Open Source Computer Vision Library https://opencv.org/
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

216 lines
7.5 KiB

//M*//////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000, Intel Corporation, all rights reserved.
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "precomp.hpp"
CvStereoBMState* cvCreateStereoBMState( int /*preset*/, int numberOfDisparities )
{
CvStereoBMState* state = (CvStereoBMState*)cvAlloc( sizeof(*state) );
if( !state )
return 0;
state->preFilterType = CV_STEREO_BM_XSOBEL; //CV_STEREO_BM_NORMALIZED_RESPONSE;
state->preFilterSize = 9;
state->preFilterCap = 31;
state->SADWindowSize = 15;
state->minDisparity = 0;
state->numberOfDisparities = numberOfDisparities > 0 ? numberOfDisparities : 64;
state->textureThreshold = 10;
state->uniquenessRatio = 15;
state->speckleRange = state->speckleWindowSize = 0;
state->trySmallerWindows = 0;
state->roi1 = state->roi2 = cvRect(0,0,0,0);
state->disp12MaxDiff = -1;
state->preFilteredImg0 = state->preFilteredImg1 = state->slidingSumBuf =
state->disp = state->cost = 0;
return state;
}
void cvReleaseStereoBMState( CvStereoBMState** state )
{
if( !state )
CV_Error( CV_StsNullPtr, "" );
if( !*state )
return;
cvReleaseMat( &(*state)->preFilteredImg0 );
cvReleaseMat( &(*state)->preFilteredImg1 );
cvReleaseMat( &(*state)->slidingSumBuf );
cvReleaseMat( &(*state)->disp );
cvReleaseMat( &(*state)->cost );
cvFree( state );
}
template<> void cv::Ptr<CvStereoBMState>::delete_obj()
{ cvReleaseStereoBMState(&obj); }
void cvFindStereoCorrespondenceBM( const CvArr* leftarr, const CvArr* rightarr,
CvArr* disparr, CvStereoBMState* state )
{
cv::Mat left = cv::cvarrToMat(leftarr), right = cv::cvarrToMat(rightarr);
const cv::Mat disp = cv::cvarrToMat(disparr);
CV_Assert( state != 0 );
cv::Ptr<cv::StereoMatcher> sm = cv::createStereoBM(state->numberOfDisparities,
state->SADWindowSize);
sm->set("preFilterType", state->preFilterType);
sm->set("preFilterSize", state->preFilterSize);
sm->set("preFilterCap", state->preFilterCap);
sm->set("SADWindowSize", state->SADWindowSize);
sm->set("numDisparities", state->numberOfDisparities > 0 ? state->numberOfDisparities : 64);
sm->set("textureThreshold", state->textureThreshold);
sm->set("uniquenessRatio", state->uniquenessRatio);
sm->set("speckleRange", state->speckleRange);
sm->set("speckleWindowSize", state->speckleWindowSize);
sm->set("disp12MaxDiff", state->disp12MaxDiff);
sm->compute(left, right, disp);
}
CvRect cvGetValidDisparityROI( CvRect roi1, CvRect roi2, int minDisparity,
int numberOfDisparities, int SADWindowSize )
{
return (CvRect)cv::getValidDisparityROI( roi1, roi2, minDisparity,
numberOfDisparities, SADWindowSize );
}
void cvValidateDisparity( CvArr* _disp, const CvArr* _cost, int minDisparity,
int numberOfDisparities, int disp12MaxDiff )
{
cv::Mat disp = cv::cvarrToMat(_disp), cost = cv::cvarrToMat(_cost);
cv::validateDisparity( disp, cost, minDisparity, numberOfDisparities, disp12MaxDiff );
}
namespace cv
{
StereoBM::StereoBM()
{ init(BASIC_PRESET); }
StereoBM::StereoBM(int _preset, int _ndisparities, int _SADWindowSize)
{ init(_preset, _ndisparities, _SADWindowSize); }
void StereoBM::init(int _preset, int _ndisparities, int _SADWindowSize)
{
state = cvCreateStereoBMState(_preset, _ndisparities);
state->SADWindowSize = _SADWindowSize;
}
void StereoBM::operator()( InputArray _left, InputArray _right,
OutputArray _disparity, int disptype )
{
Mat left = _left.getMat(), right = _right.getMat();
CV_Assert( disptype == CV_16S || disptype == CV_32F );
_disparity.create(left.size(), disptype);
Mat disp = _disparity.getMat();
CvMat left_c = left, right_c = right, disp_c = disp;
cvFindStereoCorrespondenceBM(&left_c, &right_c, &disp_c, state);
}
StereoSGBM::StereoSGBM()
{
minDisparity = numberOfDisparities = 0;
SADWindowSize = 0;
P1 = P2 = 0;
disp12MaxDiff = 0;
preFilterCap = 0;
uniquenessRatio = 0;
speckleWindowSize = 0;
speckleRange = 0;
fullDP = false;
sm = createStereoSGBM(0, 0, 0);
}
StereoSGBM::StereoSGBM( int _minDisparity, int _numDisparities, int _SADWindowSize,
int _P1, int _P2, int _disp12MaxDiff, int _preFilterCap,
int _uniquenessRatio, int _speckleWindowSize, int _speckleRange,
bool _fullDP )
{
minDisparity = _minDisparity;
numberOfDisparities = _numDisparities;
SADWindowSize = _SADWindowSize;
P1 = _P1;
P2 = _P2;
disp12MaxDiff = _disp12MaxDiff;
preFilterCap = _preFilterCap;
uniquenessRatio = _uniquenessRatio;
speckleWindowSize = _speckleWindowSize;
speckleRange = _speckleRange;
fullDP = _fullDP;
sm = createStereoSGBM(0, 0, 0);
}
StereoSGBM::~StereoSGBM()
{
}
void StereoSGBM::operator ()( InputArray _left, InputArray _right,
OutputArray _disp )
{
sm->set("minDisparity", minDisparity);
sm->set("numDisparities", numberOfDisparities);
sm->set("SADWindowSize", SADWindowSize);
sm->set("P1", P1);
sm->set("P2", P2);
sm->set("disp12MaxDiff", disp12MaxDiff);
sm->set("preFilterCap", preFilterCap);
sm->set("uniquenessRatio", uniquenessRatio);
sm->set("speckleWindowSize", speckleWindowSize);
sm->set("speckleRange", speckleRange);
sm->set("fullDP", fullDP);
sm->compute(_left, _right, _disp);
}
}