
|
#if HARRIS_TEST |
|
cv::Mat_<float> dst; |
|
cv::cornerHarris(image_, dst, 7, 3, k_); |
|
#endif |
|
for (std::vector<cv::KeyPoint>::iterator kpt = kpts.begin(), kpt_end = kpts.end(); kpt != kpt_end; ++kpt) |
|
{ |
|
cv::Mat patch = image_(cv::Rect(cvRound(kpt->pt.x) - 4, cvRound(kpt->pt.y) - 4, 9, 9)); |
|
|
|
// Compute the response |
|
kpt->response = harris<uchar, int> (patch, (float)k_, dX_offsets_, dY_offsets_) * scale_sq_sq; |
|
|
|
#if HARRIS_TEST |
|
cv::Mat_<float> Ix(9, 9), Iy(9, 9); |
|
|
|
cv::Sobel(patch, Ix, CV_32F, 1, 0, 3, scale); |
|
cv::Sobel(patch, Iy, CV_32F, 0, 1, 3, scale); |
|
float a = 0, b = 0, c = 0; |
|
for (unsigned int y = 1; y <= 7; ++y) |
|
{ |
|
for (unsigned int x = 1; x <= 7; ++x) |
|
{ |
|
a += Ix(y, x) * Ix(y, x); |
|
b += Iy(y, x) * Iy(y, x); |
|
c += Ix(y, x) * Iy(y, x); |
|
} |
|
} |
|
//[ a c ] |
|
//[ c b ] |
|
float response = (float)((a * b - c * c) - k_ * ((a + b) * (a + b))); |
|
|
|
std::cout << kpt->response << " " << response << " " << dst(kpt->pt.y,kpt->pt.x) << std::endl; |
|
#endif |
|
} |
|
} |
|
|
|
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// |
|
|
|
inline bool keypointResponseGreater(const cv::KeyPoint& lhs, const cv::KeyPoint& rhs) |
|
{ |
|
return lhs.response > rhs.response; |
|
} |
|
|
|
struct KeypointResponseGreaterThanEqual |
|
{ |
|
KeypointResponseGreaterThanEqual(float value) : |
|
value(value) |
|
{ |
|
} |
|
inline bool operator()(const cv::KeyPoint& kpt) |
|
{ |
|
return kpt.response >= value; |
|
} |
|
float value; |
|
}; |
|
|
|
/** Simple function that returns the area in the rectangle x1<=x<=x2, y1<=y<=y2 given an integral image |
|
* @param integral_image |
|
* @param x1 |
|
* @param y1 |
|
* @param x2 |
|
* @param y2 |
|
* @return |
|
*/ |
|
template<typename SumType> |
|
inline SumType integral_rectangle(const SumType * val_ptr, std::vector<int>::const_iterator offset) |
|
{ |
|
return *(val_ptr + *offset) - *(val_ptr + *(offset + 1)) - *(val_ptr + *(offset + 2)) + *(val_ptr + *(offset + 3)); |
|
} |
|
|
|
template<typename SumType> |
|
void IC_Angle_Integral(const cv::Mat& integral_image, const int half_k, cv::KeyPoint& kpt, |
|
const std::vector<int> &horizontal_offsets, const std::vector<int> &vertical_offsets) |
|
{ |
|
SumType m_01 = 0, m_10 = 0; |
|
|
|
// Go line by line in the circular patch |
|
std::vector<int>::const_iterator horizontal_iterator = horizontal_offsets.begin(), vertical_iterator = |
|
vertical_offsets.begin(); |
|
const SumType* val_ptr = &(integral_image.at<SumType> (cvRound(kpt.pt.y), cvRound(kpt.pt.x))); |
|
for (int uv = 1; uv <= half_k; ++uv) |
|
{ |
|
// Do the horizontal lines |
|
m_01 += uv * (-integral_rectangle(val_ptr, horizontal_iterator) + integral_rectangle(val_ptr, |
|
horizontal_iterator + 4)); |
|
horizontal_iterator += 8; |
|
|
|
// Do the vertical lines |
|
m_10 += uv * (-integral_rectangle(val_ptr, vertical_iterator) |
|
+ integral_rectangle(val_ptr, vertical_iterator + 4)); |
|
vertical_iterator += 8; |
|
} |
|
|
|
float x = (float)m_10; |
|
float y = (float)m_01; |
|
kpt.angle = cv::fastAtan2(y, x); |
|
} |
|
|
|
template<typename PatchType, typename SumType> |
|
void IC_Angle(const cv::Mat& image, const int half_k, cv::KeyPoint& kpt, const std::vector<int> & u_max) |
|
{ |
|
