Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
168 lines
6.5 KiB
168 lines
6.5 KiB
/*M/////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// |
|
// License Agreement |
|
// For Open Source Computer Vision Library |
|
// |
|
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. |
|
// Copyright (C) 2009, Willow Garage Inc., all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
// |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistribution's of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistribution's in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other materials provided with the distribution. |
|
// |
|
// * The name of the copyright holders may not be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors "as is" and |
|
// any express or implied warranties, including, but not limited to, the implied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall the Intel Corporation or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
// |
|
//M*/ |
|
|
|
#include "precomp.hpp" |
|
|
|
#if !defined HAVE_CUDA || defined(CUDA_DISABLER) |
|
|
|
cv::gpu::GMG_GPU::GMG_GPU() { throw_no_cuda(); } |
|
void cv::gpu::GMG_GPU::initialize(cv::Size, float, float) { throw_no_cuda(); } |
|
void cv::gpu::GMG_GPU::operator ()(const cv::gpu::GpuMat&, cv::gpu::GpuMat&, float, cv::gpu::Stream&) { throw_no_cuda(); } |
|
void cv::gpu::GMG_GPU::release() {} |
|
|
|
#else |
|
|
|
namespace cv { namespace gpu { namespace cuda { |
|
namespace bgfg_gmg |
|
{ |
|
void loadConstants(int width, int height, float minVal, float maxVal, int quantizationLevels, float backgroundPrior, |
|
float decisionThreshold, int maxFeatures, int numInitializationFrames); |
|
|
|
template <typename SrcT> |
|
void update_gpu(PtrStepSzb frame, PtrStepb fgmask, PtrStepSzi colors, PtrStepf weights, PtrStepi nfeatures, |
|
int frameNum, float learningRate, bool updateBackgroundModel, cudaStream_t stream); |
|
} |
|
}}} |
|
|
|
cv::gpu::GMG_GPU::GMG_GPU() |
|
{ |
|
maxFeatures = 64; |
|
learningRate = 0.025f; |
|
numInitializationFrames = 120; |
|
quantizationLevels = 16; |
|
backgroundPrior = 0.8f; |
|
decisionThreshold = 0.8f; |
|
smoothingRadius = 7; |
|
updateBackgroundModel = true; |
|
} |
|
|
|
void cv::gpu::GMG_GPU::initialize(cv::Size frameSize, float min, float max) |
|
{ |
|
using namespace cv::gpu::cuda::bgfg_gmg; |
|
|
|
CV_Assert(min < max); |
|
CV_Assert(maxFeatures > 0); |
|
CV_Assert(learningRate >= 0.0f && learningRate <= 1.0f); |
|
CV_Assert(numInitializationFrames >= 1); |
|
CV_Assert(quantizationLevels >= 1 && quantizationLevels <= 255); |
|
CV_Assert(backgroundPrior >= 0.0f && backgroundPrior <= 1.0f); |
|
|
|
minVal_ = min; |
|
maxVal_ = max; |
|
|
|
frameSize_ = frameSize; |
|
|
|
frameNum_ = 0; |
|
|
|
nfeatures_.create(frameSize_, CV_32SC1); |
|
colors_.create(maxFeatures * frameSize_.height, frameSize_.width, CV_32SC1); |
|
weights_.create(maxFeatures * frameSize_.height, frameSize_.width, CV_32FC1); |
|
|
|
nfeatures_.setTo(cv::Scalar::all(0)); |
|
|
|
if (smoothingRadius > 0) |
|
boxFilter_ = cv::gpu::createBoxFilter_GPU(CV_8UC1, CV_8UC1, cv::Size(smoothingRadius, smoothingRadius)); |
|
|
|
loadConstants(frameSize_.width, frameSize_.height, minVal_, maxVal_, quantizationLevels, backgroundPrior, decisionThreshold, maxFeatures, numInitializationFrames); |
|
} |
|
|
|
void cv::gpu::GMG_GPU::operator ()(const cv::gpu::GpuMat& frame, cv::gpu::GpuMat& fgmask, float newLearningRate, cv::gpu::Stream& stream) |
|
{ |
|
using namespace cv::gpu::cuda::bgfg_gmg; |
|
|
|
typedef void (*func_t)(PtrStepSzb frame, PtrStepb fgmask, PtrStepSzi colors, PtrStepf weights, PtrStepi nfeatures, |
|
int frameNum, float learningRate, bool updateBackgroundModel, cudaStream_t stream); |
|
static const func_t funcs[6][4] = |
|
{ |
|
{update_gpu<uchar>, 0, update_gpu<uchar3>, update_gpu<uchar4>}, |
|
{0,0,0,0}, |
|
{update_gpu<ushort>, 0, update_gpu<ushort3>, update_gpu<ushort4>}, |
|
{0,0,0,0}, |
|
{0,0,0,0}, |
|
{update_gpu<float>, 0, update_gpu<float3>, update_gpu<float4>} |
|
}; |
|
|
|
CV_Assert(frame.depth() == CV_8U || frame.depth() == CV_16U || frame.depth() == CV_32F); |
|
CV_Assert(frame.channels() == 1 || frame.channels() == 3 || frame.channels() == 4); |
|
|
|
if (newLearningRate != -1.0f) |
|
{ |
|
CV_Assert(newLearningRate >= 0.0f && newLearningRate <= 1.0f); |
|
learningRate = newLearningRate; |
|
} |
|
|
|
if (frame.size() != frameSize_) |
|
initialize(frame.size(), 0.0f, frame.depth() == CV_8U ? 255.0f : frame.depth() == CV_16U ? std::numeric_limits<ushort>::max() : 1.0f); |
|
|
|
fgmask.create(frameSize_, CV_8UC1); |
|
if (stream) |
|
stream.enqueueMemSet(fgmask, cv::Scalar::all(0)); |
|
else |
|
fgmask.setTo(cv::Scalar::all(0)); |
|
|
|
funcs[frame.depth()][frame.channels() - 1](frame, fgmask, colors_, weights_, nfeatures_, frameNum_, learningRate, updateBackgroundModel, cv::gpu::StreamAccessor::getStream(stream)); |
|
|
|
// medianBlur |
|
if (smoothingRadius > 0) |
|
{ |
|
boxFilter_->apply(fgmask, buf_, cv::Rect(0,0,-1,-1), stream); |
|
int minCount = (smoothingRadius * smoothingRadius + 1) / 2; |
|
double thresh = 255.0 * minCount / (smoothingRadius * smoothingRadius); |
|
cv::gpu::threshold(buf_, fgmask, thresh, 255.0, cv::THRESH_BINARY, stream); |
|
} |
|
|
|
// keep track of how many frames we have processed |
|
++frameNum_; |
|
} |
|
|
|
void cv::gpu::GMG_GPU::release() |
|
{ |
|
frameSize_ = Size(); |
|
|
|
nfeatures_.release(); |
|
colors_.release(); |
|
weights_.release(); |
|
boxFilter_.release(); |
|
buf_.release(); |
|
} |
|
|
|
#endif
|
|
|