mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
979 lines
29 KiB
979 lines
29 KiB
// Copyright 2011 Google Inc. All Rights Reserved. |
|
// |
|
// Use of this source code is governed by a BSD-style license |
|
// that can be found in the COPYING file in the root of the source |
|
// tree. An additional intellectual property rights grant can be found |
|
// in the file PATENTS. All contributing project authors may |
|
// be found in the AUTHORS file in the root of the source tree. |
|
// ----------------------------------------------------------------------------- |
|
// |
|
// frame coding and analysis |
|
// |
|
// Author: Skal (pascal.massimino@gmail.com) |
|
|
|
#include <assert.h> |
|
#include <stdlib.h> |
|
#include <string.h> |
|
#include <math.h> |
|
|
|
#include "./vp8enci.h" |
|
#include "./cost.h" |
|
|
|
#if defined(__cplusplus) || defined(c_plusplus) |
|
extern "C" { |
|
#endif |
|
|
|
#define SEGMENT_VISU 0 |
|
#define DEBUG_SEARCH 0 // useful to track search convergence |
|
|
|
// On-the-fly info about the current set of residuals. Handy to avoid |
|
// passing zillions of params. |
|
typedef struct { |
|
int first; |
|
int last; |
|
const int16_t* coeffs; |
|
|
|
int coeff_type; |
|
ProbaArray* prob; |
|
StatsArray* stats; |
|
CostArray* cost; |
|
} VP8Residual; |
|
|
|
//------------------------------------------------------------------------------ |
|
// Tables for level coding |
|
|
|
const uint8_t VP8EncBands[16 + 1] = { |
|
0, 1, 2, 3, 6, 4, 5, 6, 6, 6, 6, 6, 6, 6, 6, 7, |
|
0 // sentinel |
|
}; |
|
|
|
const uint8_t VP8Cat3[] = { 173, 148, 140 }; |
|
const uint8_t VP8Cat4[] = { 176, 155, 140, 135 }; |
|
const uint8_t VP8Cat5[] = { 180, 157, 141, 134, 130 }; |
|
const uint8_t VP8Cat6[] = |
|
{ 254, 254, 243, 230, 196, 177, 153, 140, 133, 130, 129 }; |
|
|
|
//------------------------------------------------------------------------------ |
|
// Reset the statistics about: number of skips, token proba, level cost,... |
|
|
|
static void ResetStats(VP8Encoder* const enc) { |
|
VP8Proba* const proba = &enc->proba_; |
|
VP8CalculateLevelCosts(proba); |
|
proba->nb_skip_ = 0; |
|
} |
|
|
|
//------------------------------------------------------------------------------ |
|
// Skip decision probability |
|
|
|
#define SKIP_PROBA_THRESHOLD 250 // value below which using skip_proba is OK. |
|
|
|
static int CalcSkipProba(uint64_t nb, uint64_t total) { |
|
return (int)(total ? (total - nb) * 255 / total : 255); |
|
} |
|
|
|
// Returns the bit-cost for coding the skip probability. |
|
static int FinalizeSkipProba(VP8Encoder* const enc) { |
|
VP8Proba* const proba = &enc->proba_; |
|
const int nb_mbs = enc->mb_w_ * enc->mb_h_; |
|
const int nb_events = proba->nb_skip_; |
|
int size; |
|
proba->skip_proba_ = CalcSkipProba(nb_events, nb_mbs); |
|
proba->use_skip_proba_ = (proba->skip_proba_ < SKIP_PROBA_THRESHOLD); |
|
size = 256; // 'use_skip_proba' bit |
|
if (proba->use_skip_proba_) { |
|
size += nb_events * VP8BitCost(1, proba->skip_proba_) |
|
+ (nb_mbs - nb_events) * VP8BitCost(0, proba->skip_proba_); |
|
size += 8 * 256; // cost of signaling the skip_proba_ itself. |
|
} |
|
return size; |
|
} |
|
|
|
//------------------------------------------------------------------------------ |
|
// Recording of token probabilities. |
|
|
|
static void ResetTokenStats(VP8Encoder* const enc) { |
|
VP8Proba* const proba = &enc->proba_; |
|
memset(proba->stats_, 0, sizeof(proba->stats_)); |
|
} |
|
|
|
// Record proba context used |
|
static int Record(int bit, proba_t* const stats) { |
|
proba_t p = *stats; |
|
if (p >= 0xffff0000u) { // an overflow is inbound. |
|
p = ((p + 1u) >> 1) & 0x7fff7fffu; // -> divide the stats by 2. |
|
} |
|
// record bit count (lower 16 bits) and increment total count (upper 16 bits). |
|
p += 0x00010000u + bit; |
