mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1141 lines
34 KiB
1141 lines
34 KiB
/*M/////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// |
|
// Intel License Agreement |
|
// For Open Source Computer Vision Library |
|
// |
|
// Copyright (C) 2000, Intel Corporation, all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
// |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistribution's of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistribution's in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other materials provided with the distribution. |
|
// |
|
// * The name of Intel Corporation may not be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors "as is" and |
|
// any express or implied warranties, including, but not limited to, the implied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall the Intel Corporation or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
// |
|
//M*/ |
|
|
|
/* |
|
Partially based on Yossi Rubner code: |
|
========================================================================= |
|
emd.c |
|
|
|
Last update: 3/14/98 |
|
|
|
An implementation of the Earth Movers Distance. |
|
Based of the solution for the Transportation problem as described in |
|
"Introduction to Mathematical Programming" by F. S. Hillier and |
|
G. J. Lieberman, McGraw-Hill, 1990. |
|
|
|
Copyright (C) 1998 Yossi Rubner |
|
Computer Science Department, Stanford University |
|
E-Mail: rubner@cs.stanford.edu URL: http://vision.stanford.edu/~rubner |
|
========================================================================== |
|
*/ |
|
#include "precomp.hpp" |
|
|
|
#define MAX_ITERATIONS 500 |
|
#define CV_EMD_INF ((float)1e20) |
|
#define CV_EMD_EPS ((float)1e-5) |
|
|
|
/* CvNode1D is used for lists, representing 1D sparse array */ |
|
typedef struct CvNode1D |
|
{ |
|
float val; |
|
struct CvNode1D *next; |
|
} |
|
CvNode1D; |
|
|
|
/* CvNode2D is used for lists, representing 2D sparse matrix */ |
|
typedef struct CvNode2D |
|
{ |
|
float val; |
|
struct CvNode2D *next[2]; /* next row & next column */ |
|
int i, j; |
|
} |
|
CvNode2D; |
|
|
|
|
|
typedef struct CvEMDState |
|
{ |
|
int ssize, dsize; |
|
|
|
float **cost; |
|
CvNode2D *_x; |
|
CvNode2D *end_x; |
|
CvNode2D *enter_x; |
|
char **is_x; |
|
|
|
CvNode2D **rows_x; |
|
CvNode2D **cols_x; |
|
|
|
CvNode1D *u; |
|
CvNode1D *v; |
|
|
|
int* idx1; |
|
int* idx2; |
|
|
|
/* find_loop buffers */ |
|
CvNode2D **loop; |
|
char *is_used; |
|
|
|
/* russel buffers */ |
|
float *s; |
|
float *d; |
|
float **delta; |
|
|
|
float weight, max_cost; |
|
char *buffer; |
|
} |
|
CvEMDState; |
|
|
|
/* static function declaration */ |
|
static int icvInitEMD( const float *signature1, int size1, |
|
const float *signature2, int size2, |
|
int dims, CvDistanceFunction dist_func, void *user_param, |
|
const float* cost, int cost_step, |
|
CvEMDState * state, float *lower_bound, |
|
cv::AutoBuffer<char>& _buffer ); |
|
|
|
static int icvFindBasicVariables( float **cost, char **is_x, |
|
CvNode1D * u, CvNode1D * v, int ssize, int dsize ); |
|
|
|
static float icvIsOptimal( float **cost, char **is_x, |
|
CvNode1D * u, CvNode1D * v, |
|
int ssize, int dsize, CvNode2D * enter_x ); |
|
|
|
static void icvRussel( CvEMDState * state ); |
|
|
|
|
|
static bool icvNewSolution( CvEMDState * state ); |
|
static int icvFindLoop( CvEMDState * state ); |
|
|
|
static void icvAddBasicVariable( CvEMDState * state, |
|
int min_i, int min_j, |
|
CvNode1D * prev_u_min_i, |
|
CvNode1D * prev_v_min_j, |
|
CvNode1D * u_head ); |
|
|
|