SumType m_01 = 0, m_10 = 0/*, m_00 = 0*/; |
|
|
|
const PatchType* val_center_ptr_plus = &(image.at<PatchType> (cvRound(kpt.pt.y), cvRound(kpt.pt.x))), |
|
*val_center_ptr_minus; |
|
|
|
// Treat the center line differently, v=0 |
|
|
|
{ |
|
const PatchType* val = val_center_ptr_plus - half_k; |
|
for (int u = -half_k; u <= half_k; ++u, ++val) |
|
m_10 += u * (SumType)(*val); |
|
} |
|
|
|
// Go line by line in the circular patch |
|
val_center_ptr_minus = val_center_ptr_plus - image.step1(); |
|
val_center_ptr_plus += image.step1(); |
|
for (int v = 1; v <= half_k; ++v, val_center_ptr_plus += image.step1(), val_center_ptr_minus -= image.step1()) |
|
{ |
|
// The beginning of the two lines |
|
const PatchType* val_ptr_plus = val_center_ptr_plus - u_max[v]; |
|
const PatchType* val_ptr_minus = val_center_ptr_minus - u_max[v]; |
|
|
|
// Proceed over the two lines |
|
SumType v_sum = 0; |
|
for (int u = -u_max[v]; u <= u_max[v]; ++u, ++val_ptr_plus, ++val_ptr_minus) |
|
{ |
|
SumType val_plus = *val_ptr_plus, val_minus = *val_ptr_minus; |
|
v_sum += (val_plus - val_minus); |
|
m_10 += u * (val_plus + val_minus); |
|
} |
|
m_01 += v * v_sum; |
|
} |
|
|
|
float x = (float)m_10;// / float(m_00);// / m_00; |
|
float y = (float)m_01;// / float(m_00);// / m_00; |
|
kpt.angle = cv::fastAtan2(y, x); |
|
} |
|
|
|
inline int smoothedSum(const int *center, const int* int_diff) |
|
{ |
|
// Points in order 01 |
|
// 32 |
|
return *(center + int_diff[2]) - *(center + int_diff[3]) - *(center + int_diff[1]) + *(center + int_diff[0]); |
|
} |
|
|
|
inline uchar smoothed_comparison(const int * center, const int* diff, int l, int m) |
|
{ |
|
static const uchar score[] = {1 << 0, 1 << 1, 1 << 2, 1 << 3, 1 << 4, 1 << 5, 1 << 6, 1 << 7}; |
|
return (smoothedSum(center, diff + l) < smoothedSum(center, diff + l + 4)) ? score[m] : 0; |
|
} |
|
} |
|
|
|
namespace cv |
|
{ |
|
|
|
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// |
|
|
|
class ORB::OrbPatterns |
|
{ |
|
public: |
|
// We divide in 30 wedges |
|
static const int kNumAngles = 30; |
|
|
|
/** Constructor |
|
* Add +1 to the step as this is the step of the integral image, not image |
|
* @param sz |
|
* @param normalized_step |
|
* @return |
|
*/ |
|
OrbPatterns(int sz, unsigned int normalized_step_size) : |
|
normalized_step_(normalized_step_size) |
|
{ |
|
relative_patterns_.resize(kNumAngles); |
|
for (int i = 0; i < kNumAngles; i++) |
|
generateRelativePattern(i, sz, relative_patterns_[i]); |
|
} |
|
|
|
/** Generate the patterns and relative patterns |
|
* @param sz |
|
* @param normalized_step |
|
* @return |
|
*/ |
|
static std::vector<cv::Mat> generateRotatedPatterns() |
|
{ |
|
std::vector<cv::Mat> rotated_patterns(kNumAngles); |
|
cv::Mat_<cv::Vec2i> pattern = cv::Mat(512, 1, CV_32SC2, bit_pattern_31_); |
|
for (int i = 0; i < kNumAngles; i++) |
|
{ |
|
const cv::Mat rotation_matrix = getRotationMat(i); |
|
transform(pattern, rotated_patterns[i], rotation_matrix); |
|
// Make sure the pattern is now one channel, and 512*2 |
|
rotated_patterns[i] = rotated_patterns[i].reshape(1, 512); |
|
} |
|
return rotated_patterns; |
|
} |
|
|
|
/** Compute the brief pattern for a given keypoint |
|
* @param angle the orientation of the keypoint |
|
* @param sum the integral image |