|
*stats = p; |
|
return bit; |
|
} |
|
|
|
// We keep the table free variant around for reference, in case. |
|
#define USE_LEVEL_CODE_TABLE |
|
|
|
// Simulate block coding, but only record statistics. |
|
// Note: no need to record the fixed probas. |
|
static int RecordCoeffs(int ctx, const VP8Residual* const res) { |
|
int n = res->first; |
|
// should be stats[VP8EncBands[n]], but it's equivalent for n=0 or 1 |
|
proba_t* s = res->stats[n][ctx]; |
|
if (res->last < 0) { |
|
Record(0, s + 0); |
|
return 0; |
|
} |
|
while (n <= res->last) { |
|
int v; |
|
Record(1, s + 0); // order of record doesn't matter |
|
while ((v = res->coeffs[n++]) == 0) { |
|
Record(0, s + 1); |
|
s = res->stats[VP8EncBands[n]][0]; |
|
} |
|
Record(1, s + 1); |
|
if (!Record(2u < (unsigned int)(v + 1), s + 2)) { // v = -1 or 1 |
|
s = res->stats[VP8EncBands[n]][1]; |
|
} else { |
|
v = abs(v); |
|
#if !defined(USE_LEVEL_CODE_TABLE) |
|
if (!Record(v > 4, s + 3)) { |
|
if (Record(v != 2, s + 4)) |
|
Record(v == 4, s + 5); |
|
} else if (!Record(v > 10, s + 6)) { |
|
Record(v > 6, s + 7); |
|
} else if (!Record((v >= 3 + (8 << 2)), s + 8)) { |
|
Record((v >= 3 + (8 << 1)), s + 9); |
|
} else { |
|
Record((v >= 3 + (8 << 3)), s + 10); |
|
} |
|
#else |
|
if (v > MAX_VARIABLE_LEVEL) |
|
v = MAX_VARIABLE_LEVEL; |
|
|
|
{ |
|
const int bits = VP8LevelCodes[v - 1][1]; |
|
int pattern = VP8LevelCodes[v - 1][0]; |
|
int i; |
|
for (i = 0; (pattern >>= 1) != 0; ++i) { |
|
const int mask = 2 << i; |
|
if (pattern & 1) Record(!!(bits & mask), s + 3 + i); |
|
} |
|
} |
|
#endif |
|
s = res->stats[VP8EncBands[n]][2]; |
|
} |
|
} |
|
if (n < 16) Record(0, s + 0); |
|
return 1; |
|
} |
|
|
|
// Collect statistics and deduce probabilities for next coding pass. |
|
// Return the total bit-cost for coding the probability updates. |
|
static int CalcTokenProba(int nb, int total) { |
|
assert(nb <= total); |
|
return nb ? (255 - nb * 255 / total) : 255; |
|
} |
|
|
|
// Cost of coding 'nb' 1's and 'total-nb' 0's using 'proba' probability. |
|
static int BranchCost(int nb, int total, int proba) { |
|
return nb * VP8BitCost(1, proba) + (total - nb) * VP8BitCost(0, proba); |
|
} |
|
|
|
static int FinalizeTokenProbas(VP8Proba* const proba) { |
|
int has_changed = 0; |
|
int size = 0; |
|
int t, b, c, p; |
|
for (t = 0; t < NUM_TYPES; ++t) { |
|
for (b = 0; b < NUM_BANDS; ++b) { |
|
for (c = 0; c < NUM_CTX; ++c) { |
|
for (p = 0; p < NUM_PROBAS; ++p) { |
|
const proba_t stats = proba->stats_[t][b][c][p]; |
|
const int nb = (stats >> 0) & 0xffff; |
|
const int total = (stats >> 16) & 0xffff; |
|
const int update_proba = VP8CoeffsUpdateProba[t][b][c][p]; |
|
const int old_p = VP8CoeffsProba0[t][b][c][p]; |
|
const int new_p = CalcTokenProba(nb, total); |
|
const int old_cost = BranchCost(nb, total, old_p) |
|
+ VP8BitCost(0, update_proba); |
|
const int new_cost = BranchCost(nb, total, new_p) |
|
+ VP8BitCost(1, update_proba) |
|
+ 8 * 256; |
|
const int use_new_p = (old_cost > new_cost); |
|
size += VP8BitCost(use_new_p, update_proba); |
|
if (use_new_p) { // only use proba that seem meaningful enough. |
|
proba->coeffs_[t][b][c][p] = new_p; |
|
has_changed |= (new_p != old_p); |
|
size += 8 * 256; |
|
} else { |
|
proba->coeffs_[t][b][c][p] = old_p; |
|
} |
|
} |
|
} |
|
} |
|
} |
|
proba->dirty_ = has_changed; |
|
return size; |
|
} |
|
|
|
//------------------------------------------------------------------------------ |
|
// Finalize Segment probability based on the coding tree |
|
|
|
static int GetProba(int a, int b) { |
|
const int total = a + b; |
|
return (total == 0) ? 255 // that's the default probability. |
|
: (255 * a + total / 2) / total; // rounded proba |
|
} |
|
|
|
static void SetSegmentProbas(VP8Encoder* const enc) { |
|
int p[NUM_MB_SEGMENTS] = { 0 }; |
