mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1800 lines
66 KiB
1800 lines
66 KiB
// Copyright 2012 Google Inc. All Rights Reserved. |
|
// |
|
// Use of this source code is governed by a BSD-style license |
|
// that can be found in the COPYING file in the root of the source |
|
// tree. An additional intellectual property rights grant can be found |
|
// in the file PATENTS. All contributing project authors may |
|
// be found in the AUTHORS file in the root of the source tree. |
|
// ----------------------------------------------------------------------------- |
|
// |
|
// Author: Jyrki Alakuijala (jyrki@google.com) |
|
// |
|
|
|
#include <assert.h> |
|
#include <math.h> |
|
|
|
#include "./backward_references_enc.h" |
|
#include "./histogram_enc.h" |
|
#include "../dsp/lossless.h" |
|
#include "../dsp/lossless_common.h" |
|
#include "../dsp/dsp.h" |
|
#include "../utils/color_cache_utils.h" |
|
#include "../utils/utils.h" |
|
|
|
#define VALUES_IN_BYTE 256 |
|
|
|
#define MIN_BLOCK_SIZE 256 // minimum block size for backward references |
|
|
|
#define MAX_ENTROPY (1e30f) |
|
|
|
// 1M window (4M bytes) minus 120 special codes for short distances. |
|
#define WINDOW_SIZE_BITS 20 |
|
#define WINDOW_SIZE ((1 << WINDOW_SIZE_BITS) - 120) |
|
|
|
// Minimum number of pixels for which it is cheaper to encode a |
|
// distance + length instead of each pixel as a literal. |
|
#define MIN_LENGTH 4 |
|
// If you change this, you need MAX_LENGTH_BITS + WINDOW_SIZE_BITS <= 32 as it |
|
// is used in VP8LHashChain. |
|
#define MAX_LENGTH_BITS 12 |
|
// We want the max value to be attainable and stored in MAX_LENGTH_BITS bits. |
|
#define MAX_LENGTH ((1 << MAX_LENGTH_BITS) - 1) |
|
#if MAX_LENGTH_BITS + WINDOW_SIZE_BITS > 32 |
|
#error "MAX_LENGTH_BITS + WINDOW_SIZE_BITS > 32" |
|
#endif |
|
|
|
// ----------------------------------------------------------------------------- |
|
|
|
static const uint8_t plane_to_code_lut[128] = { |
|
96, 73, 55, 39, 23, 13, 5, 1, 255, 255, 255, 255, 255, 255, 255, 255, |
|
101, 78, 58, 42, 26, 16, 8, 2, 0, 3, 9, 17, 27, 43, 59, 79, |
|
102, 86, 62, 46, 32, 20, 10, 6, 4, 7, 11, 21, 33, 47, 63, 87, |
|
105, 90, 70, 52, 37, 28, 18, 14, 12, 15, 19, 29, 38, 53, 71, 91, |
|
110, 99, 82, 66, 48, 35, 30, 24, 22, 25, 31, 36, 49, 67, 83, 100, |
|
115, 108, 94, 76, 64, 50, 44, 40, 34, 41, 45, 51, 65, 77, 95, 109, |
|
118, 113, 103, 92, 80, 68, 60, 56, 54, 57, 61, 69, 81, 93, 104, 114, |
|
119, 116, 111, 106, 97, 88, 84, 74, 72, 75, 85, 89, 98, 107, 112, 117 |
|
}; |
|
|
|
static int DistanceToPlaneCode(int xsize, int dist) { |
|
const int yoffset = dist / xsize; |
|
const int xoffset = dist - yoffset * xsize; |
|
if (xoffset <= 8 && yoffset < 8) { |
|
return plane_to_code_lut[yoffset * 16 + 8 - xoffset] + 1; |
|
} else if (xoffset > xsize - 8 && yoffset < 7) { |
|
return plane_to_code_lut[(yoffset + 1) * 16 + 8 + (xsize - xoffset)] + 1; |
|
} |
|
return dist + 120; |
|
} |
|
|
|
// Returns the exact index where array1 and array2 are different. For an index |
|
// inferior or equal to best_len_match, the return value just has to be strictly |
|
// inferior to best_len_match. The current behavior is to return 0 if this index |
|
// is best_len_match, and the index itself otherwise. |
|
// If no two elements are the same, it returns max_limit. |
|
static WEBP_INLINE int FindMatchLength(const uint32_t* const array1, |
|
const uint32_t* const array2, |
|
int best_len_match, int max_limit) { |
|
// Before 'expensive' linear match, check if the two arrays match at the |
|
// current best length index. |
|
if (array1[best_len_match] != array2[best_len_match]) return 0; |
|
|
|
return VP8LVectorMismatch(array1, array2, max_limit); |
|
} |
|
|
|
// ----------------------------------------------------------------------------- |
|
// VP8LBackwardRefs |
|
|
|
struct PixOrCopyBlock { |
|
PixOrCopyBlock* next_; // next block (or NULL) |
|
PixOrCopy* start_; // data start |
|
int size_; // currently used size |
|
}; |
|
|
|
static void ClearBackwardRefs(VP8LBackwardRefs* const refs) { |
|
assert(refs != NULL); |
|
if (refs->tail_ != NULL) { |
|
*refs->tail_ = refs->free_blocks_; // recycle all blocks at once |
|
} |
|
refs->free_blocks_ = refs->refs_; |
|
refs->tail_ = &refs->refs_; |
|
refs->last_block_ = NULL; |
|
refs->refs_ = NULL; |
|
} |
|
|
|
void VP8LBackwardRefsClear(VP8LBackwardRefs* const refs) { |
|
assert(refs != NULL); |
|
ClearBackwardRefs(refs); |
|
while (refs->free_blocks_ != NULL) { |
|
PixOrCopyBlock* const next = refs->free_blocks_->next_; |
|
WebPSafeFree(refs->free_blocks_); |
|
refs->free_blocks_ = next; |
|
} |
|
} |
|
|
|
void VP8LBackwardRefsInit(VP8LBackwardRefs* const refs, int block_size) { |
|
assert(refs != NULL); |
|
memset(refs, 0, sizeof(*refs)); |
|
refs->tail_ = &refs->refs_; |
|
refs->block_size_ = |
|
(block_size < MIN_BLOCK_SIZE) ? MIN_BLOCK_SIZE : block_size; |
|
} |
|
|
|
VP8LRefsCursor VP8LRefsCursorInit(const VP8LBackwardRefs* const refs) { |
|
VP8LRefsCursor c; |
|
c.cur_block_ = refs->refs_; |
|
if (refs->refs_ != NULL) { |
|
c.cur_pos = c.cur_block_->start_; |
|
c.last_pos_ = c.cur_pos + c.cur_block_->size_; |
|
} else { |
|
c.cur_pos = NULL; |
|
c.last_pos_ = NULL; |
|
} |
|
return c; |
|
} |
|
|
|
void VP8LRefsCursorNextBlock(VP8LRefsCursor* const c) { |
|
PixOrCopyBlock* const b = c->cur_block_->next_; |
|
c->cur_pos = (b == NULL) ? NULL : b->start_; |
|
c->last_pos_ = (b == NULL) ? NULL : b->start_ + b->size_; |
|
c->cur_block_ = b; |
|
} |
|
|
|
// Create a new block, either from the free list or allocated |
|
static PixOrCopyBlock* BackwardRefsNewBlock(VP8LBackwardRefs* const refs) { |
|
PixOrCopyBlock* b = refs->free_blocks_; |
|
if (b == NULL) { // allocate new memory chunk |
|
const size_t total_size = |
|
sizeof(*b) + refs->block_size_ * sizeof(*b->start_); |
|
b = (PixOrCopyBlock*)WebPSafeMalloc(1ULL, total_size); |
|
if (b == NULL) { |
|
refs->error_ |= 1; |
|
return NULL; |
|
} |
|
b->start_ = (PixOrCopy*)((uint8_t*)b + sizeof(*b)); // not always aligned |
|
} else { // recycle from free-list |
|
refs->free_blocks_ = b->next_; |
|
} |
|
*refs->tail_ = b; |
|
refs->tail_ = &b->next_; |
|
refs->last_block_ = b; |
|
b->next_ = NULL; |
|
b->size_ = 0; |
|
return b; |
|
} |
|
|
|
static WEBP_INLINE void BackwardRefsCursorAdd(VP8LBackwardRefs* const refs, |
|
const PixOrCopy v) { |
|
PixOrCopyBlock* b = refs->last_block_; |
|
if (b == NULL || b->size_ == refs->block_size_) { |
|
b = BackwardRefsNewBlock(refs); |
|
if (b == NULL) return; // refs->error_ is set |
|
} |
|
b->start_[b->size_++] = v; |
|
} |
|
|
|
int VP8LBackwardRefsCopy(const VP8LBackwardRefs* const src, |
|
VP8LBackwardRefs* const dst) { |
|
const PixOrCopyBlock* b = src->refs_; |
|
ClearBackwardRefs(dst); |
|
assert(src->block_size_ == dst->block_size_); |
|
while (b != NULL) { |
|
PixOrCopyBlock* const new_b = BackwardRefsNewBlock(dst); |
|
if (new_b == NULL) return 0; // dst->error_ is set |
|
memcpy(new_b->start_, b->start_, b->size_ * sizeof(*b->start_)); |
|
new_b->size_ = b->size_; |
|
b = b->next_; |
|
} |
|
return 1; |
|
} |
|
|
|
// ----------------------------------------------------------------------------- |
|
// Hash chains |
|
|
|
int VP8LHashChainInit(VP8LHashChain* const p, int size) { |
|
assert(p->size_ == 0); |
|
assert(p->offset_length_ == NULL); |
|
assert(size > 0); |
|
p->offset_length_ = |
|
(uint32_t*)WebPSafeMalloc(size, sizeof(*p->offset_length_)); |
|
if (p->offset_length_ == NULL) return 0; |
|
p->size_ = size; |
|
|
|
return 1; |
|
} |
|
|
|
void VP8LHashChainClear(VP8LHashChain* const p) { |
|
assert(p != NULL); |
|
WebPSafeFree(p->offset_length_); |
|
|
|
p->size_ = 0; |
|
p->offset_length_ = NULL; |
|
} |
|
|
|
// ----------------------------------------------------------------------------- |
|
|
|
#define HASH_MULTIPLIER_HI (0xc6a4a793ULL) |
|
#define HASH_MULTIPLIER_LO (0x5bd1e996ULL) |
|
|
|
static WEBP_INLINE uint32_t GetPixPairHash64(const uint32_t* const argb) { |
|
uint32_t key; |
|
key = (argb[1] * HASH_MULTIPLIER_HI) & 0xffffffffu; |
|
key += (argb[0] * HASH_MULTIPLIER_LO) & 0xffffffffu; |
|
key = key >> (32 - HASH_BITS); |
