Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1519 lines
61 KiB
1519 lines
61 KiB
/*M/////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// |
|
// License Agreement |
|
// For Open Source Computer Vision Library |
|
// |
|
// Copyright (C) 2013, OpenCV Foundation, all rights reserved. |
|
// Copyright (C) 2017, Intel Corporation, all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
// |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistribution's of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistribution's in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other materials provided with the distribution. |
|
// |
|
// * The name of the copyright holders may not be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors "as is" and |
|
// any express or implied warranties, including, but not limited to, the implied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall the Intel Corporation or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
// |
|
//M*/ |
|
|
|
#include "../precomp.hpp" |
|
#include "layers_common.hpp" |
|
#include "op_halide.hpp" |
|
#include "opencv2/core/hal/hal.hpp" |
|
#include "opencv2/core/hal/intrin.hpp" |
|
#include <iostream> |
|
|
|
#ifdef HAVE_OPENCL |
|
using namespace cv::dnn::ocl4dnn; |
|
#endif |
|
|
|
namespace cv |
|
{ |
|
namespace dnn |
|
{ |
|
|
|
class BaseConvolutionLayerImpl : public ConvolutionLayer |
|
{ |
|
public: |
|
BaseConvolutionLayerImpl() {} |
|
|
|
virtual bool supportBackend(int backendId) |
|
{ |
|
return backendId == DNN_BACKEND_DEFAULT || |
|
backendId == DNN_BACKEND_HALIDE && haveHalide(); |
|
} |
|
|
|
void finalize(const std::vector<Mat*> &inputs, std::vector<Mat> &outputs) |
|
{ |
|
CV_Assert(inputs.size() > 0); |
|
|
|
CV_Assert(blobs.size() >= 1 && blobs.size() <= 2); |
|
CV_Assert(blobs[0].dims == 4 && blobs[0].size[3] == kernel.width && blobs[0].size[2] == kernel.height); |
|
|
|
const Mat &input = *inputs[0]; |
|
CV_Assert(input.dims == 4 && (input.type() == CV_32F || input.type() == CV_64F)); |
|
for (size_t i = 0; i < inputs.size(); i++) |
|
{ |
|
CV_Assert(inputs[i]->type() == input.type()); |
|
CV_Assert(inputs[i]->dims == 4 && inputs[i]->size[1] == input.size[1]); |
|
CV_Assert(inputs[i]->size[2] == input.size[2] && inputs[i]->size[3] == input.size[3]); |
|
} |
|
|
|
Size outSize = Size(outputs[0].size[3], outputs[0].size[2]); |
|
getConvPoolPaddings(Size(input.size[3], input.size[2]), outSize, |
|
kernel, stride, padMode, dilation, pad); |
|
} |
|
|
|
bool hasBias() const |
|
{ |
|
return blobs.size() >= 2; |
|
} |
|
|
|
virtual MatShape computeColRowShape(const MatShape &inpShape, const MatShape &outShape) const = 0; |
|
bool is1x1() const |
|
{ |
|
return (kernel.height == 1 && kernel.width == 1) && |
|
(stride.height == 1 && stride.width == 1) && |
|
(dilation.height == 1 && dilation.width == 1); |
|
} |
|
|
|
virtual void applyHalideScheduler(Ptr<BackendNode>& node, |
|
const std::vector<Mat*> &inputs, |
|
const std::vector<Mat> &outputs, |
|
int targetId) const |
|
{ |
|
#ifdef HAVE_HALIDE |
|
if (targetId != DNN_TARGET_CPU) |
|
{ |
|
Layer::applyHalideScheduler(node, inputs, outputs, targetId); |
|
return; |
|
} |
|
Halide::Var x("x"), y("y"), c("c"), n("n"), tile("tile"), yi("yi"), yo("yo"), co("co"), ci("ci"); |
|
Halide::Func& top = node.dynamicCast<HalideBackendNode>()->funcs[1]; |
|
Halide::Func& padded_input = node.dynamicCast<HalideBackendNode>()->funcs[0]; |
|
|
|
int outW, outH, outC, outN; |
|
getCanonicalSize(outputs[0].size, &outW, &outH, &outC, &outN); |
|
|
|
if (outW == 1 || outH <= 2) |
|
return; |
|
|
|
if (is1x1() || outC <= 16) |
|
top.reorder(x, c, y) |
|
.split(y, yo, yi, 2) |
|
.fuse(yo, n, tile) |
|
.parallel(tile) |
|
.unroll(yi) |
|
.vectorize(x, outW >= 16 ? 16 : outW); |
|
else |
|
top.reorder(x, c, y) |
|
.split(y, yo, yi, 2) |
|
.split(c, co, ci, 16) |
|
.fuse(yo, co, tile).fuse(n, tile, tile) |
|
.parallel(tile) |
|
.unroll(yi) |
|
.vectorize(x, outW >= 16 ? 16 : outW); |
|
padded_input.compute_at(top, yi); |
|
#endif // HAVE_HALIDE |
|
} |
|
}; |
|
|
|
|
|
#define IS_POWER_LAYER(layer) \ |
|
(!layer.empty() && !layer->type.compare("Power")) |
|
//TODO: simultaneously convolution and bias addition for cache optimization |
|
class ConvolutionLayerImpl : public BaseConvolutionLayerImpl |
|
{ |
|
public: |
|
enum { VEC_ALIGN = 8, DFT_TYPE = CV_32F }; |
|
Mat weightsMat; |
|
std::vector<float> biasvec; |
|
std::vector<float> reluslope; |
|
Ptr<ActivationLayer> activ; |
|
Ptr<BatchNormLayer> bnorm; |
|
Ptr<ScaleLayer> scaleLayer; |
|
|
|
#ifdef HAVE_OPENCL |
|
Ptr<OCL4DNNConvSpatial<float> > convolutionOp; |
|
std::vector<UMat> umat_blobs; |
|
bool fusedBias; |
|
bool newWeightAndBias; |
|
bool newActiv; |
|
ocl4dnnFusedActiv_t activType; |
|
float power; |
|
#endif |
|
ConvolutionLayerImpl() |
|
{ |
|
#ifdef HAVE_OPENCL |
|
fusedBias = false; |
|
newWeightAndBias = false; |
|
newActiv = false; |
|
activType = OCL4DNN_CONV_FUSED_ACTIV_NONE; |
|
power = 0.f; |
|
#endif |
|
} |
|
|
|
MatShape computeColRowShape(const MatShape &inpShape, const MatShape &outShape) const |
|
{ |
|
Size out(outShape[3], outShape[2]); |
|
int inpGroupCn = blobs[0].size[1]; |
|
int ksize = inpGroupCn * kernel.height * kernel.width; |
|
return shape(out.area(), ksize); |
|
} |
|
|
|
bool getMemoryShapes(const std::vector<MatShape> &inputs, |
|
const int requiredOutputs, |
|
std::vector<MatShape> &outputs, |
|
std::vector<MatShape> &internals) const |
|
{ |
|
CV_Assert(blobs.size() != 0); |
|
CV_Assert(!hasBias() || blobs[1].total() == (size_t)blobs[0].size[0]); |
|
CV_Assert(inputs.size() == (size_t)1); |
|
|
|
internals.clear(); |
|
|
|
int inpCn = inputs[0][1]; |
|
int inpH = inputs[0][2]; |
|
int inpW = inputs[0][3]; |
|
|
|
int outCn = blobs[0].size[0]; |
|
Size out; |
|
|
|
if (padMode.empty()) |
|
{ |
|