|
int n; |
|
|
|
for (n = 0; n < enc->mb_w_ * enc->mb_h_; ++n) { |
|
const VP8MBInfo* const mb = &enc->mb_info_[n]; |
|
p[mb->segment_]++; |
|
} |
|
if (enc->pic_->stats != NULL) { |
|
for (n = 0; n < NUM_MB_SEGMENTS; ++n) { |
|
enc->pic_->stats->segment_size[n] = p[n]; |
|
} |
|
} |
|
if (enc->segment_hdr_.num_segments_ > 1) { |
|
uint8_t* const probas = enc->proba_.segments_; |
|
probas[0] = GetProba(p[0] + p[1], p[2] + p[3]); |
|
probas[1] = GetProba(p[0], p[1]); |
|
probas[2] = GetProba(p[2], p[3]); |
|
|
|
enc->segment_hdr_.update_map_ = |
|
(probas[0] != 255) || (probas[1] != 255) || (probas[2] != 255); |
|
enc->segment_hdr_.size_ = |
|
p[0] * (VP8BitCost(0, probas[0]) + VP8BitCost(0, probas[1])) + |
|
p[1] * (VP8BitCost(0, probas[0]) + VP8BitCost(1, probas[1])) + |
|
p[2] * (VP8BitCost(1, probas[0]) + VP8BitCost(0, probas[2])) + |
|
p[3] * (VP8BitCost(1, probas[0]) + VP8BitCost(1, probas[2])); |
|
} else { |
|
enc->segment_hdr_.update_map_ = 0; |
|
enc->segment_hdr_.size_ = 0; |
|
} |
|
} |
|
|
|
//------------------------------------------------------------------------------ |
|
// helper functions for residuals struct VP8Residual. |
|
|
|
static void InitResidual(int first, int coeff_type, |
|
VP8Encoder* const enc, VP8Residual* const res) { |
|
res->coeff_type = coeff_type; |
|
res->prob = enc->proba_.coeffs_[coeff_type]; |
|
res->stats = enc->proba_.stats_[coeff_type]; |
|
res->cost = enc->proba_.level_cost_[coeff_type]; |
|
res->first = first; |
|
} |
|
|
|
static void SetResidualCoeffs(const int16_t* const coeffs, |
|
VP8Residual* const res) { |
|
int n; |
|
res->last = -1; |
|
for (n = 15; n >= res->first; --n) { |
|
if (coeffs[n]) { |
|
res->last = n; |
|
break; |
|
} |
|
} |
|
res->coeffs = coeffs; |
|
} |
|
|
|
//------------------------------------------------------------------------------ |
|
// Mode costs |
|
|
|
static int GetResidualCost(int ctx0, const VP8Residual* const res) { |
|
int n = res->first; |
|
// should be prob[VP8EncBands[n]], but it's equivalent for n=0 or 1 |
|
int p0 = res->prob[n][ctx0][0]; |
|
const uint16_t* t = res->cost[n][ctx0]; |
|
int cost; |
|
|
|
if (res->last < 0) { |
|
return VP8BitCost(0, p0); |
|
} |
|
cost = 0; |
|
while (n < res->last) { |
|
int v = res->coeffs[n]; |
|
const int b = VP8EncBands[n + 1]; |
|
++n; |
|
if (v == 0) { |
|
// short-case for VP8LevelCost(t, 0) (note: VP8LevelFixedCosts[0] == 0): |
|
cost += t[0]; |
|
t = res->cost[b][0]; |
|
continue; |
|
} |
|
v = abs(v); |
|
cost += VP8BitCost(1, p0); |
|
cost += VP8LevelCost(t, v); |
|
{ |
|
const int ctx = (v == 1) ? 1 : 2; |
|
p0 = res->prob[b][ctx][0]; |
|
t = res->cost[b][ctx]; |
|
} |
|
} |
|
// Last coefficient is always non-zero |
|
{ |
|
const int v = abs(res->coeffs[n]); |
|
assert(v != 0); |
|
cost += VP8BitCost(1, p0); |
|
cost += VP8LevelCost(t, v); |
|
if (n < 15) { |
|
const int b = VP8EncBands[n + 1]; |
|
const int ctx = (v == 1) ? 1 : 2; |
|
const int last_p0 = res->prob[b][ctx][0]; |
|
cost += VP8BitCost(0, last_p0); |
|
} |
|
} |
|
return cost; |
|
} |
|
|
|
int VP8GetCostLuma4(VP8EncIterator* const it, const int16_t levels[16]) { |
|
const int x = (it->i4_ & 3), y = (it->i4_ >> 2); |
|
VP8Residual res; |
|
VP8Encoder* const enc = it->enc_; |
|
int R = 0; |
|
int ctx; |
|
|
|
InitResidual(0, 3, enc, &res); |
|
ctx = it->top_nz_[x] + it->left_nz_[y]; |
|
SetResidualCoeffs(levels, &res); |
|
R += GetResidualCost(ctx, &res); |
|
return R; |
|
} |
|
|
|
int VP8GetCostLuma16(VP8EncIterator* const it, const VP8ModeScore* const rd) { |
|
VP8Residual res; |
|
VP8Encoder* const enc = it->enc_; |
|
int x, y; |
|
int R = 0; |
|
|
|
VP8IteratorNzToBytes(it); // re-import the non-zero context |
|
|
|
// DC |
|
InitResidual(0, 1, enc, &res); |
|
SetResidualCoeffs(rd->y_dc_levels, &res); |
|