|
return key; |
|
} |
|
|
|
// Returns the maximum number of hash chain lookups to do for a |
|
// given compression quality. Return value in range [8, 86]. |
|
static int GetMaxItersForQuality(int quality) { |
|
return 8 + (quality * quality) / 128; |
|
} |
|
|
|
static int GetWindowSizeForHashChain(int quality, int xsize) { |
|
const int max_window_size = (quality > 75) ? WINDOW_SIZE |
|
: (quality > 50) ? (xsize << 8) |
|
: (quality > 25) ? (xsize << 6) |
|
: (xsize << 4); |
|
assert(xsize > 0); |
|
return (max_window_size > WINDOW_SIZE) ? WINDOW_SIZE : max_window_size; |
|
} |
|
|
|
static WEBP_INLINE int MaxFindCopyLength(int len) { |
|
return (len < MAX_LENGTH) ? len : MAX_LENGTH; |
|
} |
|
|
|
int VP8LHashChainFill(VP8LHashChain* const p, int quality, |
|
const uint32_t* const argb, int xsize, int ysize, |
|
int low_effort) { |
|
const int size = xsize * ysize; |
|
const int iter_max = GetMaxItersForQuality(quality); |
|
const uint32_t window_size = GetWindowSizeForHashChain(quality, xsize); |
|
int pos; |
|
int argb_comp; |
|
uint32_t base_position; |
|
int32_t* hash_to_first_index; |
|
// Temporarily use the p->offset_length_ as a hash chain. |
|
int32_t* chain = (int32_t*)p->offset_length_; |
|
assert(size > 0); |
|
assert(p->size_ != 0); |
|
assert(p->offset_length_ != NULL); |
|
|
|
if (size <= 2) { |
|
p->offset_length_[0] = p->offset_length_[size - 1] = 0; |
|
return 1; |
|
} |
|
|
|
hash_to_first_index = |
|
(int32_t*)WebPSafeMalloc(HASH_SIZE, sizeof(*hash_to_first_index)); |
|
if (hash_to_first_index == NULL) return 0; |
|
|
|
// Set the int32_t array to -1. |
|
memset(hash_to_first_index, 0xff, HASH_SIZE * sizeof(*hash_to_first_index)); |
|
// Fill the chain linking pixels with the same hash. |
|
argb_comp = (argb[0] == argb[1]); |
|
for (pos = 0; pos < size - 2;) { |
|
uint32_t hash_code; |
|
const int argb_comp_next = (argb[pos + 1] == argb[pos + 2]); |
|
if (argb_comp && argb_comp_next) { |
|
// Consecutive pixels with the same color will share the same hash. |
|
// We therefore use a different hash: the color and its repetition |
|
// length. |
|
uint32_t tmp[2]; |
|
uint32_t len = 1; |
|
tmp[0] = argb[pos]; |
|
// Figure out how far the pixels are the same. |
|
// The last pixel has a different 64 bit hash, as its next pixel does |
|
// not have the same color, so we just need to get to the last pixel equal |
|
// to its follower. |
|
while (pos + (int)len + 2 < size && argb[pos + len + 2] == argb[pos]) { |
|
++len; |
|
} |
|
if (len > MAX_LENGTH) { |
|
// Skip the pixels that match for distance=1 and length>MAX_LENGTH |
|
// because they are linked to their predecessor and we automatically |
|
// check that in the main for loop below. Skipping means setting no |
|
// predecessor in the chain, hence -1. |
|
memset(chain + pos, 0xff, (len - MAX_LENGTH) * sizeof(*chain)); |
|
pos += len - MAX_LENGTH; |
|
len = MAX_LENGTH; |
|
} |
|
// Process the rest of the hash chain. |
|
while (len) { |
|
tmp[1] = len--; |
|
hash_code = GetPixPairHash64(tmp); |
|
chain[pos] = hash_to_first_index[hash_code]; |
|
hash_to_first_index[hash_code] = pos++; |
|
} |
|
argb_comp = 0; |
|
} else { |
|
// Just move one pixel forward. |
|
hash_code = GetPixPairHash64(argb + pos); |
|
chain[pos] = hash_to_first_index[hash_code]; |
|
hash_to_first_index[hash_code] = pos++; |
|
argb_comp = argb_comp_next; |
|
} |
|
} |
|
// Process the penultimate pixel. |
|
chain[pos] = hash_to_first_index[GetPixPairHash64(argb + pos)]; |
|
|
|
WebPSafeFree(hash_to_first_index); |
|
|
|
// Find the best match interval at each pixel, defined by an offset to the |
|
// pixel and a length. The right-most pixel cannot match anything to the right |
|
// (hence a best length of 0) and the left-most pixel nothing to the left |
|
// (hence an offset of 0). |
|
assert(size > 2); |
|
p->offset_length_[0] = p->offset_length_[size - 1] = 0; |
|
for (base_position = size - 2; base_position > 0;) { |
|
const int max_len = MaxFindCopyLength(size - 1 - base_position); |
|
const uint32_t* const argb_start = argb + base_position; |
|
int iter = iter_max; |
|
int best_length = 0; |
|
uint32_t best_distance = 0; |
|
uint32_t best_argb; |
|
const int min_pos = |
|
(base_position > window_size) ? base_position - window_size : 0; |
|
const int length_max = (max_len < 256) ? max_len : 256; |
|
uint32_t max_base_position; |
|
|
|
pos = chain[base_position]; |
|
if (!low_effort) { |
|
int curr_length; |
|
// Heuristic: use the comparison with the above line as an initialization. |
|
if (base_position >= (uint32_t)xsize) { |
|
curr_length = FindMatchLength(argb_start - xsize, argb_start, |
|
best_length, max_len); |
|
if (curr_length > best_length) { |
|
best_length = curr_length; |
|
best_distance = xsize; |
|
} |
|
--iter; |
|
} |
|
// Heuristic: compare to the previous pixel. |
|
curr_length = |
|
FindMatchLength(argb_start - 1, argb_start, best_length, max_len); |
|
if (curr_length > best_length) { |
|
best_length = curr_length; |
|
best_distance = 1; |
|
} |
|
--iter; |
|
// Skip the for loop if we already have the maximum. |
|
if (best_length == MAX_LENGTH) pos = min_pos - 1; |
|
} |
|
best_argb = argb_start[best_length]; |
|
|
|
for (; pos >= min_pos && --iter; pos = chain[pos]) { |
|
int curr_length; |
|
assert(base_position > (uint32_t)pos); |
|
|
|
if (argb[pos + best_length] != best_argb) continue; |
|
|
|
curr_length = VP8LVectorMismatch(argb + pos, argb_start, max_len); |
|
if (best_length < curr_length) { |
|
best_length = curr_length; |
|
best_distance = base_position - pos; |
|
best_argb = argb_start[best_length]; |
|
// Stop if we have reached a good enough length. |
|
if (best_length >= length_max) break; |
|
} |
|
} |
|
// We have the best match but in case the two intervals continue matching |
|
// to the left, we have the best matches for the left-extended pixels. |
|
max_base_position = base_position; |
|
while (1) { |
|
assert(best_length <= MAX_LENGTH); |
|
assert(best_distance <= WINDOW_SIZE); |
|
p->offset_length_[base_position] = |
|
(best_distance << MAX_LENGTH_BITS) | (uint32_t)best_length; |
|
--base_position; |
|
// Stop if we don't have a match or if we are out of bounds. |
|
if (best_distance == 0 || base_position == 0) break; |
|
// Stop if we cannot extend the matching intervals to the left. |
|
if (base_position < best_distance || |
|
argb[base_position - best_distance] != argb[base_position]) { |
|
break; |
|
} |
|
// Stop if we are matching at its limit because there could be a closer |
|
// matching interval with the same maximum length. Then again, if the |
|
// matching interval is as close as possible (best_distance == 1), we will |
|
// never find anything better so let's continue. |
|
if (best_length == MAX_LENGTH && best_distance != 1 && |
|
base_position + MAX_LENGTH < max_base_position) { |
|
break; |
|
} |
|
if (best_length < MAX_LENGTH) { |
|
++best_length; |
|
max_base_position = base_position; |
|
} |
|
} |
|
} |
|
return 1; |
|
} |
|
|
|
static WEBP_INLINE int HashChainFindOffset(const VP8LHashChain* const p, |
|
const int base_position) { |
|
return p->offset_length_[base_position] >> MAX_LENGTH_BITS; |
|
} |
|
|
|
static WEBP_INLINE int HashChainFindLength(const VP8LHashChain* const p, |
|
const int base_position) { |
|
return p->offset_length_[base_position] & ((1U << MAX_LENGTH_BITS) - 1); |
|
} |
|
|
|
static WEBP_INLINE void HashChainFindCopy(const VP8LHashChain* const p, |
|
int base_position, |
|
int* const offset_ptr, |
|
int* const length_ptr) { |
|
*offset_ptr = HashChainFindOffset(p, base_position); |
|
*length_ptr = HashChainFindLength(p, base_position); |
|
} |
|
|
|
static WEBP_INLINE void AddSingleLiteral(uint32_t pixel, int use_color_cache, |
|
VP8LColorCache* const hashers, |
|
VP8LBackwardRefs* const refs) { |
|
PixOrCopy v; |
|
if (use_color_cache) { |
|
const uint32_t key = VP8LColorCacheGetIndex(hashers, pixel); |
|
if (VP8LColorCacheLookup(hashers, key) == pixel) { |
|
v = PixOrCopyCreateCacheIdx(key); |
|
} else { |
|
v = PixOrCopyCreateLiteral(pixel); |
|
VP8LColorCacheSet(hashers, key, pixel); |
|
} |
|
} else { |
|
v = PixOrCopyCreateLiteral(pixel); |