out.height = (inpH + 2 * pad.height - (dilation.height * (kernel.height - 1) + 1)) / stride.height + 1; |
|
out.width = (inpW + 2 * pad.width - (dilation.width * (kernel.width - 1) + 1)) / stride.width + 1; |
|
} |
|
else |
|
{ |
|
getConvPoolOutParams(Size(inpW, inpH), kernel, stride, padMode, dilation, out); |
|
} |
|
|
|
int ngroups = inpCn / blobs[0].size[1]; |
|
CV_Assert(ngroups > 0 && inpCn % ngroups == 0 && outCn % ngroups == 0); |
|
|
|
int dims[] = {inputs[0][0], outCn, out.height, out.width}; |
|
outputs.resize(inputs.size(), shape(dims)); |
|
|
|
return false; |
|
} |
|
|
|
bool setActivation(const Ptr<ActivationLayer>& layer) |
|
{ |
|
activ = layer; |
|
if (activ.empty()) |
|
reluslope.clear(); |
|
#ifdef HAVE_OPENCL |
|
newActiv = true; |
|
activType = OCL4DNN_CONV_FUSED_ACTIV_NONE; |
|
|
|
if (preferableTarget == DNN_TARGET_OPENCL) |
|
{ |
|
Ptr<PowerLayer> activ_power = activ.dynamicCast<PowerLayer>(); |
|
if (!activ_power.empty()) |
|
{ |
|
if (activ_power->scale != 1.f || activ_power->shift != 0.f) |
|
newWeightAndBias = true; |
|
|
|
if (activ_power->scale != 1.f) |
|
weightsMat.release(); |
|
|
|
power = activ_power->power; |
|
activType = OCL4DNN_CONV_FUSED_ACTIV_POWER; |
|
} |
|
} |
|
#endif |
|
return !activ.empty(); |
|
} |
|
|
|
bool setBatchNorm(const Ptr<BatchNormLayer>& layer ) |
|
{ |
|
// for now the scale layer followed by the batch norm cannot be fused, only vice versa. |
|
if( !scaleLayer.empty() ) |
|
return false; |
|
bnorm = layer; |
|
// we will need to re-compute the weights with the batch |
|
// norm coefficients taken into account |
|
weightsMat.release(); |
|
#ifdef HAVE_OPENCL |
|
newWeightAndBias = true; |
|
fusedBias = false; |
|
#endif |
|
return !bnorm.empty(); |
|
} |
|
|
|
bool setScale(const Ptr<ScaleLayer>& layer) |
|
{ |
|
if (layer.empty() || layer->blobs.empty()) |
|
return false; |
|
scaleLayer = layer; |
|
// we will need to re-compute the weights with the scaling |
|
// coefficients taken into account |
|
weightsMat.release(); |
|
#ifdef HAVE_OPENCL |
|
newWeightAndBias = true; |
|
fusedBias = false; |
|
#endif |
|
return true; |
|
} |
|
|
|
virtual Ptr<BackendNode> initHalide(const std::vector<Ptr<BackendWrapper> > &inputs) |
|
{ |
|
#ifdef HAVE_HALIDE |
|
Halide::Buffer<float> inputBuffer = halideBuffer(inputs[0]); |
|
|
|
const int inpCn = inputBuffer.channels(); |
|
const int outCn = blobs[0].size[0]; |
|
const int inpGroupCn = blobs[0].size[1]; |
|
const int group = inpCn / inpGroupCn; |
|
const int outGroupCn = outCn / group; |
|
|
|
Halide::Buffer<float> weights = wrapToHalideBuffer(blobs[0]); |
|
|
|
Halide::Var x("x"), y("y"), c("c"), n("n"); |
|
Halide::Func top = (name.empty() ? Halide::Func() : Halide::Func(name)); |
|
Halide::Func padded_input(name + "_constant_exterior"); |
|
if (pad.width || pad.height) |
|
{ |
|
Halide::Func bounded = |
|
Halide::BoundaryConditions::constant_exterior(inputBuffer, 0); |
|
padded_input(x, y, c, n) = bounded(x, y, c, n); |
|
} |
|
else |
|
{ |
|
padded_input(x, y, c, n) = inputBuffer(x, y, c, n); |
|
} |
|
|
|
Halide::RDom r(0, kernel.width, 0, kernel.height, 0, inpGroupCn); |
|
Halide::Expr kx = x * stride.width - pad.width + r.x * dilation.width; |
|
Halide::Expr ky = y * stride.height - pad.height + r.y * dilation.height; |
|
Halide::Expr kc = r.z; |
|
for (int i = 1; i < group; ++i) |
|
{ |
|
kc = select(c < outGroupCn * i, kc, inpGroupCn * i + r.z); |
|
} |
|
Halide::Expr topExpr = sum(padded_input(kx, ky, kc, n) * |
|
weights(r.x, r.y, r.z, c)); |
|
if (hasBias()) |
|
{ |
|
Halide::Buffer<float> bias = wrapToHalideBuffer(blobs[1], {outCn}); |
|
topExpr += bias(c); |
|
} |
|
top(x, y, c, n) = topExpr; |
|
return Ptr<BackendNode>(new HalideBackendNode({ padded_input, top })); |
|
#endif // HAVE_HALIDE |
|
return Ptr<BackendNode>(); |
|
} |
|
|
|
class ParallelConv : public cv::ParallelLoopBody |
|
{ |
|
public: |
|
enum { BLK_SIZE = 32, BLK_SIZE_CN = 64 }; |
|
|
|
const Mat* input_; |
|
const Mat* weights_; |
|
Mat* output_; |
|
int outShape[4]; |
|
Size kernel_, pad_, stride_, dilation_; |
|
int ngroups_, nstripes_; |
|
std::vector<int> ofstab_; |
|
const std::vector<float>* biasvec_; |
|
const std::vector<float>* reluslope_; |
|
const ActivationLayer* activ_; |
|
bool is1x1_; |
|
bool useAVX; |
|
bool useAVX2; |
|
bool useAVX512; |
|
|
|
ParallelConv() |
|
: input_(0), weights_(0), output_(0), ngroups_(0), nstripes_(0), |
|
biasvec_(0), reluslope_(0), activ_(0), is1x1_(false), useAVX(false), useAVX2(false), useAVX512(false) |
|
{} |
|
|
|
static void run( const Mat& input, Mat& output, const Mat& weights, |
|
const std::vector<float>& biasvec, |
|
const std::vector<float>& reluslope, |
|
Size kernel, Size pad, Size stride, Size dilation, |
|
const ActivationLayer* activ, int ngroups, int nstripes ) |
|
{ |
|
CV_Assert( input.dims == 4 && output.dims == 4, |
|
input.size[0] == output.size[0], |
|
weights.rows == output.size[1], |
|
weights.cols == (input.size[1]/ngroups)*kernel.width*kernel.height, |
|
input.type() == output.type(), |
|
input.type() == weights.type(), |
|
input.type() == CV_32F, |
|
input.isContinuous(), |
|
output.isContinuous(), |
|
biasvec.size() == (size_t)output.size[1]+2); |
|
ParallelConv p; |
|
|
|
p.input_ = &input; |
|
p.weights_ = &weights; |
|
p.output_ = &output; |
|
for( int i = 0; i < 4; i++ ) p.outShape[i] = output.size[i]; |
|
p.outShape[1] /= ngroups; |
|
p.kernel_ = kernel; p.pad_ = pad; p.stride_ = stride; p.dilation_ = dilation; |
|
p.ngroups_ = ngroups; |
|
p.nstripes_ = nstripes; |
|
|
|
int inpCnAll = input.size[1], width = input.size[3], height = input.size[2]; |
|
int inpCn = inpCnAll / ngroups; |
|
p.is1x1_ = kernel == Size(0,0) && pad == Size(0, 0); |
|
p.useAVX = checkHardwareSupport(CPU_AVX); |
|
p.useAVX2 = checkHardwareSupport(CPU_AVX2); |
|
p.useAVX512 = CV_CPU_HAS_SUPPORT_AVX512_SKX; |
|
|
|
int ncn = std::min(inpCn, (int)BLK_SIZE_CN); |
|