R += GetResidualCost(it->top_nz_[8] + it->left_nz_[8], &res); |
|
|
|
// AC |
|
InitResidual(1, 0, enc, &res); |
|
for (y = 0; y < 4; ++y) { |
|
for (x = 0; x < 4; ++x) { |
|
const int ctx = it->top_nz_[x] + it->left_nz_[y]; |
|
SetResidualCoeffs(rd->y_ac_levels[x + y * 4], &res); |
|
R += GetResidualCost(ctx, &res); |
|
it->top_nz_[x] = it->left_nz_[y] = (res.last >= 0); |
|
} |
|
} |
|
return R; |
|
} |
|
|
|
int VP8GetCostUV(VP8EncIterator* const it, const VP8ModeScore* const rd) { |
|
VP8Residual res; |
|
VP8Encoder* const enc = it->enc_; |
|
int ch, x, y; |
|
int R = 0; |
|
|
|
VP8IteratorNzToBytes(it); // re-import the non-zero context |
|
|
|
InitResidual(0, 2, enc, &res); |
|
for (ch = 0; ch <= 2; ch += 2) { |
|
for (y = 0; y < 2; ++y) { |
|
for (x = 0; x < 2; ++x) { |
|
const int ctx = it->top_nz_[4 + ch + x] + it->left_nz_[4 + ch + y]; |
|
SetResidualCoeffs(rd->uv_levels[ch * 2 + x + y * 2], &res); |
|
R += GetResidualCost(ctx, &res); |
|
it->top_nz_[4 + ch + x] = it->left_nz_[4 + ch + y] = (res.last >= 0); |
|
} |
|
} |
|
} |
|
return R; |
|
} |
|
|
|
//------------------------------------------------------------------------------ |
|
// Coefficient coding |
|
|
|
static int PutCoeffs(VP8BitWriter* const bw, int ctx, const VP8Residual* res) { |
|
int n = res->first; |
|
// should be prob[VP8EncBands[n]], but it's equivalent for n=0 or 1 |
|
const uint8_t* p = res->prob[n][ctx]; |
|
if (!VP8PutBit(bw, res->last >= 0, p[0])) { |
|
return 0; |
|
} |
|
|
|
while (n < 16) { |
|
const int c = res->coeffs[n++]; |
|
const int sign = c < 0; |
|
int v = sign ? -c : c; |
|
if (!VP8PutBit(bw, v != 0, p[1])) { |
|
p = res->prob[VP8EncBands[n]][0]; |
|
continue; |
|
} |
|
if (!VP8PutBit(bw, v > 1, p[2])) { |
|
p = res->prob[VP8EncBands[n]][1]; |
|
} else { |
|
if (!VP8PutBit(bw, v > 4, p[3])) { |
|
if (VP8PutBit(bw, v != 2, p[4])) |
|
VP8PutBit(bw, v == 4, p[5]); |
|
} else if (!VP8PutBit(bw, v > 10, p[6])) { |
|
if (!VP8PutBit(bw, v > 6, p[7])) { |
|
VP8PutBit(bw, v == 6, 159); |
|
} else { |
|
VP8PutBit(bw, v >= 9, 165); |
|
VP8PutBit(bw, !(v & 1), 145); |
|
} |
|
} else { |
|
int mask; |
|
const uint8_t* tab; |
|
if (v < 3 + (8 << 1)) { // VP8Cat3 (3b) |
|
VP8PutBit(bw, 0, p[8]); |
|
VP8PutBit(bw, 0, p[9]); |
|
v -= 3 + (8 << 0); |
|
mask = 1 << 2; |
|
tab = VP8Cat3; |
|
} else if (v < 3 + (8 << 2)) { // VP8Cat4 (4b) |
|
VP8PutBit(bw, 0, p[8]); |
|
VP8PutBit(bw, 1, p[9]); |
|
v -= 3 + (8 << 1); |
|
mask = 1 << 3; |
|
tab = VP8Cat4; |
|
} else if (v < 3 + (8 << 3)) { // VP8Cat5 (5b) |
|
VP8PutBit(bw, 1, p[8]); |
|
VP8PutBit(bw, 0, p[10]); |
|
v -= 3 + (8 << 2); |
|
mask = 1 << 4; |
|
tab = VP8Cat5; |
|
} else { // VP8Cat6 (11b) |
|
VP8PutBit(bw, 1, p[8]); |
|
VP8PutBit(bw, 1, p[10]); |
|
v -= 3 + (8 << 3); |
|
mask = 1 << 10; |
|
tab = VP8Cat6; |
|
} |
|
while (mask) { |
|
VP8PutBit(bw, !!(v & mask), *tab++); |
|
mask >>= 1; |
|
} |
|
} |
|
p = res->prob[VP8EncBands[n]][2]; |
|
} |
|
VP8PutBitUniform(bw, sign); |
|
if (n == 16 || !VP8PutBit(bw, n <= res->last, p[0])) { |
|
return 1; // EOB |
|
} |
|
} |
|
return 1; |
|
} |
|
|
|
static void CodeResiduals(VP8BitWriter* const bw, VP8EncIterator* const it, |
|
const VP8ModeScore* const rd) { |
|
int x, y, ch; |
|
VP8Residual res; |
|
uint64_t pos1, pos2, pos3; |
|
const int i16 = (it->mb_->type_ == 1); |
|
const int segment = it->mb_->segment_; |
|
VP8Encoder* const enc = it->enc_; |
|
|
|
VP8IteratorNzToBytes(it); |
|
|
|
pos1 = VP8BitWriterPos(bw); |
|
if (i16) { |
|
InitResidual(0, 1, enc, &res); |
|
SetResidualCoeffs(rd->y_dc_levels, &res); |
|
it->top_nz_[8] = it->left_nz_[8] = |
|
PutCoeffs(bw, it->top_nz_[8] + it->left_nz_[8], &res); |
|
InitResidual(1, 0, enc, &res); |
|
} else { |
|
InitResidual(0, 3, enc, &res); |
|
} |
|
|
|
// luma-AC |
|
for (y = 0; y < 4; ++y) { |
|
for (x = 0; x < 4; ++x) { |
|