static float icvDistL2( const float *x, const float *y, void *user_param ); |
|
static float icvDistL1( const float *x, const float *y, void *user_param ); |
|
static float icvDistC( const float *x, const float *y, void *user_param ); |
|
|
|
/* The main function */ |
|
CV_IMPL float cvCalcEMD2( const CvArr* signature_arr1, |
|
const CvArr* signature_arr2, |
|
int dist_type, |
|
CvDistanceFunction dist_func, |
|
const CvArr* cost_matrix, |
|
CvArr* flow_matrix, |
|
float *lower_bound, |
|
void *user_param ) |
|
{ |
|
cv::AutoBuffer<char> local_buf; |
|
CvEMDState state; |
|
float emd = 0; |
|
|
|
memset( &state, 0, sizeof(state)); |
|
|
|
double total_cost = 0; |
|
int result = 0; |
|
float eps, min_delta; |
|
CvNode2D *xp = 0; |
|
CvMat sign_stub1, *signature1 = (CvMat*)signature_arr1; |
|
CvMat sign_stub2, *signature2 = (CvMat*)signature_arr2; |
|
CvMat cost_stub, *cost = &cost_stub; |
|
CvMat flow_stub, *flow = (CvMat*)flow_matrix; |
|
int dims, size1, size2; |
|
|
|
signature1 = cvGetMat( signature1, &sign_stub1 ); |
|
signature2 = cvGetMat( signature2, &sign_stub2 ); |
|
|
|
if( signature1->cols != signature2->cols ) |
|
CV_Error( CV_StsUnmatchedSizes, "The arrays must have equal number of columns (which is number of dimensions but 1)" ); |
|
|
|
dims = signature1->cols - 1; |
|
size1 = signature1->rows; |
|
size2 = signature2->rows; |
|
|
|
if( !CV_ARE_TYPES_EQ( signature1, signature2 )) |
|
CV_Error( CV_StsUnmatchedFormats, "The array must have equal types" ); |
|
|
|
if( CV_MAT_TYPE( signature1->type ) != CV_32FC1 ) |
|
CV_Error( CV_StsUnsupportedFormat, "The signatures must be 32fC1" ); |
|
|
|
if( flow ) |
|
{ |
|
flow = cvGetMat( flow, &flow_stub ); |
|
|
|
if( flow->rows != size1 || flow->cols != size2 ) |
|
CV_Error( CV_StsUnmatchedSizes, |
|
"The flow matrix size does not match to the signatures' sizes" ); |
|
|
|
if( CV_MAT_TYPE( flow->type ) != CV_32FC1 ) |
|
CV_Error( CV_StsUnsupportedFormat, "The flow matrix must be 32fC1" ); |
|
} |
|
|
|
cost->data.fl = 0; |
|
cost->step = 0; |
|
|
|
if( dist_type < 0 ) |
|
{ |
|
if( cost_matrix ) |
|
{ |
|
if( dist_func ) |
|
CV_Error( CV_StsBadArg, |
|
"Only one of cost matrix or distance function should be non-NULL in case of user-defined distance" ); |
|
|
|
if( lower_bound ) |
|
CV_Error( CV_StsBadArg, |
|
"The lower boundary can not be calculated if the cost matrix is used" ); |
|
|
|
cost = cvGetMat( cost_matrix, &cost_stub ); |
|
if( cost->rows != size1 || cost->cols != size2 ) |
|
CV_Error( CV_StsUnmatchedSizes, |
|
"The cost matrix size does not match to the signatures' sizes" ); |
|
|
|
if( CV_MAT_TYPE( cost->type ) != CV_32FC1 ) |
|
CV_Error( CV_StsUnsupportedFormat, "The cost matrix must be 32fC1" ); |
|
} |
|
else if( !dist_func ) |
|
CV_Error( CV_StsNullPtr, "In case of user-defined distance Distance function is undefined" ); |
|
} |
|
else |
|
{ |
|
if( dims == 0 ) |
|
CV_Error( CV_StsBadSize, |
|
"Number of dimensions can be 0 only if a user-defined metric is used" ); |
|
user_param = (void *) (size_t)dims; |
|
switch (dist_type) |
|
{ |
|
case CV_DIST_L1: |
|
dist_func = icvDistL1; |
|
break; |
|
case CV_DIST_L2: |
|
dist_func = icvDistL2; |
|
break; |
|
case CV_DIST_C: |
|
dist_func = icvDistC; |
|
break; |
|
default: |
|
CV_Error( CV_StsBadFlag, "Bad or unsupported metric type" ); |
|
} |
|
} |
|
|
|
result = icvInitEMD( signature1->data.fl, size1, |
|
signature2->data.fl, size2, |
|
dims, dist_func, user_param, |
|
cost->data.fl, cost->step, |
|
&state, lower_bound, local_buf ); |
|
|
|
if( result > 0 && lower_bound ) |
|
{ |
|
emd = *lower_bound; |
|
return emd; |
|
} |
|
|
|