p.ofstab_.resize(kernel.width*kernel.height*ncn); |
|
int* ofstab = &p.ofstab_[0]; |
|
|
|
for( int k = 0; k < ncn; k++ ) |
|
for( int k_r = 0; k_r < kernel.height; k_r++ ) |
|
for( int k_c = 0; k_c < kernel.width; k_c++ ) |
|
ofstab[(k*kernel.height + k_r)*kernel.width + k_c] = |
|
(k*height + k_r*dilation.height)*width + k_c*dilation.width; |
|
|
|
p.biasvec_ = &biasvec; |
|
p.reluslope_ = &reluslope; |
|
p.activ_ = p.reluslope_->empty() ? activ : 0; |
|
|
|
parallel_for_(Range(0, nstripes), p, nstripes); |
|
} |
|
|
|
virtual void operator ()(const Range &r0) const |
|
{ |
|
const int valign = ConvolutionLayerImpl::VEC_ALIGN; |
|
int ngroups = ngroups_, batchSize = input_->size[0]*ngroups; |
|
int outW = output_->size[3], outH = output_->size[2], outCn = output_->size[1]/ngroups; |
|
int width = input_->size[3], height = input_->size[2], inpCn = input_->size[1]/ngroups; |
|
int nstripes = nstripes_; |
|
int kernel_w = kernel_.width, kernel_h = kernel_.height; |
|
int pad_w = pad_.width, pad_h = pad_.height; |
|
int stride_w = stride_.width, stride_h = stride_.height; |
|
int dilation_w = dilation_.width, dilation_h = dilation_.height; |
|
int karea = kernel_w*kernel_h; |
|
int i, j, k; |
|
size_t inpPlaneSize = width*height; |
|
size_t outPlaneSize = outW*outH; |
|
bool is1x1 = is1x1_; |
|
|
|
int stripesPerSample; |
|
size_t stripeSize; |
|
Range r = r0; |
|
|
|
if( nstripes >= batchSize*2 ) |
|
{ |
|
stripesPerSample = nstripes/batchSize; |
|
stripeSize = alignSize((outPlaneSize + stripesPerSample - 1)/stripesPerSample, valign); |
|
stripeSize = std::min(stripeSize, outPlaneSize); |
|
} |
|
else |
|
{ |
|
stripesPerSample = 1; |
|
int samplesPerStripe = std::max((batchSize + nstripes - 1)/nstripes, 1); |
|
r.start *= samplesPerStripe; |
|
r.end *= samplesPerStripe; |
|
nstripes *= samplesPerStripe; |
|
stripeSize = outPlaneSize; |
|
} |
|
|
|
const float* data_inp0_ = input_->ptr<float>(); |
|
const int* ofstab = &ofstab_[0]; |
|
const float* wptr_orig_ = weights_->ptr<float>(); |
|
size_t wstep = weights_->step1(); |
|
const float* biasptr_ = &biasvec_->at(0); |
|
const float* reluptr_ = reluslope_->empty() ? 0 : &reluslope_->at(0); |
|
float* data_out0_ = output_->ptr<float>(); |
|
size_t rowbufsz = (size_t)karea*BLK_SIZE_CN*BLK_SIZE; |
|
AutoBuffer<float> rowbuf0_(rowbufsz + valign); |
|
float* rowbuf0 = alignPtr((float*)rowbuf0_, (int)(valign*sizeof(float))); |
|
|
|
// we clear the buffer once; ultimately, it lets us to avoid |
|
// tail processing after running the unrolled/vectorized loop. |
|
// the main idea is to make sure that the tail (a.k.a. padding) of each row |
|
// (i.e. the elements with indices between vsz=karea*ncn and vsz_a) |
|
// does not contain NaNs or Infs. Because the padding in the weights |
|
// matrix is explicitly initialized with 0's, we handle all other |
|
// cases nicely, i.e. we can skip expliciting re-initialization |
|
// of the padding - we just retain elements from the previous iteration |
|
// of the loop over channels (cn0). |
|
memset(rowbuf0, 0, rowbufsz*sizeof(rowbuf0[0]) ); |
|
|
|
for( int stripe = r.start; stripe < r.end; stripe++ ) |
|
{ |
|
int subsampleIdx = stripe/stripesPerSample; |
|
if( subsampleIdx >= batchSize ) |
|
break; |
|
int stripeStart = (int)((stripe - subsampleIdx*stripesPerSample)*stripeSize); |
|
int stripeEnd = (int)std::min(stripeStart + stripeSize, outPlaneSize); |
|
const float* data_inp0 = data_inp0_ + subsampleIdx*inpPlaneSize*inpCn; |
|
float* data_out0 = data_out0_ + subsampleIdx*outPlaneSize*outCn; |
|
int startOutCn = (subsampleIdx % ngroups)*outCn; |
|
const float* wptr_orig = wptr_orig_ + wstep*startOutCn; |
|
const float* biasptr = biasptr_ + startOutCn; |
|
|
|
for( int cn0 = 0; cn0 < inpCn; cn0 += BLK_SIZE_CN ) |
|
{ |
|
int cn1 = std::min(cn0 + BLK_SIZE_CN, inpCn); |
|
int ncn = cn1 - cn0, vsz = karea*ncn; |
|
int vsz_a = (int)alignSize(vsz, valign); |
|
const float* wptr = wptr_orig + cn0*karea; |
|
// we apply [Channels][P]ReLU (if any) during the final pass only. |
|
const float* relu = cn1 == inpCn && reluptr_ ? reluptr_ + startOutCn : 0; |
|
|
|
for( int ofs0 = stripeStart; ofs0 < stripeEnd; ofs0 += BLK_SIZE ) |
|
{ |
|
int ofs, ofs1 = std::min(ofs0 + BLK_SIZE, stripeEnd); |
|
int out_i = ofs0 / outW; |
|
int out_j = ofs0 - out_i * outW; |
|
|
|
// do im2row for a part of input tensor |
|
float* rowbuf = rowbuf0; |
|
for( ofs = ofs0; ofs < ofs1; out_j = 0, ++out_i ) |
|
{ |
|
int delta = std::min(ofs1 - ofs, outW - out_j); |
|
int out_j1 = out_j + delta; |
|
int in_i = out_i * stride_h - pad_h; |
|
int in_j = out_j * stride_w - pad_w; |
|
const float* imgptr = data_inp0 + (cn0*height + in_i)*width + in_j; |
|
ofs += delta; |
|
|
|
// do im2row for a part of input tensor |
|
if( is1x1 ) |
|
{ |
|
for( ; out_j < out_j1; out_j++, rowbuf += vsz_a, imgptr += stride_w ) |
|
{ |
|
for( k = 0; k < vsz; k++ ) |
|
rowbuf[k] = imgptr[k*inpPlaneSize]; |
|
} |
|
} |
|
else |
|
{ |
|
bool ok_i = 0 <= in_i && in_i < height - (kernel_h-1)*dilation_h; |
|
int i0 = std::max(0, (-in_i + dilation_h-1)/dilation_h); |
|
int i1 = std::min(kernel_h, (height - in_i + dilation_h-1)/dilation_h); |
|
|
|
for( ; out_j < out_j1; out_j++, rowbuf += vsz_a, imgptr += stride_w, in_j += stride_w ) |
|
{ |
|
// this condition should be true for most of the tensor elements, i.e. |
|
// most of the time the kernel aperture is inside the tensor X-Y plane. |
|
if( ok_i && out_j + 2 <= out_j1 && 0 <= in_j && in_j + stride_w*2 <= width - (kernel_w-1)*dilation_w ) |
|
{ |
|
for( k = 0; k < vsz; k++ ) |
|
{ |
|
int k1 = ofstab[k]; |
|
float v0 = imgptr[k1]; |
|
float v1 = imgptr[k1 + stride_w]; |
|
rowbuf[k] = v0; |
|
rowbuf[k+vsz_a] = v1; |
|
} |
|
out_j++; |
|
rowbuf += vsz_a; |
|
imgptr += stride_w; |
|
in_j += stride_w; |
|
} |
|
else |
|
{ |
|
int j0 = std::max(0, (-in_j + dilation_w-1)/dilation_w); |
|
