mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
232 lines
8.5 KiB
232 lines
8.5 KiB
/*M/////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// |
|
// License Agreement |
|
// For Open Source Computer Vision Library |
|
// |
|
// Copyright (C) 2010-2012, Multicoreware, Inc., all rights reserved. |
|
// Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
// |
|
// @Authors |
|
// Peng Xiao, pengxiao@multicorewareinc.com |
|
// |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistribution's of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistribution's in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other oclMaterials provided with the distribution. |
|
// |
|
// * The name of the copyright holders may not be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors as is and |
|
// any express or implied warranties, including, but not limited to, the implied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall the Intel Corporation or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
// |
|
//M*/ |
|
|
|
#include <iostream> |
|
#include <stdio.h> |
|
#include "opencv2/core/core.hpp" |
|
#include "opencv2/features2d/features2d.hpp" |
|
#include "opencv2/highgui/highgui.hpp" |
|
#include "opencv2/ocl/ocl.hpp" |
|
#include "opencv2/nonfree/nonfree.hpp" |
|
#include "opencv2/nonfree/ocl.hpp" |
|
#include "opencv2/calib3d/calib3d.hpp" |
|
|
|
using namespace std; |
|
using namespace cv; |
|
using namespace cv::ocl; |
|
|
|
//#define USE_CPU_DESCRIPTOR // use cpu descriptor extractor until ocl descriptor extractor is fixed |
|
//#define USE_CPU_BFMATCHER |
|
void help(); |
|
|
|
void help() |
|
{ |
|
cout << "\nThis program demonstrates using SURF_OCL features detector and descriptor extractor" << endl; |
|
cout << "\nUsage:\n\tsurf_matcher --left <image1> --right <image2>" << endl; |
|
} |
|
|
|
|
|
//////////////////////////////////////////////////// |
|
// This program demonstrates the usage of SURF_OCL. |
|
// use cpu findHomography interface to calculate the transformation matrix |
|
int main(int argc, char* argv[]) |
|
{ |
|
if (argc != 5 && argc != 1) |
|
{ |
|
help(); |
|
return -1; |
|
} |
|
vector<cv::ocl::Info> info; |
|
if(!cv::ocl::getDevice(info)) |
|
{ |
|
cout << "Error: Did not find a valid OpenCL device!" << endl; |
|
return -1; |
|
} |
|
Mat cpu_img1, cpu_img2, cpu_img1_grey, cpu_img2_grey; |
|
oclMat img1, img2; |
|
if(argc != 5) |
|
{ |
|
cpu_img1 = imread("o.png"); |
|
cvtColor(cpu_img1, cpu_img1_grey, CV_BGR2GRAY); |
|
img1 = cpu_img1_grey; |
|
CV_Assert(!img1.empty()); |
|
|
|
cpu_img2 = imread("r2.png"); |
|
cvtColor(cpu_img2, cpu_img2_grey, CV_BGR2GRAY); |
|
img2 = cpu_img2_grey; |
|
} |
|
else |
|
{ |
|
for (int i = 1; i < argc; ++i) |
|
{ |
|
if (string(argv[i]) == "--left") |
|
{ |
|
cpu_img1 = imread(argv[++i]); |
|
cvtColor(cpu_img1, cpu_img1_grey, CV_BGR2GRAY); |
|
img1 = cpu_img1_grey; |
|
CV_Assert(!img1.empty()); |
|
} |
|
else if (string(argv[i]) == "--right") |
|
{ |
|
cpu_img2 = imread(argv[++i]); |
|
cvtColor(cpu_img2, cpu_img2_grey, CV_BGR2GRAY); |
|
img2 = cpu_img2_grey; |
|
} |
|
else if (string(argv[i]) == "--help") |
|
{ |
|
help(); |
|
return -1; |
|
} |
|
} |
|
} |
|
|
|
SURF_OCL surf; |
|
//surf.hessianThreshold = 400.f; |
|
//surf.extended = false; |
|
|
|
// detecting keypoints & computing descriptors |
|
oclMat keypoints1GPU, keypoints2GPU; |
|
oclMat descriptors1GPU, descriptors2GPU; |
|
|
|
// downloading results |
|
vector<KeyPoint> keypoints1, keypoints2; |
|
vector<DMatch> matches; |
|
|
|
|
|
#ifndef USE_CPU_DESCRIPTOR |
|
surf(img1, oclMat(), keypoints1GPU, descriptors1GPU); |
|
surf(img2, oclMat(), keypoints2GPU, descriptors2GPU); |
|
|
|
surf.downloadKeypoints(keypoints1GPU, keypoints1); |