|
* @param pt the keypoint |
|
* @param descriptor the descriptor |
|
*/ |
|
void compute(const cv::KeyPoint& kpt, const cv::Mat& sum, unsigned char * desc) const |
|
{ |
|
float angle = kpt.angle; |
|
|
|
// Compute the pointer to the center of the feature |
|
int img_y = (int)(kpt.pt.y + 0.5); |
|
int img_x = (int)(kpt.pt.x + 0.5); |
|
const int * center = reinterpret_cast<const int *> (sum.ptr(img_y)) + img_x; |
|
// Compute the pointer to the absolute pattern row |
|
const int * diff = relative_patterns_[angle2Wedge(angle)].ptr<int> (0); |
|
for (int i = 0, j = 0; i < 32; ++i, j += 64) |
|
{ |
|
desc[i] = smoothed_comparison(center, diff, j, 7) | smoothed_comparison(center, diff, j + 8, 6) |
|
| smoothed_comparison(center, diff, j + 16, 5) | smoothed_comparison(center, diff, j + 24, 4) |
|
| smoothed_comparison(center, diff, j + 32, 3) | smoothed_comparison(center, diff, j + 40, 2) |
|
| smoothed_comparison(center, diff, j + 48, 1) | smoothed_comparison(center, diff, j + 56, 0); |
|
} |
|
} |
|
|
|
/** Compare the currently used normalized step of the integral image to a new one |
|
* @param integral_image the integral we want to use the pattern on |
|
* @return true if the two steps are equal |
|
*/ |
|
bool compareNormalizedStep(const cv::Mat & integral_image) const |
|
{ |
|
return (normalized_step_ == integral_image.step1()); |
|
} |
|
|
|
/** Compare the currently used normalized step of the integral image to a new one |
|
* @param step_size the normalized step size to compare to |
|
* @return true if the two steps are equal |
|
*/ |
|
bool compareNormalizedStep(unsigned int normalized_step_size) const |
|
{ |
|
return (normalized_step_ == normalized_step_size); |
|
} |
|
|
|
private: |
|
static inline int angle2Wedge(float angle) |
|
{ |
|
static float scale = float(kNumAngles) / 360.0f; |
|
return std::min(int(std::floor(angle * scale)), kNumAngles - 1); |
|
} |
|
|
|
void generateRelativePattern(int angle_idx, int /*sz*/, cv::Mat & relative_pattern) |
|
{ |
|
// Create the relative pattern |
|
relative_pattern.create(512, 4, CV_32SC1); |
|
int * relative_pattern_data = reinterpret_cast<int*> (relative_pattern.data); |
|
// Get the original rotated pattern |
|
const int * pattern_data; |
|
//switch (sz) |
|
{ |
|
//default: |
|
pattern_data = reinterpret_cast<int*> (rotated_patterns_[angle_idx].data); |
|
//break; |
|
} |
|
|
|
int half_kernel = ORB::kKernelWidth / 2; |
|
for (unsigned int i = 0; i < 512; ++i) |
|
{ |
|
int center = *(pattern_data + 2 * i) + normalized_step_ * (*(pattern_data + 2 * i + 1)); |
|
// Points in order 01 |
|
// 32 |
|
// +1 is added for certain coordinates for the integral image |
|
*(relative_pattern_data++) = center - half_kernel - half_kernel * normalized_step_; |
|
*(relative_pattern_data++) = center + (half_kernel + 1) - half_kernel * normalized_step_; |
|
*(relative_pattern_data++) = center + (half_kernel + 1) + (half_kernel + 1) * normalized_step_; |
|
*(relative_pattern_data++) = center - half_kernel + (half_kernel + 1) * normalized_step_; |
|
} |
|
} |
|
|
|
static cv::Mat getRotationMat(int angle_idx) |
|
{ |
|
float a = float(float(angle_idx) / kNumAngles * CV_PI * 2); |
|
return (cv::Mat_<float>(2, 2) << cos(a), -sin(a), sin(a), cos(a)); |
|
} |