eps = CV_EMD_EPS * state.max_cost; |
|
|
|
/* if ssize = 1 or dsize = 1 then we are done, else ... */ |
|
if( state.ssize > 1 && state.dsize > 1 ) |
|
{ |
|
int itr; |
|
|
|
for( itr = 1; itr < MAX_ITERATIONS; itr++ ) |
|
{ |
|
/* find basic variables */ |
|
result = icvFindBasicVariables( state.cost, state.is_x, |
|
state.u, state.v, state.ssize, state.dsize ); |
|
if( result < 0 ) |
|
break; |
|
|
|
/* check for optimality */ |
|
min_delta = icvIsOptimal( state.cost, state.is_x, |
|
state.u, state.v, |
|
state.ssize, state.dsize, state.enter_x ); |
|
|
|
if( min_delta == CV_EMD_INF ) |
|
CV_Error( CV_StsNoConv, "" ); |
|
|
|
/* if no negative deltamin, we found the optimal solution */ |
|
if( min_delta >= -eps ) |
|
break; |
|
|
|
/* improve solution */ |
|
if(!icvNewSolution( &state )) |
|
CV_Error( CV_StsNoConv, "" ); |
|
} |
|
} |
|
|
|
/* compute the total flow */ |
|
for( xp = state._x; xp < state.end_x; xp++ ) |
|
{ |
|
float val = xp->val; |
|
int i = xp->i; |
|
int j = xp->j; |
|
|
|
if( xp == state.enter_x ) |
|
continue; |
|
|
|
int ci = state.idx1[i]; |
|
int cj = state.idx2[j]; |
|
|
|
if( ci >= 0 && cj >= 0 ) |
|
{ |
|
total_cost += (double)val * state.cost[i][j]; |
|
if( flow ) |
|
((float*)(flow->data.ptr + flow->step*ci))[cj] = val; |
|
} |
|
} |
|
|
|
emd = (float) (total_cost / state.weight); |
|
return emd; |
|
} |
|
|
|
|
|
/************************************************************************************\ |
|
* initialize structure, allocate buffers and generate initial golution * |
|
\************************************************************************************/ |
|
static int icvInitEMD( const float* signature1, int size1, |
|
const float* signature2, int size2, |
|
int dims, CvDistanceFunction dist_func, void* user_param, |
|
const float* cost, int cost_step, |
|
CvEMDState* state, float* lower_bound, |
|
cv::AutoBuffer<char>& _buffer ) |
|
{ |
|
float s_sum = 0, d_sum = 0, diff; |
|
int i, j; |
|
int ssize = 0, dsize = 0; |
|
int equal_sums = 1; |
|
int buffer_size; |
|
float max_cost = 0; |
|
char *buffer, *buffer_end; |
|
|
|
memset( state, 0, sizeof( *state )); |
|
assert( cost_step % sizeof(float) == 0 ); |
|
cost_step /= sizeof(float); |
|
|
|
/* calculate buffer size */ |
|
buffer_size = (size1+1) * (size2+1) * (sizeof( float ) + /* cost */ |
|
sizeof( char ) + /* is_x */ |
|
sizeof( float )) + /* delta matrix */ |
|
(size1 + size2 + 2) * (sizeof( CvNode2D ) + /* _x */ |
|
sizeof( CvNode2D * ) + /* cols_x & rows_x */ |
|
sizeof( CvNode1D ) + /* u & v */ |
|
sizeof( float ) + /* s & d */ |
|
sizeof( int ) + sizeof(CvNode2D*)) + /* idx1 & idx2 */ |
|
(size1+1) * (sizeof( float * ) + sizeof( char * ) + /* rows pointers for */ |
|
sizeof( float * )) + 256; /* cost, is_x and delta */ |
|
|
|
if( buffer_size < (int) (dims * 2 * sizeof( float ))) |
|
{ |
|
buffer_size = dims * 2 * sizeof( float ); |
|
} |
|
|
|
/* allocate buffers */ |
|
_buffer.allocate(buffer_size); |
|
|
|
state->buffer = buffer = _buffer; |
|
buffer_end = buffer + buffer_size; |
|
|
|
state->idx1 = (int*) buffer; |
|
buffer += (size1 + 1) * sizeof( int ); |
|
|
|
state->idx2 = (int*) buffer; |
|
buffer += (size2 + 1) * sizeof( int ); |
|
|
|
state->s = (float *) buffer; |
|
buffer += (size1 + 1) * sizeof( float ); |
|
|
|
state->d = (float *) buffer; |
|
buffer += (size2 + 1) * sizeof( float ); |
|
|
|
/* sum up the supply and demand */ |
|
for( i = 0; i < size1; i++ ) |
|
{ |
|
float weight = signature1[i * (dims + 1)]; |
|
|
|
if( weight > 0 ) |
|
{ |
|
s_sum += weight; |
|
state->s[ssize] = weight; |
|
state->idx1[ssize++] = i; |
|
|
|