|
} |
|
BackwardRefsCursorAdd(refs, v); |
|
} |
|
|
|
static int BackwardReferencesRle(int xsize, int ysize, |
|
const uint32_t* const argb, |
|
int cache_bits, VP8LBackwardRefs* const refs) { |
|
const int pix_count = xsize * ysize; |
|
int i, k; |
|
const int use_color_cache = (cache_bits > 0); |
|
VP8LColorCache hashers; |
|
|
|
if (use_color_cache && !VP8LColorCacheInit(&hashers, cache_bits)) { |
|
return 0; |
|
} |
|
ClearBackwardRefs(refs); |
|
// Add first pixel as literal. |
|
AddSingleLiteral(argb[0], use_color_cache, &hashers, refs); |
|
i = 1; |
|
while (i < pix_count) { |
|
const int max_len = MaxFindCopyLength(pix_count - i); |
|
const int rle_len = FindMatchLength(argb + i, argb + i - 1, 0, max_len); |
|
const int prev_row_len = (i < xsize) ? 0 : |
|
FindMatchLength(argb + i, argb + i - xsize, 0, max_len); |
|
if (rle_len >= prev_row_len && rle_len >= MIN_LENGTH) { |
|
BackwardRefsCursorAdd(refs, PixOrCopyCreateCopy(1, rle_len)); |
|
// We don't need to update the color cache here since it is always the |
|
// same pixel being copied, and that does not change the color cache |
|
// state. |
|
i += rle_len; |
|
} else if (prev_row_len >= MIN_LENGTH) { |
|
BackwardRefsCursorAdd(refs, PixOrCopyCreateCopy(xsize, prev_row_len)); |
|
if (use_color_cache) { |
|
for (k = 0; k < prev_row_len; ++k) { |
|
VP8LColorCacheInsert(&hashers, argb[i + k]); |
|
} |
|
} |
|
i += prev_row_len; |
|
} else { |
|
AddSingleLiteral(argb[i], use_color_cache, &hashers, refs); |
|
i++; |
|
} |
|
} |
|
if (use_color_cache) VP8LColorCacheClear(&hashers); |
|
return !refs->error_; |
|
} |
|
|
|
static int BackwardReferencesLz77(int xsize, int ysize, |
|
const uint32_t* const argb, int cache_bits, |
|
const VP8LHashChain* const hash_chain, |
|
VP8LBackwardRefs* const refs) { |
|
int i; |
|
int i_last_check = -1; |
|
int ok = 0; |
|
int cc_init = 0; |
|
const int use_color_cache = (cache_bits > 0); |
|
const int pix_count = xsize * ysize; |
|
VP8LColorCache hashers; |
|
|
|
if (use_color_cache) { |
|
cc_init = VP8LColorCacheInit(&hashers, cache_bits); |
|
if (!cc_init) goto Error; |
|
} |
|
ClearBackwardRefs(refs); |
|
for (i = 0; i < pix_count;) { |
|
// Alternative#1: Code the pixels starting at 'i' using backward reference. |
|
int offset = 0; |
|
int len = 0; |
|
int j; |
|
HashChainFindCopy(hash_chain, i, &offset, &len); |
|
if (len >= MIN_LENGTH) { |
|
const int len_ini = len; |
|
int max_reach = 0; |
|
assert(i + len < pix_count); |
|
// Only start from what we have not checked already. |
|
i_last_check = (i > i_last_check) ? i : i_last_check; |
|
// We know the best match for the current pixel but we try to find the |
|
// best matches for the current pixel AND the next one combined. |
|
// The naive method would use the intervals: |
|
// [i,i+len) + [i+len, length of best match at i+len) |
|
// while we check if we can use: |
|
// [i,j) (where j<=i+len) + [j, length of best match at j) |
|
for (j = i_last_check + 1; j <= i + len_ini; ++j) { |
|
const int len_j = HashChainFindLength(hash_chain, j); |
|
const int reach = |
|
j + (len_j >= MIN_LENGTH ? len_j : 1); // 1 for single literal. |
|
if (reach > max_reach) { |
|
len = j - i; |
|
max_reach = reach; |
|
} |
|
} |
|
} else { |
|
len = 1; |
|
} |
|
// Go with literal or backward reference. |
|
assert(len > 0); |
|
if (len == 1) { |
|
AddSingleLiteral(argb[i], use_color_cache, &hashers, refs); |
|
} else { |
|
BackwardRefsCursorAdd(refs, PixOrCopyCreateCopy(offset, len)); |
|
if (use_color_cache) { |
|
for (j = i; j < i + len; ++j) VP8LColorCacheInsert(&hashers, argb[j]); |
|
} |
|
} |
|
i += len; |
|
} |
|
|
|
ok = !refs->error_; |
|
Error: |
|
if (cc_init) VP8LColorCacheClear(&hashers); |
|
return ok; |
|
} |
|
|
|
// ----------------------------------------------------------------------------- |
|
|
|
typedef struct { |
|
double alpha_[VALUES_IN_BYTE]; |
|
double red_[VALUES_IN_BYTE]; |
|
double blue_[VALUES_IN_BYTE]; |
|
double distance_[NUM_DISTANCE_CODES]; |
|
double* literal_; |
|
} CostModel; |
|
|
|
static int BackwardReferencesTraceBackwards( |
|
int xsize, int ysize, const uint32_t* const argb, int quality, |
|
int cache_bits, const VP8LHashChain* const hash_chain, |
|
VP8LBackwardRefs* const refs); |
|
|
|
static void ConvertPopulationCountTableToBitEstimates( |
|
int num_symbols, const uint32_t population_counts[], double output[]) { |
|
uint32_t sum = 0; |
|
int nonzeros = 0; |
|
int i; |
|
for (i = 0; i < num_symbols; ++i) { |
|
sum += population_counts[i]; |
|
if (population_counts[i] > 0) { |
|
++nonzeros; |
|
} |
|
} |
|
if (nonzeros <= 1) { |
|
memset(output, 0, num_symbols * sizeof(*output)); |
|
} else { |
|
const double logsum = VP8LFastLog2(sum); |
|
for (i = 0; i < num_symbols; ++i) { |
|
output[i] = logsum - VP8LFastLog2(population_counts[i]); |
|
} |
|
} |
|
} |
|
|
|
static int CostModelBuild(CostModel* const m, int cache_bits, |
|
VP8LBackwardRefs* const refs) { |
|
int ok = 0; |
|
VP8LHistogram* const histo = VP8LAllocateHistogram(cache_bits); |
|
if (histo == NULL) goto Error; |
|
|
|
VP8LHistogramCreate(histo, refs, cache_bits); |
|
|
|
ConvertPopulationCountTableToBitEstimates( |
|
VP8LHistogramNumCodes(histo->palette_code_bits_), |
|
histo->literal_, m->literal_); |
|
ConvertPopulationCountTableToBitEstimates( |
|
VALUES_IN_BYTE, histo->red_, m->red_); |
|
ConvertPopulationCountTableToBitEstimates( |
|
VALUES_IN_BYTE, histo->blue_, m->blue_); |
|
ConvertPopulationCountTableToBitEstimates( |
|
VALUES_IN_BYTE, histo->alpha_, m->alpha_); |
|
ConvertPopulationCountTableToBitEstimates( |
|
NUM_DISTANCE_CODES, histo->distance_, m->distance_); |
|
ok = 1; |
|
|
|
Error: |
|
VP8LFreeHistogram(histo); |
|
return ok; |
|
} |
|
|
|
static WEBP_INLINE double GetLiteralCost(const CostModel* const m, uint32_t v) { |
|
return m->alpha_[v >> 24] + |
|
m->red_[(v >> 16) & 0xff] + |
|
m->literal_[(v >> 8) & 0xff] + |
|
m->blue_[v & 0xff]; |
|
} |
|
|
|
static WEBP_INLINE double GetCacheCost(const CostModel* const m, uint32_t idx) { |
|
const int literal_idx = VALUES_IN_BYTE + NUM_LENGTH_CODES + idx; |
|
return m->literal_[literal_idx]; |
|
} |
|
|
|
static WEBP_INLINE double GetLengthCost(const CostModel* const m, |
|
uint32_t length) { |
|
int code, extra_bits; |
|
VP8LPrefixEncodeBits(length, &code, &extra_bits); |
|
return m->literal_[VALUES_IN_BYTE + code] + extra_bits; |
|
} |
|
|
|
static WEBP_INLINE double GetDistanceCost(const CostModel* const m, |
|
uint32_t distance) { |
|
int code, extra_bits; |
|
VP8LPrefixEncodeBits(distance, &code, &extra_bits); |
|
return m->distance_[code] + extra_bits; |
|
} |
|
|
|
static void AddSingleLiteralWithCostModel(const uint32_t* const argb, |
|
VP8LColorCache* const hashers, |
|
const CostModel* const cost_model, |
|
int idx, int use_color_cache, |
|
double prev_cost, float* const cost, |
|
uint16_t* const dist_array) { |
|
double cost_val = prev_cost; |
|
const uint32_t color = argb[0]; |
|
const int ix = use_color_cache ? VP8LColorCacheContains(hashers, color) : -1; |
|
if (ix >= 0) { |
|
// use_color_cache is true and hashers contains color |
|
const double mul0 = 0.68; |
|
cost_val += GetCacheCost(cost_model, ix) * mul0; |
|
} else { |
|
const double mul1 = 0.82; |
|
if (use_color_cache) VP8LColorCacheInsert(hashers, color); |
|
cost_val += GetLiteralCost(cost_model, color) * mul1; |
|
} |
|
if (cost[idx] > cost_val) { |
|
cost[idx] = (float)cost_val; |
|
dist_array[idx] = 1; // only one is inserted. |
|
} |
|
} |
|
|
|
// ----------------------------------------------------------------------------- |
|
// CostManager and interval handling |
|
|
|
// Empirical value to avoid high memory consumption but good for performance. |
|
#define COST_CACHE_INTERVAL_SIZE_MAX 100 |
|
|
|
// To perform backward reference every pixel at index index_ is considered and |
|
// the cost for the MAX_LENGTH following pixels computed. Those following pixels |
|
// at index index_ + k (k from 0 to MAX_LENGTH) have a cost of: |
|
// distance_cost_ at index_ + GetLengthCost(cost_model, k) |
|
// (named cost) (named cached cost) |
|
// and the minimum value is kept. GetLengthCost(cost_model, k) is cached in an |