|
|
|
/** Contains the relative patterns (rotated ones in relative coordinates) |
|
*/ |
|
std::vector<cv::Mat_<int> > relative_patterns_; |
|
|
|
/** The step of the integral image |
|
*/ |
|
size_t normalized_step_; |
|
|
|
/** Pattern loaded from the include files |
|
*/ |
|
static std::vector<cv::Mat> rotated_patterns_; |
|
static int bit_pattern_31_[256 * 4]; //number of tests * 4 (x1,y1,x2,y2) |
|
|
|
}; |
|
|
|
std::vector<cv::Mat> ORB::OrbPatterns::rotated_patterns_ = OrbPatterns::generateRotatedPatterns(); |
|
|
|
//this is the definition for BIT_PATTERN |
|
#include "orb_pattern.hpp" |
|
|
|
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// |
|
|
|
/** Constructor |
|
* @param detector_params parameters to use |
|
*/ |
|
ORB::ORB(size_t n_features, const CommonParams & detector_params) : |
|
params_(detector_params), n_features_(n_features) |
|
{ |
|
// fill the extractors and descriptors for the corresponding scales |
|
float factor = 1.0 / params_.scale_factor_ / params_.scale_factor_; |
|
int n_desired_features_per_scale = cvRound(n_features / ((std::pow(factor, params_.n_levels_) - 1) / (factor - 1))); |
|
n_features_per_level_.resize(detector_params.n_levels_); |
|
for (unsigned int level = 0; level < detector_params.n_levels_; level++) |
|
{ |
|
n_features_per_level_[level] = n_desired_features_per_scale; |
|
n_desired_features_per_scale = cvRound(n_desired_features_per_scale * factor); |
|
} |
|
|
|
// Make sure we forget about what is too close to the boundary |
|
params_.edge_threshold_ = std::max(params_.edge_threshold_, params_.patch_size_ + kKernelWidth / 2 + 2); |
|
|
|
// pre-compute the end of a row in a circular patch |
|
half_patch_size_ = params_.patch_size_ / 2; |
|
u_max_.resize(half_patch_size_ + 1); |
|
for (int v = 0; v <= half_patch_size_ * sqrt(2.f) / 2 + 1; ++v) |
|
u_max_[v] = cvRound(sqrt(float(half_patch_size_ * half_patch_size_ - v * v))); |
|
|
|
// Make sure we are symmetric |
|
for (int v = half_patch_size_, v_0 = 0; v >= half_patch_size_ * sqrt(2.f) / 2; --v) |
|
{ |
|
while (u_max_[v_0] == u_max_[v_0 + 1]) |
|
++v_0; |
|
u_max_[v] = v_0; |
|
++v_0; |
|
} |
|
} |
|
|
|
/** returns the descriptor size in bytes */ |
|
int ORB::descriptorSize() const |
|
{ |
|
return kBytes; |
|
} |
|
|
|
/** Compute the ORB features and descriptors on an image |
|
* @param img the image to compute the features and descriptors on |
|
* @param mask the mask to apply |
|
* @param keypoints the resulting keypoints |
|
*/ |
|
void ORB::operator()(const cv::Mat &image, const cv::Mat &mask, std::vector<cv::KeyPoint> & keypoints) |
|
{ |
|
cv::Mat empty_descriptors; |
|
this->operator ()(image, mask, keypoints, empty_descriptors, true, false); |
|
} |
|
|
|
/** Compute the ORB features and descriptors on an image |
|
* @param img the image to compute the features and descriptors on |
|
* @param mask the mask to apply |
|
* @param keypoints the resulting keypoints |
|
* @param descriptors the resulting descriptors |
|
* @param useProvidedKeypoints if true, the keypoints are used as an input |
|
*/ |
|
void ORB::operator()(const cv::Mat &image, const cv::Mat &mask, std::vector<cv::KeyPoint> & keypoints, |
|
cv::Mat & descriptors, bool useProvidedKeypoints) |
|
{ |
|