const int ctx = it->top_nz_[x] + it->left_nz_[y]; |
|
SetResidualCoeffs(rd->y_ac_levels[x + y * 4], &res); |
|
it->top_nz_[x] = it->left_nz_[y] = PutCoeffs(bw, ctx, &res); |
|
} |
|
} |
|
pos2 = VP8BitWriterPos(bw); |
|
|
|
// U/V |
|
InitResidual(0, 2, enc, &res); |
|
for (ch = 0; ch <= 2; ch += 2) { |
|
for (y = 0; y < 2; ++y) { |
|
for (x = 0; x < 2; ++x) { |
|
const int ctx = it->top_nz_[4 + ch + x] + it->left_nz_[4 + ch + y]; |
|
SetResidualCoeffs(rd->uv_levels[ch * 2 + x + y * 2], &res); |
|
it->top_nz_[4 + ch + x] = it->left_nz_[4 + ch + y] = |
|
PutCoeffs(bw, ctx, &res); |
|
} |
|
} |
|
} |
|
pos3 = VP8BitWriterPos(bw); |
|
it->luma_bits_ = pos2 - pos1; |
|
it->uv_bits_ = pos3 - pos2; |
|
it->bit_count_[segment][i16] += it->luma_bits_; |
|
it->bit_count_[segment][2] += it->uv_bits_; |
|
VP8IteratorBytesToNz(it); |
|
} |
|
|
|
// Same as CodeResiduals, but doesn't actually write anything. |
|
// Instead, it just records the event distribution. |
|
static void RecordResiduals(VP8EncIterator* const it, |
|
const VP8ModeScore* const rd) { |
|
int x, y, ch; |
|
VP8Residual res; |
|
VP8Encoder* const enc = it->enc_; |
|
|
|
VP8IteratorNzToBytes(it); |
|
|
|
if (it->mb_->type_ == 1) { // i16x16 |
|
InitResidual(0, 1, enc, &res); |
|
SetResidualCoeffs(rd->y_dc_levels, &res); |
|
it->top_nz_[8] = it->left_nz_[8] = |
|
RecordCoeffs(it->top_nz_[8] + it->left_nz_[8], &res); |
|
InitResidual(1, 0, enc, &res); |
|
} else { |
|
InitResidual(0, 3, enc, &res); |
|
} |
|
|
|
// luma-AC |
|
for (y = 0; y < 4; ++y) { |
|
for (x = 0; x < 4; ++x) { |
|
const int ctx = it->top_nz_[x] + it->left_nz_[y]; |
|
SetResidualCoeffs(rd->y_ac_levels[x + y * 4], &res); |
|
it->top_nz_[x] = it->left_nz_[y] = RecordCoeffs(ctx, &res); |
|
} |
|
} |
|
|
|
// U/V |
|
InitResidual(0, 2, enc, &res); |
|
for (ch = 0; ch <= 2; ch += 2) { |
|
for (y = 0; y < 2; ++y) { |
|
for (x = 0; x < 2; ++x) { |
|
const int ctx = it->top_nz_[4 + ch + x] + it->left_nz_[4 + ch + y]; |
|
SetResidualCoeffs(rd->uv_levels[ch * 2 + x + y * 2], &res); |
|
it->top_nz_[4 + ch + x] = it->left_nz_[4 + ch + y] = |
|
RecordCoeffs(ctx, &res); |
|
} |
|
} |
|
} |
|
|
|
VP8IteratorBytesToNz(it); |
|
} |
|
|
|
//------------------------------------------------------------------------------ |
|
// Token buffer |
|
|
|
#if !defined(DISABLE_TOKEN_BUFFER) |
|
|
|
static void RecordTokens(VP8EncIterator* const it, const VP8ModeScore* const rd, |
|
VP8TBuffer* const tokens) { |
|
int x, y, ch; |
|
VP8Residual res; |
|
VP8Encoder* const enc = it->enc_; |
|
|
|
VP8IteratorNzToBytes(it); |
|
if (it->mb_->type_ == 1) { // i16x16 |
|
const int ctx = it->top_nz_[8] + it->left_nz_[8]; |
|
InitResidual(0, 1, enc, &res); |
|
SetResidualCoeffs(rd->y_dc_levels, &res); |
|
it->top_nz_[8] = it->left_nz_[8] = |
|
VP8RecordCoeffTokens(ctx, 1, |
|
res.first, res.last, res.coeffs, tokens); |
|
RecordCoeffs(ctx, &res); |
|
InitResidual(1, 0, enc, &res); |
|
} else { |
|
InitResidual(0, 3, enc, &res); |
|
} |
|
|
|
// luma-AC |
|
for (y = 0; y < 4; ++y) { |
|
for (x = 0; x < 4; ++x) { |
|
const int ctx = it->top_nz_[x] + it->left_nz_[y]; |
|
SetResidualCoeffs(rd->y_ac_levels[x + y * 4], &res); |
|
it->top_nz_[x] = it->left_nz_[y] = |
|
VP8RecordCoeffTokens(ctx, res.coeff_type, |
|
res.first, res.last, res.coeffs, tokens); |
|
RecordCoeffs(ctx, &res); |
|
} |
|
} |
|
|
|
// U/V |
|
InitResidual(0, 2, enc, &res); |
|
for (ch = 0; ch <= 2; ch += 2) { |
|
for (y = 0; y < 2; ++y) { |
|
for (x = 0; x < 2; ++x) { |
|
const int ctx = it->top_nz_[4 + ch + x] + it->left_nz_[4 + ch + y]; |
|
SetResidualCoeffs(rd->uv_levels[ch * 2 + x + y * 2], &res); |
|
it->top_nz_[4 + ch + x] = it->left_nz_[4 + ch + y] = |
|
VP8RecordCoeffTokens(ctx, 2, |
|
res.first, res.last, res.coeffs, tokens); |
|
RecordCoeffs(ctx, &res); |
|
} |
|
} |
|
} |
|
VP8IteratorBytesToNz(it); |