|
// array of size MAX_LENGTH. |
|
// Instead of performing MAX_LENGTH comparisons per pixel, we keep track of the |
|
// minimal values using intervals, for which lower_ and upper_ bounds are kept. |
|
// An interval is defined by the index_ of the pixel that generated it and |
|
// is only useful in a range of indices from start_ to end_ (exclusive), i.e. |
|
// it contains the minimum value for pixels between start_ and end_. |
|
// Intervals are stored in a linked list and ordered by start_. When a new |
|
// interval has a better minimum, old intervals are split or removed. |
|
typedef struct CostInterval CostInterval; |
|
struct CostInterval { |
|
double lower_; |
|
double upper_; |
|
int start_; |
|
int end_; |
|
double distance_cost_; |
|
int index_; |
|
CostInterval* previous_; |
|
CostInterval* next_; |
|
}; |
|
|
|
// The GetLengthCost(cost_model, k) part of the costs is also bounded for |
|
// efficiency in a set of intervals of a different type. |
|
// If those intervals are small enough, they are not used for comparison and |
|
// written into the costs right away. |
|
typedef struct { |
|
double lower_; // Lower bound of the interval. |
|
double upper_; // Upper bound of the interval. |
|
int start_; |
|
int end_; // Exclusive. |
|
int do_write_; // If !=0, the interval is saved to cost instead of being kept |
|
// for comparison. |
|
} CostCacheInterval; |
|
|
|
// This structure is in charge of managing intervals and costs. |
|
// It caches the different CostCacheInterval, caches the different |
|
// GetLengthCost(cost_model, k) in cost_cache_ and the CostInterval's (whose |
|
// count_ is limited by COST_CACHE_INTERVAL_SIZE_MAX). |
|
#define COST_MANAGER_MAX_FREE_LIST 10 |
|
typedef struct { |
|
CostInterval* head_; |
|
int count_; // The number of stored intervals. |
|
CostCacheInterval* cache_intervals_; |
|
size_t cache_intervals_size_; |
|
double cost_cache_[MAX_LENGTH]; // Contains the GetLengthCost(cost_model, k). |
|
double min_cost_cache_; // The minimum value in cost_cache_[1:]. |
|
double max_cost_cache_; // The maximum value in cost_cache_[1:]. |
|
float* costs_; |
|
uint16_t* dist_array_; |
|
// Most of the time, we only need few intervals -> use a free-list, to avoid |
|
// fragmentation with small allocs in most common cases. |
|
CostInterval intervals_[COST_MANAGER_MAX_FREE_LIST]; |
|
CostInterval* free_intervals_; |
|
// These are regularly malloc'd remains. This list can't grow larger than than |
|
// size COST_CACHE_INTERVAL_SIZE_MAX - COST_MANAGER_MAX_FREE_LIST, note. |
|
CostInterval* recycled_intervals_; |
|
// Buffer used in BackwardReferencesHashChainDistanceOnly to store the ends |
|
// of the intervals that can have impacted the cost at a pixel. |
|
int* interval_ends_; |
|
int interval_ends_size_; |
|
} CostManager; |
|
|
|
static int IsCostCacheIntervalWritable(int start, int end) { |
|
// 100 is the length for which we consider an interval for comparison, and not |
|
// for writing. |
|
// The first intervals are very small and go in increasing size. This constant |
|
// helps merging them into one big interval (up to index 150/200 usually from |
|
// which intervals start getting much bigger). |
|
// This value is empirical. |
|
return (end - start + 1 < 100); |
|
} |
|
|
|
static void CostIntervalAddToFreeList(CostManager* const manager, |
|
CostInterval* const interval) { |
|
interval->next_ = manager->free_intervals_; |
|
manager->free_intervals_ = interval; |
|
} |
|
|
|
static int CostIntervalIsInFreeList(const CostManager* const manager, |
|
const CostInterval* const interval) { |
|
return (interval >= &manager->intervals_[0] && |
|
interval <= &manager->intervals_[COST_MANAGER_MAX_FREE_LIST - 1]); |
|
} |
|
|
|
static void CostManagerInitFreeList(CostManager* const manager) { |
|
int i; |
|
manager->free_intervals_ = NULL; |
|
for (i = 0; i < COST_MANAGER_MAX_FREE_LIST; ++i) { |
|
CostIntervalAddToFreeList(manager, &manager->intervals_[i]); |
|
} |
|
} |
|
|
|
static void DeleteIntervalList(CostManager* const manager, |
|
const CostInterval* interval) { |
|
while (interval != NULL) { |
|
const CostInterval* const next = interval->next_; |
|
if (!CostIntervalIsInFreeList(manager, interval)) { |
|
WebPSafeFree((void*)interval); |
|
} // else: do nothing |
|
interval = next; |
|
} |
|
} |
|
|
|
static void CostManagerClear(CostManager* const manager) { |
|
if (manager == NULL) return; |
|
|
|
WebPSafeFree(manager->costs_); |
|
WebPSafeFree(manager->cache_intervals_); |
|
WebPSafeFree(manager->interval_ends_); |
|
|
|
// Clear the interval lists. |
|
DeleteIntervalList(manager, manager->head_); |
|
manager->head_ = NULL; |
|
DeleteIntervalList(manager, manager->recycled_intervals_); |
|
manager->recycled_intervals_ = NULL; |
|
|
|
// Reset pointers, count_ and cache_intervals_size_. |
|
memset(manager, 0, sizeof(*manager)); |
|
CostManagerInitFreeList(manager); |
|
} |
|
|
|
static int CostManagerInit(CostManager* const manager, |
|
uint16_t* const dist_array, int pix_count, |
|
const CostModel* const cost_model) { |
|
int i; |
|
const int cost_cache_size = (pix_count > MAX_LENGTH) ? MAX_LENGTH : pix_count; |
|
// This constant is tied to the cost_model we use. |
|
// Empirically, differences between intervals is usually of more than 1. |
|
const double min_cost_diff = 0.1; |
|
|
|
manager->costs_ = NULL; |
|
manager->cache_intervals_ = NULL; |
|
manager->interval_ends_ = NULL; |
|
manager->head_ = NULL; |
|
manager->recycled_intervals_ = NULL; |
|
manager->count_ = 0; |
|
manager->dist_array_ = dist_array; |
|
CostManagerInitFreeList(manager); |
|
|
|
// Fill in the cost_cache_. |
|
manager->cache_intervals_size_ = 1; |
|
manager->cost_cache_[0] = 0; |
|
for (i = 1; i < cost_cache_size; ++i) { |
|
manager->cost_cache_[i] = GetLengthCost(cost_model, i); |
|
// Get an approximation of the number of bound intervals. |
|
if (fabs(manager->cost_cache_[i] - manager->cost_cache_[i - 1]) > |
|
min_cost_diff) { |
|
++manager->cache_intervals_size_; |
|
} |
|
// Compute the minimum of cost_cache_. |
|
if (i == 1) { |
|
manager->min_cost_cache_ = manager->cost_cache_[1]; |
|
manager->max_cost_cache_ = manager->cost_cache_[1]; |
|
} else if (manager->cost_cache_[i] < manager->min_cost_cache_) { |
|
manager->min_cost_cache_ = manager->cost_cache_[i]; |
|
} else if (manager->cost_cache_[i] > manager->max_cost_cache_) { |
|
manager->max_cost_cache_ = manager->cost_cache_[i]; |
|
} |
|
} |
|
|
|
// With the current cost models, we have 15 intervals, so we are safe by |
|
// setting a maximum of COST_CACHE_INTERVAL_SIZE_MAX. |
|
if (manager->cache_intervals_size_ > COST_CACHE_INTERVAL_SIZE_MAX) { |
|
manager->cache_intervals_size_ = COST_CACHE_INTERVAL_SIZE_MAX; |
|
} |
|
manager->cache_intervals_ = (CostCacheInterval*)WebPSafeMalloc( |
|
manager->cache_intervals_size_, sizeof(*manager->cache_intervals_)); |
|
if (manager->cache_intervals_ == NULL) { |
|
CostManagerClear(manager); |
|
return 0; |
|
} |
|
|
|
// Fill in the cache_intervals_. |
|
{ |
|
double cost_prev = -1e38f; // unprobably low initial value |
|
CostCacheInterval* prev = NULL; |
|
CostCacheInterval* cur = manager->cache_intervals_; |
|
const CostCacheInterval* const end = |
|
manager->cache_intervals_ + manager->cache_intervals_size_; |
|
|
|
// Consecutive values in cost_cache_ are compared and if a big enough |
|
// difference is found, a new interval is created and bounded. |
|
for (i = 0; i < cost_cache_size; ++i) { |
|
const double cost_val = manager->cost_cache_[i]; |
|
if (i == 0 || |
|
(fabs(cost_val - cost_prev) > min_cost_diff && cur + 1 < end)) { |
|
if (i > 1) { |
|
const int is_writable = |
|
IsCostCacheIntervalWritable(cur->start_, cur->end_); |
|
// Merge with the previous interval if both are writable. |
|
if (is_writable && cur != manager->cache_intervals_ && |
|
prev->do_write_) { |
|
// Update the previous interval. |
|
prev->end_ = cur->end_; |
|
if (cur->lower_ < prev->lower_) { |
|
prev->lower_ = cur->lower_; |
|
} else if (cur->upper_ > prev->upper_) { |
|
prev->upper_ = cur->upper_; |
|
} |
|
} else { |
|
cur->do_write_ = is_writable; |