int j1 = std::min(kernel_w, (width - in_j + dilation_w-1)/dilation_w); |
|
|
|
// here some non-continous sub-row of the row will not be |
|
// filled from the tensor; we need to make sure that the uncovered |
|
// elements are explicitly set to 0's. the easiest way is to |
|
// set all the elements to 0's before the loop. |
|
memset(rowbuf, 0, vsz*sizeof(rowbuf[0])); |
|
for( k = 0; k < ncn; k++ ) |
|
{ |
|
for( i = i0; i < i1; i++ ) |
|
{ |
|
for( j = j0; j < j1; j++ ) |
|
{ |
|
int imgofs = k*(width*height) + i*(dilation_h*width) + j*dilation_w; |
|
rowbuf[(k*kernel_h + i)*kernel_w + j] = imgptr[imgofs]; |
|
} |
|
} |
|
} |
|
} |
|
} |
|
} |
|
} |
|
|
|
// now compute dot product of the weights |
|
// and im2row-transformed part of the tensor |
|
int bsz = ofs1 - ofs0; |
|
#if CV_TRY_AVX512_SKX |
|
/* AVX512 convolution requires an alignment of 16, and ROI is only there for larger vector sizes */ |
|
if(useAVX512) |
|
opt_AVX512_SKX::fastConv(wptr, wstep, biasptr, rowbuf0, data_out0 + ofs0, |
|
outShape, bsz, vsz, vsz_a, relu, cn0 == 0); |
|
else |
|
#endif |
|
#if CV_TRY_AVX2 |
|
if(useAVX2) |
|
opt_AVX2::fastConv(wptr, wstep, biasptr, rowbuf0, data_out0 + ofs0, |
|
outShape, bsz, vsz, vsz_a, relu, cn0 == 0); |
|
else |
|
#endif |
|
#if CV_TRY_AVX |
|
if(useAVX) |
|
opt_AVX::fastConv(wptr, wstep, biasptr, rowbuf0, data_out0 + ofs0, |
|
outShape, bsz, vsz, vsz_a, relu, cn0 == 0); |
|
else |
|
#endif |
|
for( int i = 0; i < outCn; i += 2 ) |
|
{ |
|
const float* wptr0 = wptr + i*wstep; |
|
const float* wptr1 = wptr0 + wstep; |
|
float* outptr0 = data_out0 + ofs0 + i*outPlaneSize; |
|
float* outptr1 = outptr0 + outPlaneSize; |
|
float bias0 = biasptr[i], bias1 = biasptr[i+1]; |
|
float r0 = 1.f, r1 = 1.f; |
|
|
|
if( i+1 >= outCn ) |
|
{ |
|
wptr1 = wptr0; |
|
outptr1 = outptr0; |
|
bias1 = bias0; |
|
} |
|
|
|
if( relu ) |
|
{ |
|
r0 = relu[i]; |
|
r1 = relu[i+1]; |
|
} |
|
|
|
int j = 0; |
|
#if CV_SIMD128 |
|
v_float32x4 vr0 = v_setall_f32(r0), vr1 = v_setall_f32(r1), z = v_setzero_f32(); |
|
|
|
for( ; j <= bsz - 4; j += 4 ) |
|
{ |
|
const float* rptr = rowbuf0 + j*vsz_a; |
|
v_float32x4 s0, s1; |
|
|
|
if( cn0 == 0 ) |
|
{ |
|
s0 = v_setall_f32(bias0); |
|
s1 = v_setall_f32(bias1); |
|
} |
|
else |
|
{ |
|
s0 = v_load(outptr0 + j); |
|
s1 = v_load(outptr1 + j); |
|
} |
|
|
|
v_float32x4 vs00 = v_setzero_f32(), vs01 = v_setzero_f32(), |
|
vs02 = v_setzero_f32(), vs03 = v_setzero_f32(), |
|
vs10 = v_setzero_f32(), vs11 = v_setzero_f32(), |
|
vs12 = v_setzero_f32(), vs13 = v_setzero_f32(); |
|
for( k = 0; k < vsz; k += 4, rptr += 4 ) |
|
{ |
|
v_float32x4 w0 = v_load_aligned(wptr0 + k), w1 = v_load_aligned(wptr1 + k); |
|
v_float32x4 r0 = v_load_aligned(rptr), r1 = v_load_aligned(rptr + vsz_a), |
|
r2 = v_load_aligned(rptr + vsz_a*2), r3 = v_load_aligned(rptr + vsz_a*3); |
|
|
|
vs00 += w0*r0; |
|
vs01 += w0*r1; |
|
vs02 += w0*r2; |
|
vs03 += w0*r3; |
|
|
|
vs10 += w1*r0; |
|
vs11 += w1*r1; |
|
vs12 += w1*r2; |
|
vs13 += w1*r3; |
|
} |
|
s0 += v_reduce_sum4(vs00, vs01, vs02, vs03); |
|
s1 += v_reduce_sum4(vs10, vs11, vs12, vs13); |
|
if( relu ) |
|
{ |
|
s0 = v_select(s0 > z, s0, s0*vr0); |
|
s1 = v_select(s1 > z, s1, s1*vr1); |
|
} |
|
|
|
v_store(outptr0 + j, s0); |
|
v_store(outptr1 + j, s1); |
|
} |
|
#endif |
|
for( ; j < bsz; j++ ) |
|
{ |
|
const float* rptr = rowbuf0 + j*vsz_a; |
|
float s00, s10; |
|
|
|
if( cn0 == 0 ) |
|
{ |
|
s00 = bias0; |
|
s10 = bias1; |
|
} |
|
else |
|
{ |
|
s00 = outptr0[j]; |
|
s10 = outptr1[j]; |
|
} |
|
|
|
for( k = 0; k < vsz; k++ ) |
|
{ |
|
float r0 = rptr[k]; |
|
s00 += wptr0[k]*r0; |
|
s10 += wptr1[k]*r0; |
|
} |
|
if( relu ) |
|
{ |
|
s00 = s00 > 0.f ? s00 : s00*r0; |
|
s10 = s10 > 0.f ? s10 : s10*r1; |
|
} |
|
|
|
outptr0[j] = s00; |
|
outptr1[j] = s10; |
|
} |
|
} |
|
} |
|
} |
|
|
|
if( activ_ ) |
|
activ_->forwardSlice(data_out0 + stripeStart, data_out0 + stripeStart, |
|
(int)(stripeEnd - stripeStart), |
|
outPlaneSize, startOutCn, startOutCn + outCn); |
|
} |
|
} |
|
}; |
|
|
|
#ifdef HAVE_OPENCL |
|
bool forward_ocl(InputArrayOfArrays inps, OutputArrayOfArrays outs, OutputArrayOfArrays internals) |
|
{ |
|
std::vector<UMat> inputs; |
|
std::vector<UMat> outputs; |
|
|
|
inps.getUMatVector(inputs); |
|
outs.getUMatVector(outputs); |
|
|
|
CV_Assert(outputs.size() == 1); |
|
for (int i = 0; i < inputs.size(); ++i) |
|
CV_Assert(inputs[i].u != outputs[0].u); |
|
|
|
int group = inputs[0].size[1] / umat_blobs[0].size[1]; |
|
|
|
if (convolutionOp.empty()) |
|
{ |
|
OCL4DNNConvConfig config; |
|
config.in_shape = shape(inputs[0]); |
|
config.out_shape = shape(outputs[0]); |
|
config.kernel = kernel; |
|
config.pad = pad; |
|
config.stride = stride; |
|
config.dilation = dilation; |
|
config.group = group; |
|
config.bias_term = (hasBias()) ? true : false; |
|
|
|
convolutionOp = Ptr<OCL4DNNConvSpatial<float> >(new OCL4DNNConvSpatial<float>(config)); |
|
} |
|
|
|
int k, outCn = umat_blobs[0].size[0]; |
|
if( weightsMat.empty() ) |
|
{ |
|
// prepare weightsMat where each row is aligned and has enough zero padding on the right to |
|
// use vectorized (i.e. with intrinsics) loops without tail processing |
|
Mat wm = blobs[0].reshape(1, outCn).clone(); |
|
if( wm.step1() % VEC_ALIGN != 0 ) |
|
{ |
|
int newcols = (int)alignSize(wm.step1(), VEC_ALIGN); |
|
Mat wm_buffer = Mat(outCn, newcols, wm.type()); |
|
Mat wm_padding = wm_buffer.colRange(wm.cols, newcols); |
|
wm_padding.setTo(Scalar::all(0.)); |
|
Mat wm_aligned = wm_buffer.colRange(0, wm.cols); |
|
wm.copyTo(wm_aligned); |
|
wm = wm_aligned; |
|
} |
|
weightsMat = wm; |
|
|
|
Mat biasMat = hasBias() ? blobs[1].reshape(1, outCn) : Mat(); |
|
biasvec.resize(outCn+2); |
|
if( biasMat.empty() ) |
|
{ |
|
for( k = 0; k < outCn; k++ ) |
|
biasvec[k] = 0.f; |
|
} |
|
else |
|
{ |
|
for( k = 0; k < outCn; k++ ) |
|
biasvec[k] = biasMat.at<float>(k); |
|
} |
|
|
|