this->operator ()(image, mask, keypoints, descriptors, !useProvidedKeypoints, true); |
|
} |
|
|
|
/** Compute the ORB features and descriptors on an image |
|
* @param img the image to compute the features and descriptors on |
|
* @param mask the mask to apply |
|
* @param keypoints the resulting keypoints |
|
* @param descriptors the resulting descriptors |
|
* @param do_keypoints if true, the keypoints are computed, otherwise used as an input |
|
* @param do_descriptors if true, also computes the descriptors |
|
*/ |
|
void ORB::operator()(const cv::Mat &image, const cv::Mat &mask, std::vector<cv::KeyPoint> & keypoints_in_out, |
|
cv::Mat & descriptors, bool do_keypoints, bool do_descriptors) |
|
{ |
|
if ((!do_keypoints) && (!do_descriptors)) |
|
return; |
|
|
|
if (do_descriptors) |
|
descriptors.release(); |
|
|
|
// Pre-compute the scale pyramids |
|
std::vector<cv::Mat> image_pyramid(params_.n_levels_), mask_pyramid(params_.n_levels_); |
|
for (unsigned int level = 0; level < params_.n_levels_; ++level) |
|
{ |
|
// Compute the resized image |
|
if (level != params_.first_level_) |
|
{ |
|
float scale = 1 / std::pow(params_.scale_factor_, float(level - params_.first_level_)); |
|
cv::resize(image, image_pyramid[level], cv::Size(), scale, scale, cv::INTER_AREA); |
|
if (!mask.empty()) |
|
cv::resize(mask, mask_pyramid[level], cv::Size(), scale, scale, cv::INTER_AREA); |
|
} |
|
else |
|
{ |
|
image_pyramid[level] = image; |
|
mask_pyramid[level] = mask; |
|
} |
|
} |
|
|
|
// Pre-compute the keypoints (we keep the best over all scales, so this has to be done beforehand |
|
std::vector < std::vector<cv::KeyPoint> > all_keypoints; |
|
if (do_keypoints) |
|
// Get keypoints, those will be far enough from the border that no check will be required for the descriptor |
|
computeKeyPoints(image_pyramid, mask_pyramid, all_keypoints); |
|
else |
|
{ |
|
// Remove keypoints very close to the border |
|
cv::KeyPointsFilter::runByImageBorder(keypoints_in_out, image.size(), params_.edge_threshold_); |
|
|
|
// Cluster the input keypoints depending on the level they were computed at |
|
all_keypoints.resize(params_.n_levels_); |
|
for (std::vector<cv::KeyPoint>::iterator keypoint = keypoints_in_out.begin(), keypoint_end = keypoints_in_out.end(); keypoint |
|
!= keypoint_end; ++keypoint) |
|
all_keypoints[keypoint->octave].push_back(*keypoint); |
|
} |
|
|
|
keypoints_in_out.clear(); |
|
for (unsigned int level = 0; level < params_.n_levels_; ++level) |
|
{ |
|
// Compute the resized image |
|
cv::Mat & working_mat = image_pyramid[level]; |
|
|
|
// Compute the integral image |
|
cv::Mat integral_image; |
|
if (do_descriptors) |
|
// if we don't do the descriptors (and therefore, we only do the keypoints, it is faster to not compute the |
|
// integral image |
|
computeIntegralImage(working_mat, level, integral_image); |
|
|
|
// Compute the features |
|
std::vector<cv::KeyPoint> & keypoints = all_keypoints[level]; |
|
if (do_keypoints) |
|
computeOrientation(working_mat, integral_image, level, keypoints); |
|
|
|
// Compute the descriptors |
|
cv::Mat desc; |
|
if (do_descriptors) |
|
computeDescriptors(working_mat, integral_image, level, keypoints, desc); |
|
|
|
// Copy to the output data |
|
if (level != params_.first_level_) |
|
{ |
|