} |
|
else if( weight < 0 ) |
|
CV_Error(CV_StsOutOfRange, ""); |
|
} |
|
|
|
for( i = 0; i < size2; i++ ) |
|
{ |
|
float weight = signature2[i * (dims + 1)]; |
|
|
|
if( weight > 0 ) |
|
{ |
|
d_sum += weight; |
|
state->d[dsize] = weight; |
|
state->idx2[dsize++] = i; |
|
} |
|
else if( weight < 0 ) |
|
CV_Error(CV_StsOutOfRange, ""); |
|
} |
|
|
|
if( ssize == 0 || dsize == 0 ) |
|
CV_Error(CV_StsOutOfRange, ""); |
|
|
|
/* if supply different than the demand, add a zero-cost dummy cluster */ |
|
diff = s_sum - d_sum; |
|
if( fabs( diff ) >= CV_EMD_EPS * s_sum ) |
|
{ |
|
equal_sums = 0; |
|
if( diff < 0 ) |
|
{ |
|
state->s[ssize] = -diff; |
|
state->idx1[ssize++] = -1; |
|
} |
|
else |
|
{ |
|
state->d[dsize] = diff; |
|
state->idx2[dsize++] = -1; |
|
} |
|
} |
|
|
|
state->ssize = ssize; |
|
state->dsize = dsize; |
|
state->weight = s_sum > d_sum ? s_sum : d_sum; |
|
|
|
if( lower_bound && equal_sums ) /* check lower bound */ |
|
{ |
|
int sz1 = size1 * (dims + 1), sz2 = size2 * (dims + 1); |
|
float lb = 0; |
|
|
|
float* xs = (float *) buffer; |
|
float* xd = xs + dims; |
|
|
|
memset( xs, 0, dims*sizeof(xs[0])); |
|
memset( xd, 0, dims*sizeof(xd[0])); |
|
|
|
for( j = 0; j < sz1; j += dims + 1 ) |
|
{ |
|
float weight = signature1[j]; |
|
for( i = 0; i < dims; i++ ) |
|
xs[i] += signature1[j + i + 1] * weight; |
|
} |
|
|
|
for( j = 0; j < sz2; j += dims + 1 ) |
|
{ |
|
float weight = signature2[j]; |
|
for( i = 0; i < dims; i++ ) |
|
xd[i] += signature2[j + i + 1] * weight; |
|
} |
|
|
|
lb = dist_func( xs, xd, user_param ) / state->weight; |
|
i = *lower_bound <= lb; |
|
*lower_bound = lb; |
|
if( i ) |
|
return 1; |
|
} |
|
|
|
/* assign pointers */ |
|
state->is_used = (char *) buffer; |
|
/* init delta matrix */ |
|
state->delta = (float **) buffer; |
|
buffer += ssize * sizeof( float * ); |
|
|
|
for( i = 0; i < ssize; i++ ) |
|
{ |
|
state->delta[i] = (float *) buffer; |
|
buffer += dsize * sizeof( float ); |
|
} |
|
|
|
state->loop = (CvNode2D **) buffer; |
|
buffer += (ssize + dsize + 1) * sizeof(CvNode2D*); |
|
|
|
state->_x = state->end_x = (CvNode2D *) buffer; |
|
buffer += (ssize + dsize) * sizeof( CvNode2D ); |
|
|
|
/* init cost matrix */ |
|
state->cost = (float **) buffer; |
|
buffer += ssize * sizeof( float * ); |
|
|
|
/* compute the distance matrix */ |
|
for( i = 0; i < ssize; i++ ) |
|
{ |
|
int ci = state->idx1[i]; |
|
|
|
state->cost[i] = (float *) buffer; |
|
buffer += dsize * sizeof( float ); |
|
|
|
if( ci >= 0 ) |
|
{ |
|
for( j = 0; j < dsize; j++ ) |
|
{ |
|
int cj = state->idx2[j]; |
|
if( cj < 0 ) |
|
state->cost[i][j] = 0; |
|
else |
|
{ |
|
float val; |
|
if( dist_func ) |
|
{ |
|
val = dist_func( signature1 + ci * (dims + 1) + 1, |
|
signature2 + cj * (dims + 1) + 1, |
|
user_param ); |
|
} |
|
else |
|
{ |
|
assert( cost ); |
|
val = cost[cost_step*ci + cj]; |
|
} |
|
state->cost[i][j] = val; |
|
if( max_cost < val ) |
|
max_cost = val; |
|
} |
|
} |
|
} |
|
else |
|
{ |
|
for( j = 0; j < dsize; j++ ) |
|
state->cost[i][j] = 0; |
|
} |
|
} |
|
|
|
state->max_cost = max_cost; |
|
|
|
memset( buffer, 0, buffer_end - buffer ); |
|
|
|
state->rows_x = (CvNode2D **) buffer; |
|
buffer += ssize * sizeof( CvNode2D * ); |
|
|
|
state->cols_x = (CvNode2D **) buffer; |
|
buffer += dsize * sizeof( CvNode2D * ); |
|
|
|
state->u = (CvNode1D *) buffer; |
|
buffer += ssize * sizeof( CvNode1D ); |
|
|
|
state->v = (CvNode1D *) buffer; |
|
buffer += dsize * sizeof( CvNode1D ); |
|
|
|
/* init is_x matrix */ |
|
state->is_x = (char **) buffer; |
|
buffer += ssize * sizeof( char * ); |
|
|
|