if( !bnorm.empty() || !scaleLayer.empty() || IS_POWER_LAYER(activ)) |
|
{ |
|
Mat scale, shift, scale2, shift2; |
|
const float *scaleptr = 0, *shiftptr = 0; |
|
const float *scaleptr2 = 0, *shiftptr2 = 0; |
|
float a = 1.f, b = 0.f; |
|
|
|
if( !bnorm.empty() ) |
|
{ |
|
bnorm->getScaleShift(scale, shift); |
|
CV_Assert( scale.isContinuous() && shift.isContinuous() && |
|
scale.type() == CV_32F && shift.type() == CV_32F && |
|
scale.total() == (size_t)outCn && |
|
shift.total() == (size_t)outCn ); |
|
scaleptr = scale.ptr<float>(); |
|
shiftptr = shift.ptr<float>(); |
|
} |
|
if( !scaleLayer.empty() ) |
|
{ |
|
scale2 = scaleLayer->blobs[0]; |
|
CV_Assert( scale2.isContinuous() && scale2.type() == CV_32F && |
|
scale2.total() == (size_t)outCn ); |
|
scaleptr2 = scale2.ptr<float>(); |
|
if( scaleLayer->hasBias ) |
|
{ |
|
shift2 = scaleLayer->blobs[1]; |
|
CV_Assert( shift2.isContinuous() && shift2.type() == CV_32F && |
|
shift2.total() == (size_t)outCn ); |
|
shiftptr2 = shift2.ptr<float>(); |
|
} |
|
} |
|
|
|
if( IS_POWER_LAYER(activ) ) |
|
{ |
|
Ptr<PowerLayer> activ_power = activ.dynamicCast<PowerLayer>(); |
|
CV_Assert(activ_power); |
|
a = activ_power->scale; |
|
b = activ_power->shift; |
|
} |
|
|
|
if (shiftptr || shiftptr2 || b != 0.f) |
|
fusedBias = true; |
|
|
|
for( int i = 0; i < outCn; i++ ) |
|
{ |
|
float s1 = scaleptr ? scaleptr[i] : 1.f; |
|
float delta1 = shiftptr ? shiftptr[i] : 0.f; |
|
float s2 = scaleptr2 ? scaleptr2[i] : 1.f; |
|
float delta2 = shiftptr2 ? shiftptr2[i] : 0.f; |
|
float* w_i = weightsMat.ptr<float>(i); |
|
int j, wcols = weightsMat.cols; |
|
|
|
for( j = 0; j < wcols; j++ ) |
|
w_i[j] *= (s1*s2*a); |
|
|
|
biasvec[i] = biasvec[i]*(s1*s2*a) + (delta1*s2*a + delta2*a + b); |
|
} |
|
} |
|
biasvec[outCn] = biasvec[outCn+1] = biasvec[outCn-1]; |
|
} |
|
|
|
reluslope.clear(); |
|
if( activ ) |
|
{ |
|
Ptr<ReLULayer> activ_relu = activ.dynamicCast<ReLULayer>(); |
|
if( !activ_relu.empty() ) |
|
{ |
|
reluslope.assign(outCn+2, activ_relu->negativeSlope); |
|
activType = OCL4DNN_CONV_FUSED_ACTIV_RELU; |
|
} |
|
|
|
Ptr<ChannelsPReLULayer> activ_chprelu = activ.dynamicCast<ChannelsPReLULayer>(); |
|
if( !activ_chprelu.empty() ) |
|
{ |
|
const Mat& m = activ_chprelu->blobs[0]; |
|
CV_Assert(m.isContinuous() && m.type() == CV_32F && (int)m.total() == outCn); |
|
const float* mdata = m.ptr<float>(); |
|
reluslope.resize(outCn+2); |
|
std::copy(mdata, mdata + outCn, reluslope.begin()); |
|
reluslope[outCn] = reluslope[outCn+1] = reluslope[outCn-1]; |
|
activType = OCL4DNN_CONV_FUSED_ACTIV_PRELU; |
|
} |
|
} |
|
|
|
if ( newWeightAndBias ) |
|
{ |
|
weightsMat.copyTo(umat_blobs[0]); |
|
if ( fusedBias ) |
|
{ |
|
if ( umat_blobs.size() < 2 ) |
|
umat_blobs.resize(2); |
|
umat_blobs[1] = UMat(biasvec, true); |
|
} |
|
convolutionOp->setBias(fusedBias || hasBias()); |
|
newWeightAndBias = false; |
|
} |
|
|
|
if ( newActiv ) |
|
{ |
|
if ( activType == OCL4DNN_CONV_FUSED_ACTIV_RELU ) |
|
{ |
|
CV_Assert(!reluslope.empty()); |
|
convolutionOp->setActivReLU(true, reluslope[0]); |
|
} |
|
else if ( activType == OCL4DNN_CONV_FUSED_ACTIV_PRELU) |
|
{ |
|
CV_Assert(!reluslope.empty()); |
|
convolutionOp->setActivPReLU(true, reluslope); |
|
} |
|
else if ( activType == OCL4DNN_CONV_FUSED_ACTIV_POWER) |
|
{ |
|
convolutionOp->setActivPower(true, power); |
|
} |
|
else |
|
{ |
|
convolutionOp->setActivReLU(false, 0); |
|
convolutionOp->setActivPReLU(false, reluslope); |
|
convolutionOp->setActivPower(false, 1.f); |
|
} |
|
newActiv = false; |
|
} |
|
|
|
UMat& inpMat = inputs[0]; |
|
UMat& outMat = outputs[0]; |
|
int batch_size = inpMat.size[0]; |
|
|
|
return convolutionOp->Forward(inpMat, |
|
inputs.size() == 2 ? inputs[1] : UMat(), |
|
umat_blobs[0], |
|
(hasBias() || fusedBias) ? umat_blobs[1] : UMat(), |
|
outMat, |
|
batch_size); |
|
} |
|
#endif |
|
|
|
void forward(InputArrayOfArrays inputs_arr, OutputArrayOfArrays outputs_arr, OutputArrayOfArrays internals_arr) |
|
{ |
|
CV_TRACE_FUNCTION(); |
|
CV_TRACE_ARG_VALUE(name, "name", name.c_str()); |
|
|
|
CV_OCL_RUN((preferableTarget == DNN_TARGET_OPENCL) && |
|
OCL_PERFORMANCE_CHECK(ocl::Device::getDefault().isIntel()), |
|
forward_ocl(inputs_arr, outputs_arr, internals_arr)) |
|
|
|
Layer::forward_fallback(inputs_arr, outputs_arr, internals_arr); |
|
} |
|
|
|
void forward(std::vector<Mat*> &inputs, std::vector<Mat> &outputs, std::vector<Mat> &internals) |
|
{ |
|
CV_TRACE_FUNCTION(); |
|
CV_TRACE_ARG_VALUE(name, "name", name.c_str()); |
|
|
|
/*printf("conv %s: input (%d x %d x %d x %d), kernel (%d x %d), pad (%d x %d), stride (%d x %d), dilation (%d x %d)\n", |
|
name.c_str(), inputs[0]->size[0], inputs[0]->size[1], inputs[0]->size[2], inputs[0]->size[3], |
|
kernel.width, kernel.height, pad.width, pad.height, |
|
stride.width, stride.height, dilation.width, dilation.height);*/ |
|
CV_Assert(inputs.size() == (size_t)1, inputs[0]->size[1] % blobs[0].size[1] == 0, |
|
outputs.size() == 1, inputs[0]->data != outputs[0].data); |
|
|
|
int ngroups = inputs[0]->size[1]/blobs[0].size[1]; |
|
CV_Assert(outputs[0].size[1] % ngroups == 0); |
|
int k, outCn = blobs[0].size[0]; |
|
|
|
if( weightsMat.empty() ) |
|
{ |
|
// prepare weightsMat where each row is aligned and has enough zero padding on the right to |
|
// use vectorized (i.e. with intrinsics) loops without tail processing |
|
Mat wm = blobs[0].reshape(1, outCn).clone(); |
|
if( wm.step1() % VEC_ALIGN != 0 ) |
|
{ |
|
int newcols = (int)alignSize(wm.step1(), VEC_ALIGN); |
|
Mat wm_buffer = Mat(outCn, newcols, wm.type()); |
|
Mat wm_padding = wm_buffer.colRange(wm.cols, newcols); |
|
wm_padding.setTo(Scalar::all(0.)); |
|
Mat wm_aligned = wm_buffer.colRange(0, wm.cols); |
|
wm.copyTo(wm_aligned); |
|
wm = wm_aligned; |
|
} |
|
weightsMat = wm; |
|
|
|
Mat biasMat = hasBias() ? blobs[1].reshape(1, outCn) : Mat(); |
|
biasvec.resize(outCn+2); |
|