float scale = std::pow(params_.scale_factor_, float(level - params_.first_level_)); |
|
for (std::vector<cv::KeyPoint>::iterator keypoint = keypoints.begin(), keypoint_end = keypoints.end(); keypoint |
|
!= keypoint_end; ++keypoint) |
|
keypoint->pt *= scale; |
|
} |
|
// And add the keypoints to the output |
|
keypoints_in_out.insert(keypoints_in_out.end(), keypoints.begin(), keypoints.end()); |
|
|
|
if (do_descriptors) |
|
{ |
|
if (descriptors.empty()) |
|
desc.copyTo(descriptors); |
|
else |
|
descriptors.push_back(desc); |
|
} |
|
} |
|
} |
|
|
|
//takes keypoints and culls them by the response |
|
inline void cull(std::vector<cv::KeyPoint>& keypoints, size_t n_points) |
|
{ |
|
//this is only necessary if the keypoints size is greater than the number of desired points. |
|
if (keypoints.size() > n_points) |
|
{ |
|
//first use nth element to partition the keypoints into the best and worst. |
|
std::nth_element(keypoints.begin(), keypoints.begin() + n_points, keypoints.end(), keypointResponseGreater); |
|
//this is the boundary response, and in the case of FAST may be ambigous |
|
float ambiguous_response = keypoints[n_points - 1].response; |
|
//use std::partition to grab all of the keypoints with the boundary response. |
|
std::vector<cv::KeyPoint>::const_iterator new_end = |
|
std::partition(keypoints.begin() + n_points, keypoints.end(), |
|
KeypointResponseGreaterThanEqual(ambiguous_response)); |
|
//resize the keypoints, given this new end point. nth_element and partition reordered the points inplace |
|
keypoints.resize(new_end - keypoints.begin()); |
|
} |
|
} |
|
|
|
/** Compute the ORB keypoints on an image |
|
* @param image_pyramid the image pyramid to compute the features and descriptors on |
|
* @param mask_pyramid the masks to apply at every level |
|
* @param keypoints the resulting keypoints, clustered per level |
|
*/ |
|
void ORB::computeKeyPoints(const std::vector<cv::Mat>& image_pyramid, const std::vector<cv::Mat>& mask_pyramid, |
|
std::vector<std::vector<cv::KeyPoint> >& all_keypoints_out) const |
|
{ |
|
all_keypoints_out.resize(params_.n_levels_); |
|
|
|
std::vector<cv::KeyPoint> all_keypoints; |
|
all_keypoints.reserve(2 * n_features_); |
|
|
|
// half_patch_size_ for orientation, 4 for Harris |
|
unsigned int edge_threshold = std::max(std::max(half_patch_size_, 4), params_.edge_threshold_); |
|
|
|
for (unsigned int level = 0; level < params_.n_levels_; ++level) |
|
{ |
|
all_keypoints_out[level].reserve(n_features_per_level_[level]); |
|
|
|
std::vector<cv::KeyPoint> keypoints; |
|
|
|
// Detect FAST features, 20 is a good threshold |
|
cv::FastFeatureDetector fd(20, true); |
|
fd.detect(image_pyramid[level], keypoints, mask_pyramid[level]); |
|
|
|
// Remove keypoints very close to the border |
|
cv::KeyPointsFilter::runByImageBorder(keypoints, image_pyramid[level].size(), edge_threshold); |
|
|
|
// Keep more points than necessary as FAST does not give amazing corners |
|
cull(keypoints, 2 * n_features_per_level_[level]); |
|
|
|
// Compute the Harris cornerness (better scoring than FAST) |
|
HarrisResponse h(image_pyramid[level]); |
|
h(keypoints); |
|
//cull to the final desired level, using the new harris scores. |
|
cull(keypoints, n_features_per_level_[level]); |
|
|
|