|
prev = cur; |
|
++cur; |
|
} |
|
} |
|
// Initialize an interval. |
|
cur->start_ = i; |
|
cur->do_write_ = 0; |
|
cur->lower_ = cost_val; |
|
cur->upper_ = cost_val; |
|
} else { |
|
// Update the current interval bounds. |
|
if (cost_val < cur->lower_) { |
|
cur->lower_ = cost_val; |
|
} else if (cost_val > cur->upper_) { |
|
cur->upper_ = cost_val; |
|
} |
|
} |
|
cur->end_ = i + 1; |
|
cost_prev = cost_val; |
|
} |
|
manager->cache_intervals_size_ = cur + 1 - manager->cache_intervals_; |
|
} |
|
|
|
manager->costs_ = (float*)WebPSafeMalloc(pix_count, sizeof(*manager->costs_)); |
|
if (manager->costs_ == NULL) { |
|
CostManagerClear(manager); |
|
return 0; |
|
} |
|
// Set the initial costs_ high for every pixel as we will keep the minimum. |
|
for (i = 0; i < pix_count; ++i) manager->costs_[i] = 1e38f; |
|
|
|
// The cost at pixel is influenced by the cost intervals from previous pixels. |
|
// Let us take the specific case where the offset is the same (which actually |
|
// happens a lot in case of uniform regions). |
|
// pixel i contributes to j>i a cost of: offset cost + cost_cache_[j-i] |
|
// pixel i+1 contributes to j>i a cost of: 2*offset cost + cost_cache_[j-i-1] |
|
// pixel i+2 contributes to j>i a cost of: 3*offset cost + cost_cache_[j-i-2] |
|
// and so on. |
|
// A pixel i influences the following length(j) < MAX_LENGTH pixels. What is |
|
// the value of j such that pixel i + j cannot influence any of those pixels? |
|
// This value is such that: |
|
// max of cost_cache_ < j*offset cost + min of cost_cache_ |
|
// (pixel i + j 's cost cannot beat the worst cost given by pixel i). |
|
// This value will be used to optimize the cost computation in |
|
// BackwardReferencesHashChainDistanceOnly. |
|
{ |
|
// The offset cost is computed in GetDistanceCost and has a minimum value of |
|
// the minimum in cost_model->distance_. The case where the offset cost is 0 |
|
// will be dealt with differently later so we are only interested in the |
|
// minimum non-zero offset cost. |
|
double offset_cost_min = 0.; |
|
int size; |
|
for (i = 0; i < NUM_DISTANCE_CODES; ++i) { |
|
if (cost_model->distance_[i] != 0) { |
|
if (offset_cost_min == 0.) { |
|
offset_cost_min = cost_model->distance_[i]; |
|
} else if (cost_model->distance_[i] < offset_cost_min) { |
|
offset_cost_min = cost_model->distance_[i]; |
|
} |
|
} |
|
} |
|
// In case all the cost_model->distance_ is 0, the next non-zero cost we |
|
// can have is from the extra bit in GetDistanceCost, hence 1. |
|
if (offset_cost_min < 1.) offset_cost_min = 1.; |
|
|
|
size = 1 + (int)ceil((manager->max_cost_cache_ - manager->min_cost_cache_) / |
|
offset_cost_min); |
|
// Empirically, we usually end up with a value below 100. |
|
if (size > MAX_LENGTH) size = MAX_LENGTH; |
|
|
|
manager->interval_ends_ = |
|
(int*)WebPSafeMalloc(size, sizeof(*manager->interval_ends_)); |
|
if (manager->interval_ends_ == NULL) { |
|
CostManagerClear(manager); |
|
return 0; |
|
} |
|
manager->interval_ends_size_ = size; |
|
} |
|
|
|
return 1; |
|
} |
|
|
|
// Given the distance_cost for pixel 'index', update the cost at pixel 'i' if it |
|
// is smaller than the previously computed value. |
|
static WEBP_INLINE void UpdateCost(CostManager* const manager, int i, int index, |
|
double distance_cost) { |
|
int k = i - index; |
|
double cost_tmp; |
|
assert(k >= 0 && k < MAX_LENGTH); |
|
cost_tmp = distance_cost + manager->cost_cache_[k]; |
|
|
|
if (manager->costs_[i] > cost_tmp) { |
|
manager->costs_[i] = (float)cost_tmp; |
|
manager->dist_array_[i] = k + 1; |
|
} |
|
} |
|
|
|
// Given the distance_cost for pixel 'index', update the cost for all the pixels |
|
// between 'start' and 'end' excluded. |
|
static WEBP_INLINE void UpdateCostPerInterval(CostManager* const manager, |
|
int start, int end, int index, |
|
double distance_cost) { |
|
int i; |
|
for (i = start; i < end; ++i) UpdateCost(manager, i, index, distance_cost); |
|
} |
|
|
|
// Given two intervals, make 'prev' be the previous one of 'next' in 'manager'. |
|
static WEBP_INLINE void ConnectIntervals(CostManager* const manager, |
|
CostInterval* const prev, |
|
CostInterval* const next) { |
|
if (prev != NULL) { |
|
prev->next_ = next; |
|
} else { |
|
manager->head_ = next; |
|
} |
|
|
|
if (next != NULL) next->previous_ = prev; |
|
} |
|
|
|
// Pop an interval in the manager. |
|
static WEBP_INLINE void PopInterval(CostManager* const manager, |
|
CostInterval* const interval) { |
|
CostInterval* const next = interval->next_; |
|
|
|
if (interval == NULL) return; |
|
|
|
ConnectIntervals(manager, interval->previous_, next); |
|
if (CostIntervalIsInFreeList(manager, interval)) { |
|
CostIntervalAddToFreeList(manager, interval); |
|
} else { // recycle regularly malloc'd intervals too |
|
interval->next_ = manager->recycled_intervals_; |
|
manager->recycled_intervals_ = interval; |
|
} |
|
--manager->count_; |
|
assert(manager->count_ >= 0); |
|
} |
|
|
|
// Update the cost at index i by going over all the stored intervals that |
|
// overlap with i. |
|
static WEBP_INLINE void UpdateCostPerIndex(CostManager* const manager, int i) { |
|
CostInterval* current = manager->head_; |
|
|
|
while (current != NULL && current->start_ <= i) { |
|
if (current->end_ <= i) { |
|
// We have an outdated interval, remove it. |
|
CostInterval* next = current->next_; |
|
PopInterval(manager, current); |
|
current = next; |
|
} else { |
|
UpdateCost(manager, i, current->index_, current->distance_cost_); |
|
current = current->next_; |
|
} |
|
} |
|
} |
|
|
|
// Given a current orphan interval and its previous interval, before |
|
// it was orphaned (which can be NULL), set it at the right place in the list |
|
// of intervals using the start_ ordering and the previous interval as a hint. |
|
static WEBP_INLINE void PositionOrphanInterval(CostManager* const manager, |
|
CostInterval* const current, |
|
CostInterval* previous) { |
|
assert(current != NULL); |
|
|
|
if (previous == NULL) previous = manager->head_; |
|
while (previous != NULL && current->start_ < previous->start_) { |
|
previous = previous->previous_; |
|
} |
|
while (previous != NULL && previous->next_ != NULL && |
|
previous->next_->start_ < current->start_) { |
|
previous = previous->next_; |
|
} |
|
|
|
if (previous != NULL) { |
|
ConnectIntervals(manager, current, previous->next_); |
|
} else { |
|
ConnectIntervals(manager, current, manager->head_); |
|
} |
|
ConnectIntervals(manager, previous, current); |
|
} |
|
|
|
// Insert an interval in the list contained in the manager by starting at |
|
// interval_in as a hint. The intervals are sorted by start_ value. |
|
static WEBP_INLINE void InsertInterval(CostManager* const manager, |
|
CostInterval* const interval_in, |
|
double distance_cost, double lower, |
|
double upper, int index, int start, |
|
int end) { |
|
CostInterval* interval_new; |
|
|
|
if (IsCostCacheIntervalWritable(start, end) || |
|
manager->count_ >= COST_CACHE_INTERVAL_SIZE_MAX) { |
|
// Write down the interval if it is too small. |
|
UpdateCostPerInterval(manager, start, end, index, distance_cost); |
|
return; |
|
} |
|
if (manager->free_intervals_ != NULL) { |
|
interval_new = manager->free_intervals_; |
|
manager->free_intervals_ = interval_new->next_; |
|
} else if (manager->recycled_intervals_ != NULL) { |
|
interval_new = manager->recycled_intervals_; |
|
manager->recycled_intervals_ = interval_new->next_; |
|
} else { // malloc for good |
|
interval_new = (CostInterval*)WebPSafeMalloc(1, sizeof(*interval_new)); |
|
if (interval_new == NULL) { |
|
// Write down the interval if we cannot create it. |
|
UpdateCostPerInterval(manager, start, end, index, distance_cost); |
|
return; |
|
} |
|
} |
|
|
|
interval_new->distance_cost_ = distance_cost; |
|
interval_new->lower_ = lower; |
|
interval_new->upper_ = upper; |
|
interval_new->index_ = index; |
|
interval_new->start_ = start; |
|
interval_new->end_ = end; |
|
PositionOrphanInterval(manager, interval_new, interval_in); |
|
|
|
++manager->count_; |
|
} |
|
|
|
// When an interval has its start_ or end_ modified, it needs to be |
|
// repositioned in the linked list. |