|
surf.downloadKeypoints(keypoints2GPU, keypoints2); |
|
|
|
|
|
#ifdef USE_CPU_BFMATCHER |
|
//BFMatcher |
|
BFMatcher matcher(cv::NORM_L2); |
|
matcher.match(Mat(descriptors1GPU), Mat(descriptors2GPU), matches); |
|
#else |
|
BruteForceMatcher_OCL_base matcher(BruteForceMatcher_OCL_base::L2Dist); |
|
matcher.match(descriptors1GPU, descriptors2GPU, matches); |
|
#endif |
|
|
|
#else |
|
surf(img1, oclMat(), keypoints1GPU); |
|
surf(img2, oclMat(), keypoints2GPU); |
|
surf.downloadKeypoints(keypoints1GPU, keypoints1); |
|
surf.downloadKeypoints(keypoints2GPU, keypoints2); |
|
|
|
// use SURF_OCL to detect keypoints and use SURF to extract descriptors |
|
SURF surf_cpu; |
|
Mat descriptors1, descriptors2; |
|
surf_cpu(cpu_img1, Mat(), keypoints1, descriptors1, true); |
|
surf_cpu(cpu_img2, Mat(), keypoints2, descriptors2, true); |
|
matcher.match(descriptors1, descriptors2, matches); |
|
#endif |
|
cout << "OCL: FOUND " << keypoints1GPU.cols << " keypoints on first image" << endl; |
|
cout << "OCL: FOUND " << keypoints2GPU.cols << " keypoints on second image" << endl; |
|
|
|
double max_dist = 0; double min_dist = 100; |
|
//-- Quick calculation of max and min distances between keypoints |
|
for( size_t i = 0; i < keypoints1.size(); i++ ) |
|
{ |
|
double dist = matches[i].distance; |
|
if( dist < min_dist ) min_dist = dist; |
|
if( dist > max_dist ) max_dist = dist; |
|
} |
|
|
|
printf("-- Max dist : %f \n", max_dist ); |
|
printf("-- Min dist : %f \n", min_dist ); |
|
|
|
//-- Draw only "good" matches (i.e. whose distance is less than 2.5*min_dist ) |
|
std::vector< DMatch > good_matches; |
|
|
|
for( size_t i = 0; i < keypoints1.size(); i++ ) |
|
{ |
|
if( matches[i].distance < 3*min_dist ) |
|
{ |
|
good_matches.push_back( matches[i]); |
|
} |
|
} |
|
|
|
// drawing the results |
|
Mat img_matches; |
|
drawMatches( cpu_img1, keypoints1, cpu_img2, keypoints2, |
|
good_matches, img_matches, Scalar::all(-1), Scalar::all(-1), |
|
vector<char>(), DrawMatchesFlags::NOT_DRAW_SINGLE_POINTS ); |
|
|
|
//-- Localize the object |
|
std::vector<Point2f> obj; |
|
std::vector<Point2f> scene; |
|
|
|
for( size_t i = 0; i < good_matches.size(); i++ ) |
|
{ |
|
//-- Get the keypoints from the good matches |
|
obj.push_back( keypoints1[ good_matches[i].queryIdx ].pt ); |
|
scene.push_back( keypoints2[ good_matches[i].trainIdx ].pt ); |
|
} |
|
Mat H = findHomography( obj, scene, CV_RANSAC ); |
|
|
|
//-- Get the corners from the image_1 ( the object to be "detected" ) |
|
std::vector<Point2f> obj_corners(4); |
|
obj_corners[0] = cvPoint(0,0); obj_corners[1] = cvPoint( cpu_img1.cols, 0 ); |
|
obj_corners[2] = cvPoint( cpu_img1.cols, cpu_img1.rows ); obj_corners[3] = cvPoint( 0, cpu_img1.rows ); |
|
std::vector<Point2f> scene_corners(4); |
|
|
|
perspectiveTransform( obj_corners, scene_corners, H); |
|
|
|
//-- Draw lines between the corners (the mapped object in the scene - image_2 ) |
|
line( img_matches, scene_corners[0] + Point2f( (float)cpu_img1.cols, 0), scene_corners[1] + Point2f( (float)cpu_img1.cols, 0), Scalar( 0, 255, 0), 4 ); |
|
line( img_matches, scene_corners[1] + Point2f( (float)cpu_img1.cols, 0), scene_corners[2] + Point2f( (float)cpu_img1.cols, 0), Scalar( 0, 255, 0), 4 ); |
|
line( img_matches, scene_corners[2] + Point2f( (float)cpu_img1.cols, 0), scene_corners[3] + Point2f( (float)cpu_img1.cols, 0), Scalar( 0, 255, 0), 4 ); |
|
line( img_matches, scene_corners[3] + Point2f( (float)cpu_img1.cols, 0), scene_corners[0] + Point2f( (float)cpu_img1.cols, 0), Scalar( 0, 255, 0), 4 ); |
|
|
|
//-- Show detected matches |
|
namedWindow("ocl surf matches", 0); |
|
imshow("ocl surf matches", img_matches); |
|
waitKey(0); |
|
|
|
return 0; |
|
}
|
|
|