if( biasMat.empty() ) |
|
{ |
|
for( k = 0; k < outCn; k++ ) |
|
biasvec[k] = 0.f; |
|
} |
|
else |
|
{ |
|
for( k = 0; k < outCn; k++ ) |
|
biasvec[k] = biasMat.at<float>(k); |
|
} |
|
|
|
if( !bnorm.empty() || !scaleLayer.empty() ) |
|
{ |
|
Mat scale, shift, scale2, shift2; |
|
const float *scaleptr = 0, *shiftptr = 0; |
|
const float *scaleptr2 = 0, *shiftptr2 = 0; |
|
|
|
if( !bnorm.empty() ) |
|
{ |
|
bnorm->getScaleShift(scale, shift); |
|
CV_Assert( scale.isContinuous() && shift.isContinuous() && |
|
scale.type() == CV_32F && shift.type() == CV_32F && |
|
scale.total() == (size_t)outCn && |
|
shift.total() == (size_t)outCn ); |
|
scaleptr = scale.ptr<float>(); |
|
shiftptr = shift.ptr<float>(); |
|
} |
|
if( !scaleLayer.empty() ) |
|
{ |
|
scale2 = scaleLayer->blobs[0]; |
|
CV_Assert( scale2.isContinuous() && scale2.type() == CV_32F && |
|
scale2.total() == (size_t)outCn ); |
|
scaleptr2 = scale2.ptr<float>(); |
|
if( scaleLayer->hasBias ) |
|
{ |
|
shift2 = scaleLayer->blobs[1]; |
|
CV_Assert( shift2.isContinuous() && shift2.type() == CV_32F && |
|
shift2.total() == (size_t)outCn ); |
|
shiftptr2 = shift2.ptr<float>(); |
|
} |
|
} |
|
|
|
for( int i = 0; i < outCn; i++ ) |
|
{ |
|
float s1 = scaleptr ? scaleptr[i] : 1.f; |
|
float delta1 = shiftptr ? shiftptr[i] : 0.f; |
|
float s2 = scaleptr2 ? scaleptr2[i] : 1.f; |
|
float delta2 = shiftptr2 ? shiftptr2[i] : 0.f; |
|
float* w_i = weightsMat.ptr<float>(i); |
|
int j, wcols = weightsMat.cols; |
|
|
|
for( j = 0; j < wcols; j++ ) |
|
w_i[j] *= (s1*s2); |
|
|
|
biasvec[i] = biasvec[i]*(s1*s2) + (delta1*s2 + delta2); |
|
} |
|
} |
|
biasvec[outCn] = biasvec[outCn+1] = biasvec[outCn-1]; |
|
} |
|
|
|
reluslope.clear(); |
|
if( activ ) |
|
{ |
|
Ptr<ReLULayer> activ_relu = activ.dynamicCast<ReLULayer>(); |
|
if( !activ_relu.empty() ) |
|
{ |
|
reluslope.assign(outCn+2, activ_relu->negativeSlope); |
|
} |
|
|
|
Ptr<ChannelsPReLULayer> activ_chprelu = activ.dynamicCast<ChannelsPReLULayer>(); |
|
if( !activ_chprelu.empty() ) |
|
{ |
|
const Mat& m = activ_chprelu->blobs[0]; |
|
CV_Assert(m.isContinuous() && m.type() == CV_32F && (int)m.total() == outCn); |
|
const float* mdata = m.ptr<float>(); |
|
reluslope.resize(outCn+2); |
|
std::copy(mdata, mdata + outCn, reluslope.begin()); |
|
reluslope[outCn] = reluslope[outCn+1] = reluslope[outCn-1]; |
|
} |
|
} |
|
|
|
int nstripes = std::max(getNumThreads(), 1); |
|
|
|
ParallelConv::run(*inputs[0], outputs[0], weightsMat, biasvec, reluslope, |
|
kernel, pad, stride, dilation, activ.get(), ngroups, nstripes); |
|
} |
|
|
|
virtual int64 getFLOPS(const std::vector<MatShape> &inputs, |
|
const std::vector<MatShape> &outputs) const |
|
{ |
|
CV_Assert(inputs.size() == outputs.size()); |
|
|
|
int64 flops = 0; |
|
for (int i = 0; i < inputs.size(); i++) |
|
{ |
|
flops += total(outputs[i])*(CV_BIG_INT(2)*kernel.area()*inputs[i][1] + 1); |
|
} |
|
|
|
return flops; |
|
} |
|
}; |
|
|
|
class DeConvolutionLayerImpl : public BaseConvolutionLayerImpl |
|
{ |
|
public: |
|
Mat weightsMat, biasesMat; |
|
|
|
MatShape computeColRowShape(const MatShape &inpShape, const MatShape &outShape) const |
|
{ |
|
int inpCn = inpShape[1]; |
|
int inpH = inpShape[2]; |
|
int inpW = inpShape[3]; |
|
int outCn = outShape[1]; |
|
int ngroups = inpCn / blobs[0].size[0]; |
|
int outGroupCn = outCn / ngroups; |
|
int ksize = outGroupCn * kernel.height * kernel.width; |
|
return shape(ksize, inpH * inpW); |
|
} |
|
|
|
bool getMemoryShapes(const std::vector<MatShape> &inputs, |
|
const int requiredOutputs, |
|
std::vector<MatShape> &outputs, |
|
std::vector<MatShape> &internals) const |
|
{ |
|
CV_Assert(!hasBias() || blobs[1].total() == (size_t)numOutput); |
|
CV_Assert(inputs.size() != 0); |
|
|
|
int inpCn = inputs[0][1]; |
|
int inpH = inputs[0][2]; |
|
int inpW = inputs[0][3]; |
|
|
|
int outH = stride.height * (inpH - 1) + kernel.height - 2 * pad.height + adjustPad.height; |
|
int outW = stride.width * (inpW - 1) + kernel.width - 2 * pad.width + adjustPad.width; |
|
int outCn = numOutput; |
|
|
|
CV_Assert(outCn % blobs[0].size[1] == 0); |
|
int ngroups = outCn / blobs[0].size[1]; |
|
|
|
CV_Assert(inpCn % ngroups == 0 && outCn % ngroups == 0); |
|
CV_Assert(blobs[0].size[0] == inpCn); |
|
|
|
int dims[] = {inputs[0][0], outCn, outH, outW}; |
|
outputs.resize(inputs.size(), shape(dims)); |
|
|
|
internals.push_back(MatShape()); |
|
if (!is1x1()) |
|
internals[0] = computeColRowShape(inputs[0], outputs[0]); |
|
|
|
if (hasBias()) |
|
internals.push_back(shape(1, outH*outW)); |
|
|
|
return false; |
|
} |
|
|
|
class MatMulInvoker : public ParallelLoopBody |
|
{ |
|
public: |
|
MatMulInvoker(const Mat& a, const Mat& b, Mat& c, int nstripes) |
|
{ |
|
a_ = &a; |
|
b_ = &b; |
|
c_ = &c; |
|
nstripes_ = nstripes; |
|
useAVX = checkHardwareSupport(CPU_AVX); |
|
useAVX2 = checkHardwareSupport(CPU_AVX2); |
|
useAVX512 = CV_CPU_HAS_SUPPORT_AVX512_SKX; |
|
} |
|
|
|
void operator()(const Range& range_) const |
|
{ |
|
int stripeSize = (int)alignSize((b_->cols + nstripes_ - 1)/nstripes_, 16); |
|
Range range(range_.start*stripeSize, std::min(range_.end*stripeSize, b_->cols)); |
|
int mmax = a_->rows; |
|
int nmax = range.end - range.start; |
|
int kmax = a_->cols; |
|
int m, n, k; |
|
const float* aptr = a_->ptr<float>(); |
|
const float* bptr = b_->ptr<float>() + range.start; |
|
float* cptr = c_->ptr<float>() + range.start; |
|
size_t astep = a_->step1(); |
|
size_t bstep = b_->step1(); |
|
size_t cstep = c_->step1(); |
|
|
|
#if CV_TRY_AVX512_SKX |
|
if( useAVX512 ) |
|
opt_AVX512_SKX::fastGEMM( aptr, astep, bptr, bstep, cptr, cstep, mmax, kmax, nmax ); |
|
else |
|
#endif |
|
#if CV_TRY_AVX2 |
|
if( useAVX2 ) |
|
opt_AVX2::fastGEMM( aptr, astep, bptr, bstep, cptr, cstep, mmax, kmax, nmax ); |
|
else |
|
#endif |
|
#if CV_TRY_AVX |
|
if( useAVX ) |
|
opt_AVX::fastGEMM( aptr, astep, bptr, bstep, cptr, cstep, mmax, kmax, nmax ); |