|
static WEBP_INLINE void RepositionInterval(CostManager* const manager, |
|
CostInterval* const interval) { |
|
if (IsCostCacheIntervalWritable(interval->start_, interval->end_)) { |
|
// Maybe interval has been resized and is small enough to be removed. |
|
UpdateCostPerInterval(manager, interval->start_, interval->end_, |
|
interval->index_, interval->distance_cost_); |
|
PopInterval(manager, interval); |
|
return; |
|
} |
|
|
|
// Early exit if interval is at the right spot. |
|
if ((interval->previous_ == NULL || |
|
interval->previous_->start_ <= interval->start_) && |
|
(interval->next_ == NULL || |
|
interval->start_ <= interval->next_->start_)) { |
|
return; |
|
} |
|
|
|
ConnectIntervals(manager, interval->previous_, interval->next_); |
|
PositionOrphanInterval(manager, interval, interval->previous_); |
|
} |
|
|
|
// Given a new cost interval defined by its start at index, its last value and |
|
// distance_cost, add its contributions to the previous intervals and costs. |
|
// If handling the interval or one of its subintervals becomes to heavy, its |
|
// contribution is added to the costs right away. |
|
static WEBP_INLINE void PushInterval(CostManager* const manager, |
|
double distance_cost, int index, |
|
int last) { |
|
size_t i; |
|
CostInterval* interval = manager->head_; |
|
CostInterval* interval_next; |
|
const CostCacheInterval* const cost_cache_intervals = |
|
manager->cache_intervals_; |
|
|
|
for (i = 0; i < manager->cache_intervals_size_ && |
|
cost_cache_intervals[i].start_ < last; |
|
++i) { |
|
// Define the intersection of the ith interval with the new one. |
|
int start = index + cost_cache_intervals[i].start_; |
|
const int end = index + (cost_cache_intervals[i].end_ > last |
|
? last |
|
: cost_cache_intervals[i].end_); |
|
const double lower_in = cost_cache_intervals[i].lower_; |
|
const double upper_in = cost_cache_intervals[i].upper_; |
|
const double lower_full_in = distance_cost + lower_in; |
|
const double upper_full_in = distance_cost + upper_in; |
|
|
|
if (cost_cache_intervals[i].do_write_) { |
|
UpdateCostPerInterval(manager, start, end, index, distance_cost); |
|
continue; |
|
} |
|
|
|
for (; interval != NULL && interval->start_ < end && start < end; |
|
interval = interval_next) { |
|
const double lower_full_interval = |
|
interval->distance_cost_ + interval->lower_; |
|
const double upper_full_interval = |
|
interval->distance_cost_ + interval->upper_; |
|
|
|
interval_next = interval->next_; |
|
|
|
// Make sure we have some overlap |
|
if (start >= interval->end_) continue; |
|
|
|
if (lower_full_in >= upper_full_interval) { |
|
// When intervals are represented, the lower, the better. |
|
// [**********************************************************] |
|
// start end |
|
// [----------------------------------] |
|
// interval->start_ interval->end_ |
|
// If we are worse than what we already have, add whatever we have so |
|
// far up to interval. |
|
const int start_new = interval->end_; |
|
InsertInterval(manager, interval, distance_cost, lower_in, upper_in, |
|
index, start, interval->start_); |
|
start = start_new; |
|
continue; |
|
} |
|
|
|
// We know the two intervals intersect. |
|
if (upper_full_in >= lower_full_interval) { |
|
// There is no clear cut on which is best, so let's keep both. |
|
// [*********[*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*]***********] |
|
// start interval->start_ interval->end_ end |
|
// OR |
|
// [*********[*-*-*-*-*-*-*-*-*-*-*-]----------------------] |
|
// start interval->start_ end interval->end_ |
|
const int end_new = (interval->end_ <= end) ? interval->end_ : end; |
|
InsertInterval(manager, interval, distance_cost, lower_in, upper_in, |
|
index, start, end_new); |
|
start = end_new; |
|
} else if (start <= interval->start_ && interval->end_ <= end) { |
|
// [----------------------------------] |
|
// interval->start_ interval->end_ |
|
// [**************************************************************] |
|
// start end |
|
// We can safely remove the old interval as it is fully included. |
|
PopInterval(manager, interval); |
|
} else { |
|
if (interval->start_ <= start && end <= interval->end_) { |
|
// [--------------------------------------------------------------] |
|
// interval->start_ interval->end_ |
|
// [*****************************] |
|
// start end |
|
// We have to split the old interval as it fully contains the new one. |
|
const int end_original = interval->end_; |
|
interval->end_ = start; |
|
InsertInterval(manager, interval, interval->distance_cost_, |
|
interval->lower_, interval->upper_, interval->index_, |
|
end, end_original); |
|
} else if (interval->start_ < start) { |
|
// [------------------------------------] |
|
// interval->start_ interval->end_ |
|
// [*****************************] |
|
// start end |
|
interval->end_ = start; |
|
} else { |
|
// [------------------------------------] |
|
// interval->start_ interval->end_ |
|
// [*****************************] |
|
// start end |
|
interval->start_ = end; |
|
} |
|
|
|
// The interval has been modified, we need to reposition it or write it. |
|
RepositionInterval(manager, interval); |
|
} |
|
} |
|
// Insert the remaining interval from start to end. |
|
InsertInterval(manager, interval, distance_cost, lower_in, upper_in, index, |
|
start, end); |
|
} |
|
} |
|
|
|
static int BackwardReferencesHashChainDistanceOnly( |
|
int xsize, int ysize, const uint32_t* const argb, int quality, |
|
int cache_bits, const VP8LHashChain* const hash_chain, |
|
VP8LBackwardRefs* const refs, uint16_t* const dist_array) { |
|
int i; |
|
int ok = 0; |
|
int cc_init = 0; |
|
const int pix_count = xsize * ysize; |
|
const int use_color_cache = (cache_bits > 0); |
|
const size_t literal_array_size = sizeof(double) * |
|
(NUM_LITERAL_CODES + NUM_LENGTH_CODES + |
|
((cache_bits > 0) ? (1 << cache_bits) : 0)); |
|
const size_t cost_model_size = sizeof(CostModel) + literal_array_size; |
|
CostModel* const cost_model = |
|
(CostModel*)WebPSafeCalloc(1ULL, cost_model_size); |
|
VP8LColorCache hashers; |
|
const int skip_length = 32 + quality; |
|
const int skip_min_distance_code = 2; |
|
CostManager* cost_manager = |
|
(CostManager*)WebPSafeMalloc(1ULL, sizeof(*cost_manager)); |
|
|
|
if (cost_model == NULL || cost_manager == NULL) goto Error; |
|
|
|
cost_model->literal_ = (double*)(cost_model + 1); |
|
if (use_color_cache) { |
|
cc_init = VP8LColorCacheInit(&hashers, cache_bits); |
|
if (!cc_init) goto Error; |
|
} |
|
|
|
if (!CostModelBuild(cost_model, cache_bits, refs)) { |
|
goto Error; |
|
} |
|
|
|
if (!CostManagerInit(cost_manager, dist_array, pix_count, cost_model)) { |
|
goto Error; |
|
} |
|
|
|
// We loop one pixel at a time, but store all currently best points to |
|
// non-processed locations from this point. |
|
dist_array[0] = 0; |
|
// Add first pixel as literal. |
|
AddSingleLiteralWithCostModel(argb + 0, &hashers, cost_model, 0, |
|
use_color_cache, 0.0, cost_manager->costs_, |
|
dist_array); |
|
|
|
for (i = 1; i < pix_count - 1; ++i) { |
|
int offset = 0, len = 0; |
|
double prev_cost = cost_manager->costs_[i - 1]; |
|
HashChainFindCopy(hash_chain, i, &offset, &len); |
|
if (len >= 2) { |
|
// If we are dealing with a non-literal. |
|
const int code = DistanceToPlaneCode(xsize, offset); |
|
const double offset_cost = GetDistanceCost(cost_model, code); |
|
const int first_i = i; |
|
int j_max = 0, interval_ends_index = 0; |
|
const int is_offset_zero = (offset_cost == 0.); |
|
|
|
if (!is_offset_zero) { |
|
j_max = (int)ceil( |
|
(cost_manager->max_cost_cache_ - cost_manager->min_cost_cache_) / |
|
offset_cost); |
|
if (j_max < 1) { |
|
j_max = 1; |
|
} else if (j_max > cost_manager->interval_ends_size_ - 1) { |
|
// This could only happen in the case of MAX_LENGTH. |
|
j_max = cost_manager->interval_ends_size_ - 1; |
|
} |
|
} // else j_max is unused anyway. |
|
|
|
// Instead of considering all contributions from a pixel i by calling: |
|
// PushInterval(cost_manager, prev_cost + offset_cost, i, len); |
|
// we optimize these contributions in case offset_cost stays the same for |
|