for( i = 0; i < ssize; i++ ) |
|
{ |
|
state->is_x[i] = buffer; |
|
buffer += dsize; |
|
} |
|
|
|
assert( buffer <= buffer_end ); |
|
|
|
icvRussel( state ); |
|
|
|
state->enter_x = (state->end_x)++; |
|
return 0; |
|
} |
|
|
|
|
|
/****************************************************************************************\ |
|
* icvFindBasicVariables * |
|
\****************************************************************************************/ |
|
static int icvFindBasicVariables( float **cost, char **is_x, |
|
CvNode1D * u, CvNode1D * v, int ssize, int dsize ) |
|
{ |
|
int i, j, found; |
|
int u_cfound, v_cfound; |
|
CvNode1D u0_head, u1_head, *cur_u, *prev_u; |
|
CvNode1D v0_head, v1_head, *cur_v, *prev_v; |
|
|
|
/* initialize the rows list (u) and the columns list (v) */ |
|
u0_head.next = u; |
|
for( i = 0; i < ssize; i++ ) |
|
{ |
|
u[i].next = u + i + 1; |
|
} |
|
u[ssize - 1].next = 0; |
|
u1_head.next = 0; |
|
|
|
v0_head.next = ssize > 1 ? v + 1 : 0; |
|
for( i = 1; i < dsize; i++ ) |
|
{ |
|
v[i].next = v + i + 1; |
|
} |
|
v[dsize - 1].next = 0; |
|
v1_head.next = 0; |
|
|
|
/* there are ssize+dsize variables but only ssize+dsize-1 independent equations, |
|
so set v[0]=0 */ |
|
v[0].val = 0; |
|
v1_head.next = v; |
|
v1_head.next->next = 0; |
|
|
|
/* loop until all variables are found */ |
|
u_cfound = v_cfound = 0; |
|
while( u_cfound < ssize || v_cfound < dsize ) |
|
{ |
|
found = 0; |
|
if( v_cfound < dsize ) |
|
{ |
|
/* loop over all marked columns */ |
|
prev_v = &v1_head; |
|
|
|
for( found |= (cur_v = v1_head.next) != 0; cur_v != 0; cur_v = cur_v->next ) |
|
{ |
|
float cur_v_val = cur_v->val; |
|
|
|
j = (int)(cur_v - v); |
|
/* find the variables in column j */ |
|
prev_u = &u0_head; |
|
for( cur_u = u0_head.next; cur_u != 0; ) |
|
{ |
|
i = (int)(cur_u - u); |
|
if( is_x[i][j] ) |
|
{ |
|
/* compute u[i] */ |
|
cur_u->val = cost[i][j] - cur_v_val; |
|
/* ...and add it to the marked list */ |
|
prev_u->next = cur_u->next; |
|
cur_u->next = u1_head.next; |
|
u1_head.next = cur_u; |
|
cur_u = prev_u->next; |
|
} |
|
else |
|
{ |
|
prev_u = cur_u; |
|
cur_u = cur_u->next; |
|
} |
|
} |
|
prev_v->next = cur_v->next; |
|
v_cfound++; |
|
} |
|
} |
|
|
|
if( u_cfound < ssize ) |
|
{ |
|
/* loop over all marked rows */ |
|
prev_u = &u1_head; |
|
for( found |= (cur_u = u1_head.next) != 0; cur_u != 0; cur_u = cur_u->next ) |
|
{ |
|
float cur_u_val = cur_u->val; |
|
float *_cost; |
|
char *_is_x; |
|
|
|
i = (int)(cur_u - u); |
|
_cost = cost[i]; |
|
_is_x = is_x[i]; |
|
/* find the variables in rows i */ |
|
prev_v = &v0_head; |
|
for( cur_v = v0_head.next; cur_v != 0; ) |
|
{ |
|
j = (int)(cur_v - v); |
|
if( _is_x[j] ) |
|
{ |
|
/* compute v[j] */ |
|
cur_v->val = _cost[j] - cur_u_val; |
|
/* ...and add it to the marked list */ |
|
prev_v->next = cur_v->next; |
|
cur_v->next = v1_head.next; |
|
v1_head.next = cur_v; |
|
cur_v = prev_v->next; |
|
} |
|
else |
|
{ |
|
prev_v = cur_v; |
|
cur_v = cur_v->next; |
|
} |
|
} |
|
prev_u->next = cur_u->next; |
|
u_cfound++; |
|
} |
|
} |
|
|
|
if( !found ) |
|
return -1; |
|
} |
|
|
|
return 0; |
|
} |
|
|
|
|
|
/****************************************************************************************\ |
|
* icvIsOptimal * |
|
\****************************************************************************************/ |
|
static float |
|
icvIsOptimal( float **cost, char **is_x, |
|
CvNode1D * u, CvNode1D * v, int ssize, int dsize, CvNode2D * enter_x ) |
|
{ |
|
float delta, min_delta = CV_EMD_INF; |
|
int i, j, min_i = 0, min_j = 0; |
|
|
|
/* find the minimal cij-ui-vj over all i,j */ |