|
} |
|
|
|
#endif // !DISABLE_TOKEN_BUFFER |
|
|
|
//------------------------------------------------------------------------------ |
|
// ExtraInfo map / Debug function |
|
|
|
#if SEGMENT_VISU |
|
static void SetBlock(uint8_t* p, int value, int size) { |
|
int y; |
|
for (y = 0; y < size; ++y) { |
|
memset(p, value, size); |
|
p += BPS; |
|
} |
|
} |
|
#endif |
|
|
|
static void ResetSSE(VP8Encoder* const enc) { |
|
enc->sse_[0] = 0; |
|
enc->sse_[1] = 0; |
|
enc->sse_[2] = 0; |
|
// Note: enc->sse_[3] is managed by alpha.c |
|
enc->sse_count_ = 0; |
|
} |
|
|
|
static void StoreSSE(const VP8EncIterator* const it) { |
|
VP8Encoder* const enc = it->enc_; |
|
const uint8_t* const in = it->yuv_in_; |
|
const uint8_t* const out = it->yuv_out_; |
|
// Note: not totally accurate at boundary. And doesn't include in-loop filter. |
|
enc->sse_[0] += VP8SSE16x16(in + Y_OFF, out + Y_OFF); |
|
enc->sse_[1] += VP8SSE8x8(in + U_OFF, out + U_OFF); |
|
enc->sse_[2] += VP8SSE8x8(in + V_OFF, out + V_OFF); |
|
enc->sse_count_ += 16 * 16; |
|
} |
|
|
|
static void StoreSideInfo(const VP8EncIterator* const it) { |
|
VP8Encoder* const enc = it->enc_; |
|
const VP8MBInfo* const mb = it->mb_; |
|
WebPPicture* const pic = enc->pic_; |
|
|
|
if (pic->stats != NULL) { |
|
StoreSSE(it); |
|
enc->block_count_[0] += (mb->type_ == 0); |
|
enc->block_count_[1] += (mb->type_ == 1); |
|
enc->block_count_[2] += (mb->skip_ != 0); |
|
} |
|
|
|
if (pic->extra_info != NULL) { |
|
uint8_t* const info = &pic->extra_info[it->x_ + it->y_ * enc->mb_w_]; |
|
switch (pic->extra_info_type) { |
|
case 1: *info = mb->type_; break; |
|
case 2: *info = mb->segment_; break; |
|
case 3: *info = enc->dqm_[mb->segment_].quant_; break; |
|
case 4: *info = (mb->type_ == 1) ? it->preds_[0] : 0xff; break; |
|
case 5: *info = mb->uv_mode_; break; |
|
case 6: { |
|
const int b = (int)((it->luma_bits_ + it->uv_bits_ + 7) >> 3); |
|
*info = (b > 255) ? 255 : b; break; |
|
} |
|
case 7: *info = mb->alpha_; break; |
|
default: *info = 0; break; |
|
}; |
|
} |
|
#if SEGMENT_VISU // visualize segments and prediction modes |
|
SetBlock(it->yuv_out_ + Y_OFF, mb->segment_ * 64, 16); |
|
SetBlock(it->yuv_out_ + U_OFF, it->preds_[0] * 64, 8); |
|
SetBlock(it->yuv_out_ + V_OFF, mb->uv_mode_ * 64, 8); |
|
#endif |
|
} |
|
|
|
//------------------------------------------------------------------------------ |
|
// StatLoop(): only collect statistics (number of skips, token usage, ...). |
|
// This is used for deciding optimal probabilities. It also modifies the |
|
// quantizer value if some target (size, PNSR) was specified. |
|
|
|
#define kHeaderSizeEstimate (15 + 20 + 10) // TODO: fix better |
|
|
|
static void SetLoopParams(VP8Encoder* const enc, float q) { |
|
// Make sure the quality parameter is inside valid bounds |
|
if (q < 0.) { |
|
q = 0; |
|
} else if (q > 100.) { |
|
q = 100; |
|
} |
|
|
|
VP8SetSegmentParams(enc, q); // setup segment quantizations and filters |
|
SetSegmentProbas(enc); // compute segment probabilities |
|
|
|
ResetStats(enc); |
|
ResetTokenStats(enc); |
|
|
|
ResetSSE(enc); |
|
} |
|
|
|
static int OneStatPass(VP8Encoder* const enc, float q, VP8RDLevel rd_opt, |
|
int nb_mbs, float* const PSNR, int percent_delta) { |
|
VP8EncIterator it; |
|
uint64_t size = 0; |
|
uint64_t distortion = 0; |
|
const uint64_t pixel_count = nb_mbs * 384; |
|
|
|
SetLoopParams(enc, q); |
|
|
|
VP8IteratorInit(enc, &it); |
|
do { |
|
VP8ModeScore info; |
|
VP8IteratorImport(&it); |
|
if (VP8Decimate(&it, &info, rd_opt)) { |
|
// Just record the number of skips and act like skip_proba is not used. |
|
enc->proba_.nb_skip_++; |
|
} |
|
RecordResiduals(&it, &info); |
|
size += info.R; |
|
distortion += info.D; |
|
if (percent_delta && !VP8IteratorProgress(&it, percent_delta)) |
|
return 0; |
|