|
else |
|
#endif |
|
for( m = 0; m < mmax; m += 2 ) |
|
{ |
|
float* dst0 = cptr + cstep*m; |
|
float* dst1 = cptr + cstep*std::min(m+1, mmax-1); |
|
const float* aptr0 = aptr + astep*m; |
|
const float* aptr1 = aptr + astep*std::min(m+1, mmax-1); |
|
|
|
for( n = 0; n < nmax; n++ ) |
|
{ |
|
dst0[n] = 0.f; |
|
dst1[n] = 0.f; |
|
} |
|
|
|
for( k = 0; k < kmax; k += 4 ) |
|
{ |
|
float alpha00 = aptr0[k]; |
|
float alpha01 = aptr1[k]; |
|
float alpha10 = 0.f, alpha11 = 0.f; |
|
float alpha20 = 0.f, alpha21 = 0.f; |
|
float alpha30 = 0.f, alpha31 = 0.f; |
|
const float* bptr0 = bptr + k*bstep; |
|
const float* bptr1 = bptr0; |
|
const float* bptr2 = bptr0; |
|
const float* bptr3 = bptr0; |
|
|
|
if( k+1 < kmax ) |
|
{ |
|
alpha10 = aptr0[k+1]; |
|
alpha11 = aptr1[k+1]; |
|
bptr1 = bptr0 + bstep; |
|
if( k+2 < kmax ) |
|
{ |
|
alpha20 = aptr0[k+2]; |
|
alpha21 = aptr1[k+2]; |
|
bptr2 = bptr1 + bstep; |
|
if( k+3 < kmax ) |
|
{ |
|
alpha30 = aptr0[k+3]; |
|
alpha31 = aptr1[k+3]; |
|
bptr3 = bptr2 + bstep; |
|
} |
|
} |
|
} |
|
n = 0; |
|
|
|
#if CV_SIMD128 |
|
v_float32x4 a00 = v_setall_f32(alpha00); |
|
v_float32x4 a01 = v_setall_f32(alpha01); |
|
v_float32x4 a10 = v_setall_f32(alpha10); |
|
v_float32x4 a11 = v_setall_f32(alpha11); |
|
v_float32x4 a20 = v_setall_f32(alpha20); |
|
v_float32x4 a21 = v_setall_f32(alpha21); |
|
v_float32x4 a30 = v_setall_f32(alpha30); |
|
v_float32x4 a31 = v_setall_f32(alpha31); |
|
|
|
for( ; n <= nmax - 4; n += 4 ) |
|
{ |
|
v_float32x4 b0 = v_load(bptr0 + n); |
|
v_float32x4 b1 = v_load(bptr1 + n); |
|
v_float32x4 b2 = v_load(bptr2 + n); |
|
v_float32x4 b3 = v_load(bptr3 + n); |
|
v_float32x4 d0 = v_load(dst0 + n); |
|
v_float32x4 d1 = v_load(dst1 + n); |
|
d0 += b0*a00; |
|
d1 += b0*a01; |
|
d0 += b1*a10; |
|
d1 += b1*a11; |
|
d0 += b2*a20; |
|
d1 += b2*a21; |
|
d0 += b3*a30; |
|
d1 += b3*a31; |
|
v_store(dst0 + n, d0); |
|
v_store(dst1 + n, d1); |
|
} |
|
#endif |
|
|
|
for( ; n < nmax; n++ ) |
|
{ |
|
float b0 = bptr0[n], b1 = bptr1[n]; |
|
float b2 = bptr2[n], b3 = bptr3[n]; |
|
float d0 = dst0[n] + alpha00*b0 + alpha10*b1 + alpha20*b2 + alpha30*b3; |
|
float d1 = dst1[n] + alpha01*b0 + alpha11*b1 + alpha21*b2 + alpha31*b3; |
|
dst0[n] = d0; |
|
dst1[n] = d1; |
|
} |
|
} |
|
} |
|
} |
|
|
|
const Mat *a_, *b_; |
|
Mat* c_; |
|
int nstripes_; |
|
bool useAVX; |
|
bool useAVX2; |
|
bool useAVX512; |
|
}; |
|
|
|
class Col2ImInvoker : public cv::ParallelLoopBody |
|
{ |
|
public: |
|
const float* data_col; |
|
const float* biasvec; |
|
int channels, height, width; |
|
int kernel_h, kernel_w; |
|
int pad_h, pad_w; |
|
int stride_h, stride_w; |
|
float* data_im; |
|
int height_col, width_col; |
|
int nstripes; |
|
bool is1x1; |
|
|
|
Col2ImInvoker() |
|
: data_col(0), biasvec(0), channels(0), height(0), width(0), |
|
kernel_h(0), kernel_w(0), pad_h(0), pad_w(0), stride_h(0), stride_w(0), data_im(0), |
|
height_col(0), width_col(0), nstripes(0), is1x1(0) |
|
{} |
|
|
|
static void run(const float* data_col, |
|
int channels, int height, int width, |
|
int kernel_h, int kernel_w, |
|
int pad_h, int pad_w, |
|
int stride_h, int stride_w, |
|
float* data_im, |
|
const float* biasvec, |
|
bool is1x1) |
|
{ |
|
const int nstripes = getNumThreads(); |
|
|
|
Col2ImInvoker t; |
|
t.data_col = data_col; |
|
t.data_im = data_im; |
|
t.channels = channels; t.height = height; t.width = width; |
|
t.kernel_h = kernel_h; t.kernel_w = kernel_w; |
|
t.pad_h = pad_h; t.pad_w = pad_w; |
|
t.stride_h = stride_h; t.stride_w = stride_w; |
|
t.height_col = (height + 2 * pad_h - kernel_h) / stride_h + 1; |
|
t.width_col = (width + 2 * pad_w - kernel_w) / stride_w + 1; |
|
t.nstripes = nstripes; |
|
t.is1x1 = is1x1; |
|
t.biasvec = biasvec; |
|
|
|
parallel_for_(Range(0, nstripes), t, nstripes); |
|
} |
|
|
|
virtual void operator ()(const Range &r) const |
|
{ |
|
const float* data_col_ = data_col; |
|
float* data_im_ = data_im; |
|
int coeff_h = (1 - stride_h * kernel_w * height_col) * width_col; |
|
int coeff_w = (1 - stride_w * height_col * width_col); |
|
size_t total = (size_t)channels * height * width; |
|
size_t stripeSize = (total + nstripes - 1)/nstripes; |
|
size_t startIndex = r.start*stripeSize; |
|
size_t endIndex = std::min(r.end*stripeSize, total); |
|
int w = (int)(startIndex % width + pad_w); |
|
int h = (int)((startIndex / width) % height + pad_h); |
|
int c = (int)(startIndex / (width * height)); |
|
int h_col_start = (h < kernel_h) ? 0 : (h - kernel_h) / stride_h + 1; |
|
int h_col_end = std::min(h / stride_h + 1, height_col); |
|
int plane_size_col = height_col * width_col; |
|
int offset = (c * kernel_h * kernel_w + h * kernel_w + w) * plane_size_col; |
|
bool is1x1_ = is1x1; |
|
const float* biasvec_ = biasvec; |
|
|
|
for (size_t index = startIndex; index < endIndex; index++) |
|
{ |
|
// compute the start and end of the output |
|
int w_col_start = (w < kernel_w) ? 0 : (w - kernel_w) / stride_w + 1; |
|
int w_col_end = std::min(w / stride_w + 1, width_col); |
|
float val; |
|
|
|
if( is1x1_ ) |
|
val = data_im_[index]; |
|
else |
|
{ |
|
val = 0.f; |
|
for (int h_col = h_col_start; h_col < h_col_end; ++h_col) { |
|
for (int w_col = w_col_start; w_col < w_col_end; ++w_col) { |
|
val += data_col_[offset + h_col * coeff_h + w_col * coeff_w]; |
|
} |
|
} |
|
} |
|
data_im_[index] = val + biasvec_[c]; |
|
|
|
offset += plane_size_col; |
|
if( ++w >= width + pad_w ) |
|
{ |
|
w = (int)((index + 1)% width + pad_w); |
|
h = (int)(((index + 1) / width) % height + pad_h); |
|
c = (int)((index + 1) / (width * height)); |
|
h_col_start = (h < kernel_h) ? 0 : (h - kernel_h) / stride_h + 1; |
|
h_col_end = std::min(h / stride_h + 1, height_col); |
|
offset = (c * kernel_h * kernel_w + h * kernel_w + w) * plane_size_col; |
|
} |
|
} |
|
} |
|
}; |
|
|
|
void forward(InputArrayOfArrays inputs_arr, OutputArrayOfArrays outputs_arr, OutputArrayOfArrays internals_arr) |