|
for( i = 0; i < ssize; i++ ) |
|
{ |
|
float u_val = u[i].val; |
|
float *_cost = cost[i]; |
|
char *_is_x = is_x[i]; |
|
|
|
for( j = 0; j < dsize; j++ ) |
|
{ |
|
if( !_is_x[j] ) |
|
{ |
|
delta = _cost[j] - u_val - v[j].val; |
|
if( min_delta > delta ) |
|
{ |
|
min_delta = delta; |
|
min_i = i; |
|
min_j = j; |
|
} |
|
} |
|
} |
|
} |
|
|
|
enter_x->i = min_i; |
|
enter_x->j = min_j; |
|
|
|
return min_delta; |
|
} |
|
|
|
/****************************************************************************************\ |
|
* icvNewSolution * |
|
\****************************************************************************************/ |
|
static bool |
|
icvNewSolution( CvEMDState * state ) |
|
{ |
|
int i, j; |
|
float min_val = CV_EMD_INF; |
|
int steps; |
|
CvNode2D head, *cur_x, *next_x, *leave_x = 0; |
|
CvNode2D *enter_x = state->enter_x; |
|
CvNode2D **loop = state->loop; |
|
|
|
/* enter the new basic variable */ |
|
i = enter_x->i; |
|
j = enter_x->j; |
|
state->is_x[i][j] = 1; |
|
enter_x->next[0] = state->rows_x[i]; |
|
enter_x->next[1] = state->cols_x[j]; |
|
enter_x->val = 0; |
|
state->rows_x[i] = enter_x; |
|
state->cols_x[j] = enter_x; |
|
|
|
/* find a chain reaction */ |
|
steps = icvFindLoop( state ); |
|
|
|
if( steps == 0 ) |
|
return false; |
|
|
|
/* find the largest value in the loop */ |
|
for( i = 1; i < steps; i += 2 ) |
|
{ |
|
float temp = loop[i]->val; |
|
|
|
if( min_val > temp ) |
|
{ |
|
leave_x = loop[i]; |
|
min_val = temp; |
|
} |
|
} |
|
|
|
/* update the loop */ |
|
for( i = 0; i < steps; i += 2 ) |
|
{ |
|
float temp0 = loop[i]->val + min_val; |
|
float temp1 = loop[i + 1]->val - min_val; |
|
|
|
loop[i]->val = temp0; |
|
loop[i + 1]->val = temp1; |
|
} |
|
|
|
/* remove the leaving basic variable */ |
|
i = leave_x->i; |
|
j = leave_x->j; |
|
state->is_x[i][j] = 0; |
|
|
|
head.next[0] = state->rows_x[i]; |
|
cur_x = &head; |
|
while( (next_x = cur_x->next[0]) != leave_x ) |
|
{ |
|
cur_x = next_x; |
|
assert( cur_x ); |
|
} |
|
cur_x->next[0] = next_x->next[0]; |
|
state->rows_x[i] = head.next[0]; |
|
|
|
head.next[1] = state->cols_x[j]; |
|
cur_x = &head; |
|
while( (next_x = cur_x->next[1]) != leave_x ) |
|
{ |
|
cur_x = next_x; |
|
assert( cur_x ); |
|
} |
|
cur_x->next[1] = next_x->next[1]; |
|
state->cols_x[j] = head.next[1]; |
|
|
|
/* set enter_x to be the new empty slot */ |
|
state->enter_x = leave_x; |
|
|
|
return true; |
|
} |
|
|
|
|
|
|
|
/****************************************************************************************\ |
|
* icvFindLoop * |
|
\****************************************************************************************/ |
|
static int |
|
icvFindLoop( CvEMDState * state ) |
|
{ |
|
int i, steps = 1; |
|
CvNode2D *new_x; |
|
CvNode2D **loop = state->loop; |
|
CvNode2D *enter_x = state->enter_x, *_x = state->_x; |
|
char *is_used = state->is_used; |
|
|
|
memset( is_used, 0, state->ssize + state->dsize ); |
|
|
|
new_x = loop[0] = enter_x; |
|
is_used[enter_x - _x] = 1; |
|
steps = 1; |
|
|
|
do |
|
{ |
|
if( (steps & 1) == 1 ) |
|
{ |
|
/* find an unused x in the row */ |
|
new_x = state->rows_x[new_x->i]; |
|
while( new_x != 0 && is_used[new_x - _x] ) |
|
new_x = new_x->next[0]; |
|
} |
|
else |
|
{ |
|
/* find an unused x in the column, or the entering x */ |
|
new_x = state->cols_x[new_x->j]; |
|
while( new_x != 0 && is_used[new_x - _x] && new_x != enter_x ) |
|
new_x = new_x->next[1]; |
|
if( new_x == enter_x ) |
|
break; |
|
} |
|
|
|
if( new_x != 0 ) /* found the next x */ |
|
{ |
|
/* add x to the loop */ |
|
loop[steps++] = new_x; |
|
is_used[new_x - _x] = 1; |