} while (VP8IteratorNext(&it, it.yuv_out_) && --nb_mbs > 0); |
|
size += FinalizeSkipProba(enc); |
|
size += FinalizeTokenProbas(&enc->proba_); |
|
size += enc->segment_hdr_.size_; |
|
size = ((size + 1024) >> 11) + kHeaderSizeEstimate; |
|
|
|
if (PSNR) { |
|
*PSNR = (float)(10.* log10(255. * 255. * pixel_count / distortion)); |
|
} |
|
return (int)size; |
|
} |
|
|
|
// successive refinement increments. |
|
static const int dqs[] = { 20, 15, 10, 8, 6, 4, 2, 1, 0 }; |
|
|
|
static int StatLoop(VP8Encoder* const enc) { |
|
const int method = enc->method_; |
|
const int do_search = enc->do_search_; |
|
const int fast_probe = ((method == 0 || method == 3) && !do_search); |
|
float q = enc->config_->quality; |
|
const int max_passes = enc->config_->pass; |
|
const int task_percent = 20; |
|
const int percent_per_pass = (task_percent + max_passes / 2) / max_passes; |
|
const int final_percent = enc->percent_ + task_percent; |
|
int pass; |
|
int nb_mbs; |
|
|
|
// Fast mode: quick analysis pass over few mbs. Better than nothing. |
|
nb_mbs = enc->mb_w_ * enc->mb_h_; |
|
if (fast_probe) { |
|
if (method == 3) { // we need more stats for method 3 to be reliable. |
|
nb_mbs = (nb_mbs > 200) ? nb_mbs >> 1 : 100; |
|
} else { |
|
nb_mbs = (nb_mbs > 200) ? nb_mbs >> 2 : 50; |
|
} |
|
} |
|
|
|
// No target size: just do several pass without changing 'q' |
|
if (!do_search) { |
|
for (pass = 0; pass < max_passes; ++pass) { |
|
const VP8RDLevel rd_opt = (method >= 3) ? RD_OPT_BASIC : RD_OPT_NONE; |
|
if (!OneStatPass(enc, q, rd_opt, nb_mbs, NULL, percent_per_pass)) { |
|
return 0; |
|
} |
|
} |
|
} else { |
|
// binary search for a size close to target |
|
for (pass = 0; pass < max_passes && (dqs[pass] > 0); ++pass) { |
|
float PSNR; |
|
int criterion; |
|
const int size = OneStatPass(enc, q, RD_OPT_BASIC, nb_mbs, &PSNR, |
|
percent_per_pass); |
|
#if DEBUG_SEARCH |
|
printf("#%d size=%d PSNR=%.2f q=%.2f\n", pass, size, PSNR, q); |
|
#endif |
|
if (size == 0) return 0; |
|
if (enc->config_->target_PSNR > 0) { |
|
criterion = (PSNR < enc->config_->target_PSNR); |
|
} else { |
|
criterion = (size < enc->config_->target_size); |
|
} |
|
// dichotomize |
|
if (criterion) { |
|
q += dqs[pass]; |
|
} else { |
|
q -= dqs[pass]; |
|
} |
|
} |
|
} |
|
VP8CalculateLevelCosts(&enc->proba_); // finalize costs |
|
return WebPReportProgress(enc->pic_, final_percent, &enc->percent_); |
|
} |
|
|
|
//------------------------------------------------------------------------------ |
|
// Main loops |
|
// |
|
|
|
static const int kAverageBytesPerMB[8] = { 50, 24, 16, 9, 7, 5, 3, 2 }; |
|
|
|
static int PreLoopInitialize(VP8Encoder* const enc) { |
|
int p; |
|
int ok = 1; |
|
const int average_bytes_per_MB = kAverageBytesPerMB[enc->base_quant_ >> 4]; |
|
const int bytes_per_parts = |
|
enc->mb_w_ * enc->mb_h_ * average_bytes_per_MB / enc->num_parts_; |
|
// Initialize the bit-writers |
|
for (p = 0; ok && p < enc->num_parts_; ++p) { |
|
ok = VP8BitWriterInit(enc->parts_ + p, bytes_per_parts); |
|
} |
|
if (!ok) VP8EncFreeBitWriters(enc); // malloc error occurred |
|
return ok; |
|
} |
|
|
|
static int PostLoopFinalize(VP8EncIterator* const it, int ok) { |
|
VP8Encoder* const enc = it->enc_; |
|
if (ok) { // Finalize the partitions, check for extra errors. |
|
int p; |
|
for (p = 0; p < enc->num_parts_; ++p) { |
|
VP8BitWriterFinish(enc->parts_ + p); |
|
ok &= !enc->parts_[p].error_; |
|
} |
|
} |
|
|
|
if (ok) { // All good. Finish up. |
|
if (enc->pic_->stats) { // finalize byte counters... |
|
int i, s; |
|
for (i = 0; i <= 2; ++i) { |
|
for (s = 0; s < NUM_MB_SEGMENTS; ++s) { |
|
enc->residual_bytes_[i][s] = (int)((it->bit_count_[s][i] + 7) >> 3); |
|
} |
|
} |
|
} |
|
VP8AdjustFilterStrength(it); // ...and store filter stats. |
|
} else { |
|