// consecutive pixels. This describes a set of pixels similar to a |
|
// previous set (e.g. constant color regions). |
|
for (; i < pix_count - 1; ++i) { |
|
int offset_next, len_next; |
|
prev_cost = cost_manager->costs_[i - 1]; |
|
|
|
if (is_offset_zero) { |
|
// No optimization can be made so we just push all of the |
|
// contributions from i. |
|
PushInterval(cost_manager, prev_cost, i, len); |
|
} else { |
|
// j_max is chosen as the smallest j such that: |
|
// max of cost_cache_ < j*offset cost + min of cost_cache_ |
|
// Therefore, the pixel influenced by i-j_max, cannot be influenced |
|
// by i. Only the costs after the end of what i contributed need to be |
|
// updated. cost_manager->interval_ends_ is a circular buffer that |
|
// stores those ends. |
|
const double distance_cost = prev_cost + offset_cost; |
|
int j = cost_manager->interval_ends_[interval_ends_index]; |
|
if (i - first_i <= j_max || |
|
!IsCostCacheIntervalWritable(j, i + len)) { |
|
PushInterval(cost_manager, distance_cost, i, len); |
|
} else { |
|
for (; j < i + len; ++j) { |
|
UpdateCost(cost_manager, j, i, distance_cost); |
|
} |
|
} |
|
// Store the new end in the circular buffer. |
|
assert(interval_ends_index < cost_manager->interval_ends_size_); |
|
cost_manager->interval_ends_[interval_ends_index] = i + len; |
|
if (++interval_ends_index > j_max) interval_ends_index = 0; |
|
} |
|
|
|
// Check whether i is the last pixel to consider, as it is handled |
|
// differently. |
|
if (i + 1 >= pix_count - 1) break; |
|
HashChainFindCopy(hash_chain, i + 1, &offset_next, &len_next); |
|
if (offset_next != offset) break; |
|
len = len_next; |
|
UpdateCostPerIndex(cost_manager, i); |
|
AddSingleLiteralWithCostModel(argb + i, &hashers, cost_model, i, |
|
use_color_cache, prev_cost, |
|
cost_manager->costs_, dist_array); |
|
} |
|
// Submit the last pixel. |
|
UpdateCostPerIndex(cost_manager, i + 1); |
|
|
|
// This if is for speedup only. It roughly doubles the speed, and |
|
// makes compression worse by .1 %. |
|
if (len >= skip_length && code <= skip_min_distance_code) { |
|
// Long copy for short distances, let's skip the middle |
|
// lookups for better copies. |
|
// 1) insert the hashes. |
|
if (use_color_cache) { |
|
int k; |
|
for (k = 0; k < len; ++k) { |
|
VP8LColorCacheInsert(&hashers, argb[i + k]); |
|
} |
|
} |
|
// 2) jump. |
|
{ |
|
const int i_next = i + len - 1; // for loop does ++i, thus -1 here. |
|
for (; i <= i_next; ++i) UpdateCostPerIndex(cost_manager, i + 1); |
|
i = i_next; |
|
} |
|
goto next_symbol; |
|
} |
|
if (len > 2) { |
|
// Also try the smallest interval possible (size 2). |
|
double cost_total = |
|
prev_cost + offset_cost + GetLengthCost(cost_model, 1); |
|
if (cost_manager->costs_[i + 1] > cost_total) { |
|
cost_manager->costs_[i + 1] = (float)cost_total; |
|
dist_array[i + 1] = 2; |
|
} |
|
} |
|
} else { |
|
// The pixel is added as a single literal so just update the costs. |
|
UpdateCostPerIndex(cost_manager, i + 1); |
|
} |
|
|
|
AddSingleLiteralWithCostModel(argb + i, &hashers, cost_model, i, |
|
use_color_cache, prev_cost, |
|
cost_manager->costs_, dist_array); |
|
|
|
next_symbol: ; |
|
} |
|
// Handle the last pixel. |
|
if (i == (pix_count - 1)) { |
|
AddSingleLiteralWithCostModel( |
|
argb + i, &hashers, cost_model, i, use_color_cache, |
|
cost_manager->costs_[pix_count - 2], cost_manager->costs_, dist_array); |
|
} |
|
|
|
ok = !refs->error_; |
|
Error: |
|
if (cc_init) VP8LColorCacheClear(&hashers); |
|
CostManagerClear(cost_manager); |
|
WebPSafeFree(cost_model); |
|
WebPSafeFree(cost_manager); |
|
return ok; |
|
} |
|
|
|
// We pack the path at the end of *dist_array and return |
|
// a pointer to this part of the array. Example: |
|
// dist_array = [1x2xx3x2] => packed [1x2x1232], chosen_path = [1232] |
|
static void TraceBackwards(uint16_t* const dist_array, |
|
int dist_array_size, |
|
uint16_t** const chosen_path, |
|
int* const chosen_path_size) { |
|
uint16_t* path = dist_array + dist_array_size; |
|
uint16_t* cur = dist_array + dist_array_size - 1; |
|
while (cur >= dist_array) { |
|
const int k = *cur; |
|
--path; |
|
*path = k; |
|
cur -= k; |
|
} |
|
*chosen_path = path; |
|
*chosen_path_size = (int)(dist_array + dist_array_size - path); |
|
} |
|
|
|
static int BackwardReferencesHashChainFollowChosenPath( |
|
const uint32_t* const argb, int cache_bits, |
|
const uint16_t* const chosen_path, int chosen_path_size, |
|
const VP8LHashChain* const hash_chain, VP8LBackwardRefs* const refs) { |
|
const int use_color_cache = (cache_bits > 0); |
|
int ix; |
|
int i = 0; |
|
int ok = 0; |
|
int cc_init = 0; |
|
VP8LColorCache hashers; |
|
|
|
if (use_color_cache) { |
|
cc_init = VP8LColorCacheInit(&hashers, cache_bits); |
|
if (!cc_init) goto Error; |
|
} |
|
|
|
ClearBackwardRefs(refs); |
|
for (ix = 0; ix < chosen_path_size; ++ix) { |
|
const int len = chosen_path[ix]; |
|
if (len != 1) { |
|
int k; |
|
const int offset = HashChainFindOffset(hash_chain, i); |
|
BackwardRefsCursorAdd(refs, PixOrCopyCreateCopy(offset, len)); |
|
if (use_color_cache) { |
|
for (k = 0; k < len; ++k) { |
|
VP8LColorCacheInsert(&hashers, argb[i + k]); |
|
} |
|
} |
|
i += len; |
|
} else { |
|
PixOrCopy v; |
|
const int idx = |
|
use_color_cache ? VP8LColorCacheContains(&hashers, argb[i]) : -1; |
|
if (idx >= 0) { |
|
// use_color_cache is true and hashers contains argb[i] |
|
// push pixel as a color cache index |
|
v = PixOrCopyCreateCacheIdx(idx); |
|
} else { |
|
if (use_color_cache) VP8LColorCacheInsert(&hashers, argb[i]); |
|
v = PixOrCopyCreateLiteral(argb[i]); |
|
} |
|
BackwardRefsCursorAdd(refs, v); |
|
++i; |
|
} |
|
} |
|
ok = !refs->error_; |
|
Error: |
|
if (cc_init) VP8LColorCacheClear(&hashers); |
|
return ok; |
|
} |
|
|
|
// Returns 1 on success. |
|
static int BackwardReferencesTraceBackwards( |
|
int xsize, int ysize, const uint32_t* const argb, int quality, |
|
int cache_bits, const VP8LHashChain* const hash_chain, |
|
VP8LBackwardRefs* const refs) { |
|
int ok = 0; |
|
const int dist_array_size = xsize * ysize; |
|
uint16_t* chosen_path = NULL; |
|
int chosen_path_size = 0; |
|
uint16_t* dist_array = |
|
(uint16_t*)WebPSafeMalloc(dist_array_size, sizeof(*dist_array)); |
|
|
|
if (dist_array == NULL) goto Error; |
|
|
|
if (!BackwardReferencesHashChainDistanceOnly( |
|
xsize, ysize, argb, quality, cache_bits, hash_chain, |
|
refs, dist_array)) { |
|
goto Error; |
|
} |
|
TraceBackwards(dist_array, dist_array_size, &chosen_path, &chosen_path_size); |
|
if (!BackwardReferencesHashChainFollowChosenPath( |
|
argb, cache_bits, chosen_path, chosen_path_size, hash_chain, refs)) { |
|
goto Error; |
|
} |
|
ok = 1; |
|
Error: |
|
WebPSafeFree(dist_array); |
|
return ok; |
|
} |
|
|
|
static void BackwardReferences2DLocality(int xsize, |
|
const VP8LBackwardRefs* const refs) { |
|
VP8LRefsCursor c = VP8LRefsCursorInit(refs); |
|
while (VP8LRefsCursorOk(&c)) { |
|
if (PixOrCopyIsCopy(c.cur_pos)) { |
|
const int dist = c.cur_pos->argb_or_distance; |
|
const int transformed_dist = DistanceToPlaneCode(xsize, dist); |
|
c.cur_pos->argb_or_distance = transformed_dist; |
|
} |
|
VP8LRefsCursorNext(&c); |
|
} |
|
} |
|
|
|
// Computes the entropies for a color cache size (in bits) between 0 (unused) |
|
// and cache_bits_max (inclusive). |
|
// Returns 1 on success, 0 in case of allocation error. |
|
static int ComputeCacheEntropies(const uint32_t* argb, |
|
const VP8LBackwardRefs* const refs, |
|
int cache_bits_max, double entropies[]) { |
|
int cc_init[MAX_COLOR_CACHE_BITS + 1] = { 0 }; |
|
VP8LColorCache hashers[MAX_COLOR_CACHE_BITS + 1]; |
|
VP8LRefsCursor c = VP8LRefsCursorInit(refs); |
|
VP8LHistogram* histos[MAX_COLOR_CACHE_BITS + 1] = { NULL }; |
|
int ok = 0; |
|
int i; |
|
|
|
for (i = 0; i <= cache_bits_max; ++i) { |
|
histos[i] = VP8LAllocateHistogram(i); |
|
if (histos[i] == NULL) goto Error; |
|
if (i == 0) continue; |
|
cc_init[i] = VP8LColorCacheInit(&hashers[i], i); |
|
if (!cc_init[i]) goto Error; |
|
} |
|
|
|
assert(cache_bits_max >= 0); |
|
// Do not use the color cache for cache_bits=0. |
|
while (VP8LRefsCursorOk(&c)) { |
|