|
{ |
|
CV_TRACE_FUNCTION(); |
|
CV_TRACE_ARG_VALUE(name, "name", name.c_str()); |
|
|
|
Layer::forward_fallback(inputs_arr, outputs_arr, internals_arr); |
|
} |
|
|
|
void forward(std::vector<Mat *> &inputs, std::vector<Mat> &outputs, std::vector<Mat> &internals) |
|
{ |
|
CV_TRACE_FUNCTION(); |
|
CV_TRACE_ARG_VALUE(name, "name", name.c_str()); |
|
|
|
int outCn = numOutput; |
|
int inpCn = inputs[0]->size[1]; |
|
bool is1x1flag = is1x1(); |
|
int nstripes = getNumThreads(); |
|
|
|
if( weightsMat.empty() ) |
|
{ |
|
transpose(blobs[0].reshape(1, inpCn), weightsMat); |
|
biasesMat = hasBias() ? blobs[1].reshape(1, outCn) : Mat::zeros(outCn, 1, CV_32F); |
|
} |
|
|
|
for (size_t ii = 0; ii < outputs.size(); ii++) |
|
{ |
|
int ngroups = outCn / blobs[0].size[1]; |
|
int inpGroupCn = inpCn / ngroups; |
|
int outGroupCn = blobs[0].size[1]; |
|
const Mat& inp = *inputs[ii]; |
|
Mat& out = outputs[ii]; |
|
int numImg = inp.size[0]; |
|
int outH = out.size[2], outW = out.size[3]; |
|
|
|
Mat convBlob = inputs[ii]->reshape(1, numImg*inpCn); |
|
Mat decnBlob = out.reshape(1, numImg*outCn); |
|
|
|
for (int n = 0; n < numImg; n++) |
|
{ |
|
for (int g = 0; g < ngroups; g++) |
|
{ |
|
Mat dstMat = decnBlob.rowRange(_Range((g + n * ngroups) * outGroupCn, outGroupCn)); |
|
Mat &colMat = is1x1flag ? dstMat : internals[0]; |
|
|
|
Mat convMat = convBlob.rowRange(_Range((g + n * ngroups) * inpGroupCn, inpGroupCn)); |
|
Mat wghtMat = weightsMat.colRange(_Range(g * inpGroupCn, inpGroupCn)); |
|
Mat curBiasMat = biasesMat.rowRange(_Range(g * outGroupCn, outGroupCn)); |
|
|
|
//gemm(wghtMat, convMat, 1, colMat, 0, colMat, 0); |
|
MatMulInvoker mminvoker(wghtMat, convMat, colMat, nstripes); |
|
parallel_for_(Range(0, nstripes), mminvoker, nstripes); |
|
|
|
Col2ImInvoker::run(colMat.ptr<float>(), outGroupCn, outH, outW, |
|
kernel.height, kernel.width, pad.height, pad.width, |
|
stride.height, stride.width, dstMat.ptr<float>(), |
|
curBiasMat.ptr<float>(), is1x1flag); |
|
} |
|
} |
|
} |
|
} |
|
|
|
virtual Ptr<BackendNode> initHalide(const std::vector<Ptr<BackendWrapper> > &inputs) |
|
{ |
|
#ifdef HAVE_HALIDE |
|
Halide::Buffer<float> inputBuffer = halideBuffer(inputs[0]); |
|
|
|
int inW, inH, inC, inN; |
|
getCanonicalSize(inputBuffer, &inW, &inH, &inC, &inN); |
|
const int outGroupCn = blobs[0].size[1]; |
|
const int group = numOutput / outGroupCn; |
|
const int inpGroupCn = blobs[0].size[0] / group; |
|
|
|
Halide::Var x("x"), y("y"), c("c"), n("n"); |
|
Halide::Func top = (name.empty() ? Halide::Func() : Halide::Func(name)); |
|
Halide::Func padded_input(name + "_constant_exterior"); |
|
auto weights = wrapToHalideBuffer(blobs[0]); |
|
|
|
Halide::Func dilated_input("dilated_input"); |
|
dilated_input(x, y, c, n) = 0.0f; |
|
Halide::RDom r1(0, inW, 0, inH); |
|
dilated_input(r1.x * stride.width, r1.y * stride.height, c, n) = |
|
inputBuffer(r1.x, r1.y, c, n); |
|
dilated_input.compute_root(); |
|
|
|
Halide::Func bounded = |
|
Halide::BoundaryConditions::constant_exterior(dilated_input, 0, |
|
0, (inW - 1) * stride.width + 1, |
|
0, (inH - 1) * stride.height + 1, |
|
0, inC, 0, inN); |
|
padded_input(x, y, c, n) = bounded(x, y, c, n); |
|
|
|
Halide::RDom r(0, kernel.width, 0, kernel.height, 0, inpGroupCn); |
|
Halide::Expr kx = x + pad.width - r.x; |
|
Halide::Expr ky = y + pad.height - r.y; |
|
Halide::Expr kInC = r.z; |
|
Halide::Expr kOutC = c; |
|
for (int i = 1; i < group; ++i) |
|
{ |
|
kInC = select(c < outGroupCn * i, kInC, inpGroupCn * i + r.z); |
|
kOutC = select(c < outGroupCn * i, kOutC, c - outGroupCn * i); |
|
} |
|
Halide::Expr topExpr = sum(padded_input(kx, ky, kInC, n) * |
|
weights(r.x, r.y, kOutC, kInC)); |
|
if (hasBias()) |
|
{ |
|
auto bias = wrapToHalideBuffer(blobs[1], {numOutput}); |
|
topExpr += bias(c); |
|
} |
|
top(x, y, c, n) = topExpr; |
|
return Ptr<BackendNode>(new HalideBackendNode({ padded_input, top })); |
|
#endif // HAVE_HALIDE |
|
return Ptr<BackendNode>(); |
|
} |
|
|
|
virtual int64 getFLOPS(const std::vector<MatShape> &inputs, |
|
const std::vector<MatShape> &outputs) const |
|
{ |
|
CV_Assert(inputs.size() == outputs.size()); |
|
|
|
float flops = 0; |
|
int outChannels = blobs[0].size[0]; |
|
|
|
for (int i = 0; i < inputs.size(); i++) |
|
{ |
|
flops += CV_BIG_INT(2)*outChannels*kernel.area()*total(inputs[i]); |
|
} |
|
|
|
return flops; |
|
} |
|
}; |
|
|
|
//Convolution and Deconvolution |
|
static void initConvDeconvLayerFromCaffe(Ptr<BaseConvolutionLayer> l, const LayerParams ¶ms) |
|
{ |
|
l->setParamsFrom(params); |
|
getConvolutionKernelParams(params, l->kernel.height, l->kernel.width, l->pad.height, |
|
l->pad.width, l->stride.height, l->stride.width, l->dilation.height, |
|
l->dilation.width, l->padMode); |
|
|
|
l->numOutput = params.get<int>("num_output"); |
|
int ngroups = params.get<int>("group", 1); |
|
|
|
l->adjustPad.height = params.get<int>("adj_h", 0); |
|
l->adjustPad.width = params.get<int>("adj_w", 0); |
|
|
|
CV_Assert(l->numOutput % ngroups == 0); |
|
CV_Assert(l->adjustPad.width < l->stride.width && |
|
l->adjustPad.height < l->stride.height); |
|
} |
|
|
|
Ptr<BaseConvolutionLayer> ConvolutionLayer::create(const LayerParams ¶ms) |
|
{ |
|
ConvolutionLayerImpl* conv_ptr = new ConvolutionLayerImpl; |
|
Ptr<BaseConvolutionLayer> l(conv_ptr); |
|
initConvDeconvLayerFromCaffe(l, params); |
|
|
|
#ifdef HAVE_OPENCL |
|
size_t n = params.blobs.size(); |
|
conv_ptr->umat_blobs.resize(n); |
|
for (int i = 0; i < n; i++) |
|
conv_ptr->umat_blobs[i] = params.blobs[i].getUMat(ACCESS_READ); |
|
#endif |
|
|
|
return l; |
|
} |
|
|
|
Ptr<BaseConvolutionLayer> DeconvolutionLayer::create(const LayerParams ¶ms) |
|
{ |
|
Ptr<BaseConvolutionLayer> l(new DeConvolutionLayerImpl); |
|
initConvDeconvLayerFromCaffe(l, params); |
|
|
|
return l; |
|
} |
|
|
|
} |
|
}
|
|
|