// Something bad happened -> need to do some memory cleanup. |
|
VP8EncFreeBitWriters(enc); |
|
} |
|
return ok; |
|
} |
|
|
|
//------------------------------------------------------------------------------ |
|
// VP8EncLoop(): does the final bitstream coding. |
|
|
|
static void ResetAfterSkip(VP8EncIterator* const it) { |
|
if (it->mb_->type_ == 1) { |
|
*it->nz_ = 0; // reset all predictors |
|
it->left_nz_[8] = 0; |
|
} else { |
|
*it->nz_ &= (1 << 24); // preserve the dc_nz bit |
|
} |
|
} |
|
|
|
int VP8EncLoop(VP8Encoder* const enc) { |
|
VP8EncIterator it; |
|
int ok = PreLoopInitialize(enc); |
|
if (!ok) return 0; |
|
|
|
StatLoop(enc); // stats-collection loop |
|
|
|
VP8IteratorInit(enc, &it); |
|
VP8InitFilter(&it); |
|
do { |
|
VP8ModeScore info; |
|
const int dont_use_skip = !enc->proba_.use_skip_proba_; |
|
const VP8RDLevel rd_opt = enc->rd_opt_level_; |
|
|
|
VP8IteratorImport(&it); |
|
// Warning! order is important: first call VP8Decimate() and |
|
// *then* decide how to code the skip decision if there's one. |
|
if (!VP8Decimate(&it, &info, rd_opt) || dont_use_skip) { |
|
CodeResiduals(it.bw_, &it, &info); |
|
} else { // reset predictors after a skip |
|
ResetAfterSkip(&it); |
|
} |
|
#ifdef WEBP_EXPERIMENTAL_FEATURES |
|
if (enc->use_layer_) { |
|
VP8EncCodeLayerBlock(&it); |
|
} |
|
#endif |
|
StoreSideInfo(&it); |
|
VP8StoreFilterStats(&it); |
|
VP8IteratorExport(&it); |
|
ok = VP8IteratorProgress(&it, 20); |
|
} while (ok && VP8IteratorNext(&it, it.yuv_out_)); |
|
|
|
return PostLoopFinalize(&it, ok); |
|
} |
|
|
|
//------------------------------------------------------------------------------ |
|
// Single pass using Token Buffer. |
|
|
|
#if !defined(DISABLE_TOKEN_BUFFER) |
|
|
|
#define MIN_COUNT 96 // minimum number of macroblocks before updating stats |
|
|
|
int VP8EncTokenLoop(VP8Encoder* const enc) { |
|
int ok; |
|
// Roughly refresh the proba height times per pass |
|
int max_count = (enc->mb_w_ * enc->mb_h_) >> 3; |
|
int cnt; |
|
VP8EncIterator it; |
|
VP8Proba* const proba = &enc->proba_; |
|
const VP8RDLevel rd_opt = enc->rd_opt_level_; |
|
|
|
if (max_count < MIN_COUNT) max_count = MIN_COUNT; |
|
cnt = max_count; |
|
|
|
assert(enc->num_parts_ == 1); |
|
assert(enc->use_tokens_); |
|
assert(proba->use_skip_proba_ == 0); |
|
assert(rd_opt >= RD_OPT_BASIC); // otherwise, token-buffer won't be useful |
|
assert(!enc->do_search_); // TODO(skal): handle pass and dichotomy |
|
|
|
SetLoopParams(enc, enc->config_->quality); |
|
|
|
ok = PreLoopInitialize(enc); |
|
if (!ok) return 0; |
|
|
|
VP8IteratorInit(enc, &it); |
|
VP8InitFilter(&it); |
|
do { |
|
VP8ModeScore info; |
|
VP8IteratorImport(&it); |
|
if (--cnt < 0) { |
|
FinalizeTokenProbas(proba); |
|
VP8CalculateLevelCosts(proba); // refresh cost tables for rd-opt |
|
cnt = max_count; |
|
} |
|
VP8Decimate(&it, &info, rd_opt); |
|
RecordTokens(&it, &info, &enc->tokens_); |
|
#ifdef WEBP_EXPERIMENTAL_FEATURES |
|
if (enc->use_layer_) { |
|
VP8EncCodeLayerBlock(&it); |
|
} |
|
#endif |
|
StoreSideInfo(&it); |
|
VP8StoreFilterStats(&it); |
|
VP8IteratorExport(&it); |
|
ok = VP8IteratorProgress(&it, 20); |
|
} while (ok && VP8IteratorNext(&it, it.yuv_out_)); |
|
|
|
ok = ok && WebPReportProgress(enc->pic_, enc->percent_ + 20, &enc->percent_); |
|
|
|
if (ok) { |
|
FinalizeTokenProbas(proba); |
|
ok = VP8EmitTokens(&enc->tokens_, enc->parts_ + 0, |
|
(const uint8_t*)proba->coeffs_, 1); |
|
} |
|
|
|
return PostLoopFinalize(&it, ok); |
|
} |
|
|
|
#else |
|
|
|
int VP8EncTokenLoop(VP8Encoder* const enc) { |
|
(void)enc; |
|
return 0; // we shouldn't be here. |
|
} |
|
|
|
#endif // DISABLE_TOKEN_BUFFER |
|
|
|
//------------------------------------------------------------------------------ |
|
|
|
#if defined(__cplusplus) || defined(c_plusplus) |
|
} // extern "C" |
|
#endif
|
|
|