|
} |
|
else /* didn't find the next x */ |
|
{ |
|
/* backtrack */ |
|
do |
|
{ |
|
i = steps & 1; |
|
new_x = loop[steps - 1]; |
|
do |
|
{ |
|
new_x = new_x->next[i]; |
|
} |
|
while( new_x != 0 && is_used[new_x - _x] ); |
|
|
|
if( new_x == 0 ) |
|
{ |
|
is_used[loop[--steps] - _x] = 0; |
|
} |
|
} |
|
while( new_x == 0 && steps > 0 ); |
|
|
|
is_used[loop[steps - 1] - _x] = 0; |
|
loop[steps - 1] = new_x; |
|
is_used[new_x - _x] = 1; |
|
} |
|
} |
|
while( steps > 0 ); |
|
|
|
return steps; |
|
} |
|
|
|
|
|
|
|
/****************************************************************************************\ |
|
* icvRussel * |
|
\****************************************************************************************/ |
|
static void |
|
icvRussel( CvEMDState * state ) |
|
{ |
|
int i, j, min_i = -1, min_j = -1; |
|
float min_delta, diff; |
|
CvNode1D u_head, *cur_u, *prev_u; |
|
CvNode1D v_head, *cur_v, *prev_v; |
|
CvNode1D *prev_u_min_i = 0, *prev_v_min_j = 0, *remember; |
|
CvNode1D *u = state->u, *v = state->v; |
|
int ssize = state->ssize, dsize = state->dsize; |
|
float eps = CV_EMD_EPS * state->max_cost; |
|
float **cost = state->cost; |
|
float **delta = state->delta; |
|
|
|
/* initialize the rows list (ur), and the columns list (vr) */ |
|
u_head.next = u; |
|
for( i = 0; i < ssize; i++ ) |
|
{ |
|
u[i].next = u + i + 1; |
|
} |
|
u[ssize - 1].next = 0; |
|
|
|
v_head.next = v; |
|
for( i = 0; i < dsize; i++ ) |
|
{ |
|
v[i].val = -CV_EMD_INF; |
|
v[i].next = v + i + 1; |
|
} |
|
v[dsize - 1].next = 0; |
|
|
|
/* find the maximum row and column values (ur[i] and vr[j]) */ |
|
for( i = 0; i < ssize; i++ ) |
|
{ |
|
float u_val = -CV_EMD_INF; |
|
float *cost_row = cost[i]; |
|
|
|
for( j = 0; j < dsize; j++ ) |
|
{ |
|
float temp = cost_row[j]; |
|
|
|
if( u_val < temp ) |
|
u_val = temp; |
|
if( v[j].val < temp ) |
|
v[j].val = temp; |
|
} |
|
u[i].val = u_val; |
|
} |
|
|
|
/* compute the delta matrix */ |
|
for( i = 0; i < ssize; i++ ) |
|
{ |
|
float u_val = u[i].val; |
|
float *delta_row = delta[i]; |
|
float *cost_row = cost[i]; |
|
|
|
for( j = 0; j < dsize; j++ ) |
|
{ |
|
delta_row[j] = cost_row[j] - u_val - v[j].val; |
|
} |
|
} |
|
|
|
/* find the basic variables */ |
|
do |
|
{ |
|
/* find the smallest delta[i][j] */ |
|
min_i = -1; |
|
min_delta = CV_EMD_INF; |
|
prev_u = &u_head; |
|
for( cur_u = u_head.next; cur_u != 0; cur_u = cur_u->next ) |
|
{ |
|
i = (int)(cur_u - u); |
|
float *delta_row = delta[i]; |
|
|
|
prev_v = &v_head; |
|
for( cur_v = v_head.next; cur_v != 0; cur_v = cur_v->next ) |
|
{ |
|
j = (int)(cur_v - v); |
|
if( min_delta > delta_row[j] ) |
|
{ |
|
min_delta = delta_row[j]; |
|
min_i = i; |
|
min_j = j; |
|
prev_u_min_i = prev_u; |
|
prev_v_min_j = prev_v; |
|
} |
|
prev_v = cur_v; |
|
} |
|
prev_u = cur_u; |
|
} |
|
|
|
if( min_i < 0 ) |
|
break; |
|
|
|
/* add x[min_i][min_j] to the basis, and adjust supplies and cost */ |
|
remember = prev_u_min_i->next; |
|
icvAddBasicVariable( state, min_i, min_j, prev_u_min_i, prev_v_min_j, &u_head ); |
|
|
|
/* update the necessary delta[][] */ |
|
if( remember == prev_u_min_i->next ) /* line min_i was deleted */ |
|
{ |
|
for( cur_v = v_head.next; cur_v != 0; cur_v = cur_v->next ) |
|
{ |
|
j = (int)(cur_v - v); |
|
if( cur_v->val == cost[min_i][j] ) /* column j needs updating */ |
|
{ |
|
float max_val = -CV_EMD_INF; |
|
|
|
/* find the new maximum value in the column */ |
|
for( cur_u = u_head.next; cur_u != 0; cur_u = cur_u->next ) |
|
{ |
|
float temp = cost[cur_u - u][j]; |
|
|
|
if( max_val < temp ) |
|
max_val = temp; |
|
} |
|