VP8LHistogramAddSinglePixOrCopy(histos[0], c.cur_pos); |
|
VP8LRefsCursorNext(&c); |
|
} |
|
if (cache_bits_max > 0) { |
|
c = VP8LRefsCursorInit(refs); |
|
while (VP8LRefsCursorOk(&c)) { |
|
const PixOrCopy* const v = c.cur_pos; |
|
if (PixOrCopyIsLiteral(v)) { |
|
const uint32_t pix = *argb++; |
|
// The keys of the caches can be derived from the longest one. |
|
int key = HashPix(pix, 32 - cache_bits_max); |
|
for (i = cache_bits_max; i >= 1; --i, key >>= 1) { |
|
if (VP8LColorCacheLookup(&hashers[i], key) == pix) { |
|
++histos[i]->literal_[NUM_LITERAL_CODES + NUM_LENGTH_CODES + key]; |
|
} else { |
|
VP8LColorCacheSet(&hashers[i], key, pix); |
|
++histos[i]->blue_[pix & 0xff]; |
|
++histos[i]->literal_[(pix >> 8) & 0xff]; |
|
++histos[i]->red_[(pix >> 16) & 0xff]; |
|
++histos[i]->alpha_[pix >> 24]; |
|
} |
|
} |
|
} else { |
|
// Update the histograms for distance/length. |
|
int len = PixOrCopyLength(v); |
|
int code_dist, code_len, extra_bits; |
|
uint32_t argb_prev = *argb ^ 0xffffffffu; |
|
VP8LPrefixEncodeBits(len, &code_len, &extra_bits); |
|
VP8LPrefixEncodeBits(PixOrCopyDistance(v), &code_dist, &extra_bits); |
|
for (i = 1; i <= cache_bits_max; ++i) { |
|
++histos[i]->literal_[NUM_LITERAL_CODES + code_len]; |
|
++histos[i]->distance_[code_dist]; |
|
} |
|
// Update the colors caches. |
|
do { |
|
if (*argb != argb_prev) { |
|
// Efficiency: insert only if the color changes. |
|
int key = HashPix(*argb, 32 - cache_bits_max); |
|
for (i = cache_bits_max; i >= 1; --i, key >>= 1) { |
|
hashers[i].colors_[key] = *argb; |
|
} |
|
argb_prev = *argb; |
|
} |
|
argb++; |
|
} while (--len != 0); |
|
} |
|
VP8LRefsCursorNext(&c); |
|
} |
|
} |
|
for (i = 0; i <= cache_bits_max; ++i) { |
|
entropies[i] = VP8LHistogramEstimateBits(histos[i]); |
|
} |
|
ok = 1; |
|
Error: |
|
for (i = 0; i <= cache_bits_max; ++i) { |
|
if (cc_init[i]) VP8LColorCacheClear(&hashers[i]); |
|
VP8LFreeHistogram(histos[i]); |
|
} |
|
return ok; |
|
} |
|
|
|
// Evaluate optimal cache bits for the local color cache. |
|
// The input *best_cache_bits sets the maximum cache bits to use (passing 0 |
|
// implies disabling the local color cache). The local color cache is also |
|
// disabled for the lower (<= 25) quality. |
|
// Returns 0 in case of memory error. |
|
static int CalculateBestCacheSize(const uint32_t* const argb, |
|
int xsize, int ysize, int quality, |
|
const VP8LHashChain* const hash_chain, |
|
VP8LBackwardRefs* const refs, |
|
int* const lz77_computed, |
|
int* const best_cache_bits) { |
|
int i; |
|
int cache_bits_high = (quality <= 25) ? 0 : *best_cache_bits; |
|
double entropy_min = MAX_ENTROPY; |
|
double entropies[MAX_COLOR_CACHE_BITS + 1]; |
|
|
|
assert(cache_bits_high <= MAX_COLOR_CACHE_BITS); |
|
|
|
*lz77_computed = 0; |
|
if (cache_bits_high == 0) { |
|
*best_cache_bits = 0; |
|
// Local color cache is disabled. |
|
return 1; |
|
} |
|
// Compute LZ77 with no cache (0 bits), as the ideal LZ77 with a color cache |
|
// is not that different in practice. |
|
if (!BackwardReferencesLz77(xsize, ysize, argb, 0, hash_chain, refs)) { |
|
return 0; |
|
} |
|
// Find the cache_bits giving the lowest entropy. The search is done in a |
|
// brute-force way as the function (entropy w.r.t cache_bits) can be |
|
// anything in practice. |
|
if (!ComputeCacheEntropies(argb, refs, cache_bits_high, entropies)) { |
|
return 0; |
|
} |
|
for (i = 0; i <= cache_bits_high; ++i) { |
|
if (i == 0 || entropies[i] < entropy_min) { |
|
entropy_min = entropies[i]; |
|
*best_cache_bits = i; |
|
} |
|
} |
|
return 1; |
|
} |
|
|
|
// Update (in-place) backward references for specified cache_bits. |
|
static int BackwardRefsWithLocalCache(const uint32_t* const argb, |
|
int cache_bits, |
|
VP8LBackwardRefs* const refs) { |
|
int pixel_index = 0; |
|
VP8LColorCache hashers; |
|
VP8LRefsCursor c = VP8LRefsCursorInit(refs); |
|
if (!VP8LColorCacheInit(&hashers, cache_bits)) return 0; |
|
|
|
while (VP8LRefsCursorOk(&c)) { |
|
PixOrCopy* const v = c.cur_pos; |
|
if (PixOrCopyIsLiteral(v)) { |
|
const uint32_t argb_literal = v->argb_or_distance; |
|
const int ix = VP8LColorCacheContains(&hashers, argb_literal); |
|
if (ix >= 0) { |
|
// hashers contains argb_literal |
|
*v = PixOrCopyCreateCacheIdx(ix); |
|
} else { |
|
VP8LColorCacheInsert(&hashers, argb_literal); |
|
} |
|
++pixel_index; |
|
} else { |
|
// refs was created without local cache, so it can not have cache indexes. |
|
int k; |
|
assert(PixOrCopyIsCopy(v)); |
|
for (k = 0; k < v->len; ++k) { |
|
VP8LColorCacheInsert(&hashers, argb[pixel_index++]); |
|
} |
|
} |
|
VP8LRefsCursorNext(&c); |
|
} |
|
VP8LColorCacheClear(&hashers); |
|
return 1; |
|
} |
|
|
|
static VP8LBackwardRefs* GetBackwardReferencesLowEffort( |
|
int width, int height, const uint32_t* const argb, |
|
int* const cache_bits, const VP8LHashChain* const hash_chain, |
|
VP8LBackwardRefs refs_array[2]) { |
|
VP8LBackwardRefs* refs_lz77 = &refs_array[0]; |
|
*cache_bits = 0; |
|
if (!BackwardReferencesLz77(width, height, argb, 0, hash_chain, refs_lz77)) { |
|
return NULL; |
|
} |
|
BackwardReferences2DLocality(width, refs_lz77); |
|
return refs_lz77; |
|
} |
|
|
|
static VP8LBackwardRefs* GetBackwardReferences( |
|
int width, int height, const uint32_t* const argb, int quality, |
|
int* const cache_bits, const VP8LHashChain* const hash_chain, |
|
VP8LBackwardRefs refs_array[2]) { |
|
int lz77_is_useful; |
|
int lz77_computed; |
|
double bit_cost_lz77, bit_cost_rle; |
|
VP8LBackwardRefs* best = NULL; |
|
VP8LBackwardRefs* refs_lz77 = &refs_array[0]; |
|
VP8LBackwardRefs* refs_rle = &refs_array[1]; |
|
VP8LHistogram* histo = NULL; |
|
|
|
if (!CalculateBestCacheSize(argb, width, height, quality, hash_chain, |
|
refs_lz77, &lz77_computed, cache_bits)) { |
|
goto Error; |
|
} |
|
|
|
if (lz77_computed) { |
|
// Transform refs_lz77 for the optimized cache_bits. |
|
if (*cache_bits > 0) { |
|
if (!BackwardRefsWithLocalCache(argb, *cache_bits, refs_lz77)) { |
|
goto Error; |
|
} |
|
} |
|
} else { |
|
if (!BackwardReferencesLz77(width, height, argb, *cache_bits, hash_chain, |
|
refs_lz77)) { |
|
goto Error; |
|
} |
|
} |
|
|
|
if (!BackwardReferencesRle(width, height, argb, *cache_bits, refs_rle)) { |
|
goto Error; |
|
} |
|
|
|
histo = VP8LAllocateHistogram(*cache_bits); |
|
if (histo == NULL) goto Error; |
|
|
|
{ |
|
// Evaluate LZ77 coding. |
|
VP8LHistogramCreate(histo, refs_lz77, *cache_bits); |
|
bit_cost_lz77 = VP8LHistogramEstimateBits(histo); |
|
// Evaluate RLE coding. |
|
VP8LHistogramCreate(histo, refs_rle, *cache_bits); |
|
bit_cost_rle = VP8LHistogramEstimateBits(histo); |
|
// Decide if LZ77 is useful. |
|
lz77_is_useful = (bit_cost_lz77 < bit_cost_rle); |
|
} |
|
|
|
// Choose appropriate backward reference. |
|
if (lz77_is_useful) { |
|
// TraceBackwards is costly. Don't execute it at lower quality. |
|
const int try_lz77_trace_backwards = (quality >= 25); |
|
best = refs_lz77; // default guess: lz77 is better |
|
if (try_lz77_trace_backwards) { |
|
VP8LBackwardRefs* const refs_trace = refs_rle; |
|
if (!VP8LBackwardRefsCopy(refs_lz77, refs_trace)) { |
|
best = NULL; |
|
goto Error; |
|
} |
|
if (BackwardReferencesTraceBackwards(width, height, argb, quality, |
|
*cache_bits, hash_chain, |
|
refs_trace)) { |
|
double bit_cost_trace; |
|
// Evaluate LZ77 coding. |
|
VP8LHistogramCreate(histo, refs_trace, *cache_bits); |
|
bit_cost_trace = VP8LHistogramEstimateBits(histo); |
|
if (bit_cost_trace < bit_cost_lz77) { |
|
best = refs_trace; |
|
} |
|
} |
|
} |
|
} else { |
|
best = refs_rle; |
|
} |
|
|
|
BackwardReferences2DLocality(width, best); |
|
|
|
Error: |
|
VP8LFreeHistogram(histo); |
|
return best; |
|
} |
|
|
|
VP8LBackwardRefs* VP8LGetBackwardReferences( |
|
int width, int height, const uint32_t* const argb, int quality, |
|
int low_effort, int* const cache_bits, |
|
const VP8LHashChain* const hash_chain, VP8LBackwardRefs refs_array[2]) { |
|
if (low_effort) { |
|
return GetBackwardReferencesLowEffort(width, height, argb, cache_bits, |
|
hash_chain, refs_array); |
|
} else { |
|
return GetBackwardReferences(width, height, argb, quality, cache_bits, |
|
hash_chain, refs_array); |
|
} |
|
}
|
|
|