// Set the level of the coordinates |
|
for (std::vector<cv::KeyPoint>::iterator keypoint = keypoints.begin(), keypoint_end = keypoints.end(); keypoint |
|
!= keypoint_end; ++keypoint) |
|
keypoint->octave = level; |
|
|
|
all_keypoints.insert(all_keypoints.end(), keypoints.begin(), keypoints.end()); |
|
} |
|
|
|
// Cluster the keypoints |
|
for (std::vector<cv::KeyPoint>::iterator keypoint = all_keypoints.begin(), keypoint_end = all_keypoints.end(); keypoint |
|
!= keypoint_end; ++keypoint) |
|
all_keypoints_out[keypoint->octave].push_back(*keypoint); |
|
} |
|
|
|
/** Compute the ORB keypoint orientations |
|
* @param image the image to compute the features and descriptors on |
|
* @param integral_image the integral image of the iamge (can be empty, but the computation will be slower) |
|
* @param scale the scale at which we compute the orientation |
|
* @param keypoints the resulting keypoints |
|
*/ |
|
void ORB::computeOrientation(const cv::Mat& image, const cv::Mat& integral_image, unsigned int scale, |
|
std::vector<cv::KeyPoint>& keypoints) const |
|
{ |
|
// If using the integral image, some offsets will be pre-computed for speed |
|
std::vector<int> horizontal_offsets(8 * half_patch_size_), vertical_offsets(8 * half_patch_size_); |
|
|
|
// Process each keypoint |
|
for (std::vector<cv::KeyPoint>::iterator keypoint = keypoints.begin(), keypoint_end = keypoints.end(); keypoint |
|
!= keypoint_end; ++keypoint) |
|
{ |
|
//get a patch at the keypoint |
|
if (integral_image.empty()) |
|
{ |
|
switch (image.depth()) |
|
{ |
|
case CV_8U: |
|
IC_Angle<uchar, int> (image, half_patch_size_, *keypoint, u_max_); |
|
break; |
|
case CV_32S: |
|
IC_Angle<int, int> (image, half_patch_size_, *keypoint, u_max_); |
|
break; |
|
case CV_32F: |
|
IC_Angle<float, float> (image, half_patch_size_, *keypoint, u_max_); |
|
break; |
|
case CV_64F: |
|
IC_Angle<double, double> (image, half_patch_size_, *keypoint, u_max_); |
|
break; |
|
} |
|
} |
|
else |
|
{ |
|
// use the integral image if you can |
|
switch (integral_image.depth()) |
|
{ |
|
case CV_32S: |
|
IC_Angle_Integral<int> (integral_image, half_patch_size_, *keypoint, orientation_horizontal_offsets_[scale], |
|
orientation_vertical_offsets_[scale]); |
|
break; |
|
case CV_32F: |
|
IC_Angle_Integral<float> (integral_image, half_patch_size_, *keypoint, |
|
orientation_horizontal_offsets_[scale], orientation_vertical_offsets_[scale]); |
|
break; |
|
case CV_64F: |
|
IC_Angle_Integral<double> (integral_image, half_patch_size_, *keypoint, |
|
orientation_horizontal_offsets_[scale], orientation_vertical_offsets_[scale]); |
|
break; |
|
} |
|
} |
|
} |
|
} |
|
|
|
/** Compute the integral image and upadte the cached values |
|
* @param image the image to compute the features and descriptors on |
|
* @param level the scale at which we compute the orientation |
|
* @param descriptors the resulting descriptors |
|
*/ |
|
void ORB::computeIntegralImage(const cv::Mat & image, unsigned int level, cv::Mat &integral_image) |
|
{ |
|
integral(image, integral_image, CV_32S); |
|
integral_image_steps_.resize(params_.n_levels_, 0); |
|
|
|
if (integral_image_steps_[level] == integral_image.step1()) |
|
return; |
|
|
|
// If the integral image dimensions have changed, recompute everything |