|
|
/* if needed, adjust the relevant delta[*][j] */ |
|
diff = max_val - cur_v->val; |
|
cur_v->val = max_val; |
|
if( fabs( diff ) < eps ) |
|
{ |
|
for( cur_u = u_head.next; cur_u != 0; cur_u = cur_u->next ) |
|
delta[cur_u - u][j] += diff; |
|
} |
|
} |
|
} |
|
} |
|
else /* column min_j was deleted */ |
|
{ |
|
for( cur_u = u_head.next; cur_u != 0; cur_u = cur_u->next ) |
|
{ |
|
i = (int)(cur_u - u); |
|
if( cur_u->val == cost[i][min_j] ) /* row i needs updating */ |
|
{ |
|
float max_val = -CV_EMD_INF; |
|
|
|
/* find the new maximum value in the row */ |
|
for( cur_v = v_head.next; cur_v != 0; cur_v = cur_v->next ) |
|
{ |
|
float temp = cost[i][cur_v - v]; |
|
|
|
if( max_val < temp ) |
|
max_val = temp; |
|
} |
|
|
|
/* if needed, adjust the relevant delta[i][*] */ |
|
diff = max_val - cur_u->val; |
|
cur_u->val = max_val; |
|
|
|
if( fabs( diff ) < eps ) |
|
{ |
|
for( cur_v = v_head.next; cur_v != 0; cur_v = cur_v->next ) |
|
delta[i][cur_v - v] += diff; |
|
} |
|
} |
|
} |
|
} |
|
} |
|
while( u_head.next != 0 || v_head.next != 0 ); |
|
} |
|
|
|
|
|
|
|
/****************************************************************************************\ |
|
* icvAddBasicVariable * |
|
\****************************************************************************************/ |
|
static void |
|
icvAddBasicVariable( CvEMDState * state, |
|
int min_i, int min_j, |
|
CvNode1D * prev_u_min_i, CvNode1D * prev_v_min_j, CvNode1D * u_head ) |
|
{ |
|
float temp; |
|
CvNode2D *end_x = state->end_x; |
|
|
|
if( state->s[min_i] < state->d[min_j] + state->weight * CV_EMD_EPS ) |
|
{ /* supply exhausted */ |
|
temp = state->s[min_i]; |
|
state->s[min_i] = 0; |
|
state->d[min_j] -= temp; |
|
} |
|
else /* demand exhausted */ |
|
{ |
|
temp = state->d[min_j]; |
|
state->d[min_j] = 0; |
|
state->s[min_i] -= temp; |
|
} |
|
|
|
/* x(min_i,min_j) is a basic variable */ |
|
state->is_x[min_i][min_j] = 1; |
|
|
|
end_x->val = temp; |
|
end_x->i = min_i; |
|
end_x->j = min_j; |
|
end_x->next[0] = state->rows_x[min_i]; |
|
end_x->next[1] = state->cols_x[min_j]; |
|
state->rows_x[min_i] = end_x; |
|
state->cols_x[min_j] = end_x; |
|
state->end_x = end_x + 1; |
|
|
|
/* delete supply row only if the empty, and if not last row */ |
|
if( state->s[min_i] == 0 && u_head->next->next != 0 ) |
|
prev_u_min_i->next = prev_u_min_i->next->next; /* remove row from list */ |
|
else |
|
prev_v_min_j->next = prev_v_min_j->next->next; /* remove column from list */ |
|
} |
|
|
|
|
|
/****************************************************************************************\ |
|
* standard metrics * |
|
\****************************************************************************************/ |
|
static float |
|
icvDistL1( const float *x, const float *y, void *user_param ) |
|
{ |
|
int i, dims = (int)(size_t)user_param; |
|
double s = 0; |
|
|
|
for( i = 0; i < dims; i++ ) |
|
{ |
|
double t = x[i] - y[i]; |
|
|
|
s += fabs( t ); |
|
} |
|
return (float)s; |
|
} |
|
|
|
static float |
|
icvDistL2( const float *x, const float *y, void *user_param ) |
|
{ |
|
int i, dims = (int)(size_t)user_param; |
|
double s = 0; |
|
|
|
for( i = 0; i < dims; i++ ) |
|
{ |
|
double t = x[i] - y[i]; |
|
|
|
s += t * t; |
|
} |
|
return cvSqrt( (float)s ); |
|
} |
|
|
|
static float |
|
icvDistC( const float *x, const float *y, void *user_param ) |
|
{ |
|
int i, dims = (int)(size_t)user_param; |
|
double s = 0; |
|
|
|
for( i = 0; i < dims; i++ ) |
|
{ |
|
double t = fabs( x[i] - y[i] ); |
|
|
|
if( s < t ) |
|
s = t; |
|
} |
|
return (float)s; |
|
} |
|
|
|
/* End of file. */ |
|
|
|
|