|
int integral_image_step = integral_image.step1(); |
|
|
|
// Cache the step sizes |
|
integral_image_steps_[level] = integral_image_step; |
|
|
|
// Cache the offsets for the orientation |
|
orientation_horizontal_offsets_.resize(params_.n_levels_); |
|
orientation_vertical_offsets_.resize(params_.n_levels_); |
|
orientation_horizontal_offsets_[level].resize(8 * half_patch_size_); |
|
orientation_vertical_offsets_[level].resize(8 * half_patch_size_); |
|
for (int v = 1, offset_index = 0; v <= half_patch_size_; ++v) |
|
{ |
|
// Compute the offsets to use if using the integral image |
|
for (int signed_v = -v; signed_v <= v; signed_v += 2 * v) |
|
{ |
|
// the offsets are computed so that we can compute the integral image |
|
// elem at 0 - eleme at 1 - elem at 2 + elem at 3 |
|
orientation_horizontal_offsets_[level][offset_index] = (signed_v + 1) * integral_image_step + u_max_[v] + 1; |
|
orientation_vertical_offsets_[level][offset_index] = (u_max_[v] + 1) * integral_image_step + signed_v + 1; |
|
++offset_index; |
|
orientation_horizontal_offsets_[level][offset_index] = signed_v * integral_image_step + u_max_[v] + 1; |
|
orientation_vertical_offsets_[level][offset_index] = -u_max_[v] * integral_image_step + signed_v + 1; |
|
++offset_index; |
|
orientation_horizontal_offsets_[level][offset_index] = (signed_v + 1) * integral_image_step - u_max_[v]; |
|
orientation_vertical_offsets_[level][offset_index] = (u_max_[v] + 1) * integral_image_step + signed_v; |
|
++offset_index; |
|
orientation_horizontal_offsets_[level][offset_index] = signed_v * integral_image_step - u_max_[v]; |
|
orientation_vertical_offsets_[level][offset_index] = -u_max_[v] * integral_image_step + signed_v; |
|
++offset_index; |
|
} |
|
} |
|
|
|
// Remove the previous version if dimensions are different |
|
patterns_.resize(params_.n_levels_, 0); |
|
if ((patterns_[level]) && (patterns_[level]->compareNormalizedStep(integral_image))) |
|
{ |
|
delete patterns_[level]; |
|
patterns_[level] = 0; |
|
} |
|
if (!patterns_[level]) |
|
patterns_[level] = new OrbPatterns(params_.patch_size_, integral_image.step1()); |
|
} |
|
|
|
/** Compute the ORB decriptors |
|
* @param image the image to compute the features and descriptors on |
|
* @param integral_image the integral image of the image (can be empty, but the computation will be slower) |
|
* @param level the scale at which we compute the orientation |
|
* @param keypoints the keypoints to use |
|
* @param descriptors the resulting descriptors |
|
*/ |
|
void ORB::computeDescriptors(const cv::Mat& image, const cv::Mat& integral_image, unsigned int level, |
|
std::vector<cv::KeyPoint>& keypoints, cv::Mat & descriptors) const |
|
{ |
|
//convert to grayscale if more than one color |
|
cv::Mat gray_image = image; |
|
if (image.type() != CV_8UC1) |
|
cv::cvtColor(image, gray_image, CV_BGR2GRAY); |
|
|
|
// Get the patterns to apply |
|
OrbPatterns* patterns = patterns_[level]; |
|
|
|
//create the descriptor mat, keypoints.size() rows, BYTES cols |
|
descriptors = cv::Mat::zeros(keypoints.size(), kBytes, CV_8UC1); |
|
|
|
for (size_t i = 0; i < keypoints.size(); i++) |
|
// look up the test pattern |
|
patterns->compute(keypoints[i], integral_image, descriptors.ptr(i)); |
|
} |
|
|
|
}
|
|
|