mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
454 lines
19 KiB
454 lines
19 KiB
/*M/////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// |
|
// License Agreement |
|
// For Open Source Computer Vision Library |
|
// |
|
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. |
|
// Copyright (C) 2009, Willow Garage Inc., all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
// |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistribution's of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistribution's in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other materials provided with the distribution. |
|
// |
|
// * The name of the copyright holders may not be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors "as is" and |
|
// any express or implied warranties, including, but not limited to, the implied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall the Intel Corporation or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
// |
|
//M*/ |
|
|
|
#include "precomp.hpp" |
|
|
|
#if !defined HAVE_CUDA || defined(CUDA_DISABLER) |
|
|
|
|
|
void cv::gpu::warpAffine(const GpuMat&, GpuMat&, const Mat&, Size, int, int, Scalar, Stream&) { throw_nogpu(); } |
|
void cv::gpu::buildWarpAffineMaps(const Mat&, bool, Size, GpuMat&, GpuMat&, Stream&) { throw_nogpu(); } |
|
|
|
void cv::gpu::warpPerspective(const GpuMat&, GpuMat&, const Mat&, Size, int, int, Scalar, Stream&) { throw_nogpu(); } |
|
void cv::gpu::buildWarpPerspectiveMaps(const Mat&, bool, Size, GpuMat&, GpuMat&, Stream&) { throw_nogpu(); } |
|
|
|
#else // HAVE_CUDA |
|
|
|
namespace cv { namespace gpu { namespace device |
|
{ |
|
namespace imgproc |
|
{ |
|
void buildWarpAffineMaps_gpu(float coeffs[2 * 3], PtrStepSzf xmap, PtrStepSzf ymap, cudaStream_t stream); |
|
|
|
template <typename T> |
|
void warpAffine_gpu(PtrStepSzb src, PtrStepSzb srcWhole, int xoff, int yoff, float coeffs[2 * 3], PtrStepSzb dst, int interpolation, |
|
int borderMode, const float* borderValue, cudaStream_t stream, bool cc20); |
|
|
|
void buildWarpPerspectiveMaps_gpu(float coeffs[3 * 3], PtrStepSzf xmap, PtrStepSzf ymap, cudaStream_t stream); |
|
|
|
template <typename T> |
|
void warpPerspective_gpu(PtrStepSzb src, PtrStepSzb srcWhole, int xoff, int yoff, float coeffs[3 * 3], PtrStepSzb dst, int interpolation, |
|
int borderMode, const float* borderValue, cudaStream_t stream, bool cc20); |
|
} |
|
}}} |
|
|
|
void cv::gpu::buildWarpAffineMaps(const Mat& M, bool inverse, Size dsize, GpuMat& xmap, GpuMat& ymap, Stream& stream) |
|
{ |
|
using namespace cv::gpu::device::imgproc; |
|
|
|
CV_Assert(M.rows == 2 && M.cols == 3); |
|
|
|
xmap.create(dsize, CV_32FC1); |
|
ymap.create(dsize, CV_32FC1); |
|
|
|
float coeffs[2 * 3]; |
|
Mat coeffsMat(2, 3, CV_32F, (void*)coeffs); |
|
|
|
if (inverse) |
|
M.convertTo(coeffsMat, coeffsMat.type()); |
|
else |
|
{ |
|
cv::Mat iM; |
|
invertAffineTransform(M, iM); |
|
iM.convertTo(coeffsMat, coeffsMat.type()); |
|
} |
|
|
|
buildWarpAffineMaps_gpu(coeffs, xmap, ymap, StreamAccessor::getStream(stream)); |
|
} |
|
|
|
void cv::gpu::buildWarpPerspectiveMaps(const Mat& M, bool inverse, Size dsize, GpuMat& xmap, GpuMat& ymap, Stream& stream) |
|
{ |
|
using namespace cv::gpu::device::imgproc; |
|
|
|
CV_Assert(M.rows == 3 && M.cols == 3); |
|
|
|
xmap.create(dsize, CV_32FC1); |
|
ymap.create(dsize, CV_32FC1); |
|
|
|
float coeffs[3 * 3]; |
|
Mat coeffsMat(3, 3, CV_32F, (void*)coeffs); |
|
|
|
if (inverse) |
|
M.convertTo(coeffsMat, coeffsMat.type()); |
|
else |
|
{ |
|
cv::Mat iM; |
|
invert(M, iM); |
|
iM.convertTo(coeffsMat, coeffsMat.type()); |
|
} |
|
|
|
buildWarpPerspectiveMaps_gpu(coeffs, xmap, ymap, StreamAccessor::getStream(stream)); |
|
} |
|
|
|
namespace |
|
{ |
|
template<int DEPTH> struct NppTypeTraits; |
|
template<> struct NppTypeTraits<CV_8U> { typedef Npp8u npp_t; }; |
|
template<> struct NppTypeTraits<CV_8S> { typedef Npp8s npp_t; }; |
|
template<> struct NppTypeTraits<CV_16U> { typedef Npp16u npp_t; }; |
|
template<> struct NppTypeTraits<CV_16S> { typedef Npp16s npp_t; typedef Npp16sc npp_complex_type; }; |
|
template<> struct NppTypeTraits<CV_32S> { typedef Npp32s npp_t; typedef Npp32sc npp_complex_type; }; |
|
template<> struct NppTypeTraits<CV_32F> { typedef Npp32f npp_t; typedef Npp32fc npp_complex_type; }; |
|
template<> struct NppTypeTraits<CV_64F> { typedef Npp64f npp_t; typedef Npp64fc npp_complex_type; }; |
|
|
|
template <int DEPTH> struct NppWarpFunc |
|
{ |
|
typedef typename NppTypeTraits<DEPTH>::npp_t npp_t; |
|
|
|
typedef NppStatus (*func_t)(const npp_t* pSrc, NppiSize srcSize, int srcStep, NppiRect srcRoi, npp_t* pDst, |
|
int dstStep, NppiRect dstRoi, const double coeffs[][3], |
|
int interpolation); |
|
}; |
|
|
|
template <int DEPTH, typename NppWarpFunc<DEPTH>::func_t func> struct NppWarp |
|
{ |
|
typedef typename NppWarpFunc<DEPTH>::npp_t npp_t; |
|
|
|
static void call(const cv::gpu::GpuMat& src, cv::gpu::GpuMat& dst, double coeffs[][3], int interpolation, cudaStream_t stream) |
|
{ |
|
static const int npp_inter[] = {NPPI_INTER_NN, NPPI_INTER_LINEAR, NPPI_INTER_CUBIC}; |
|
|
|
NppiSize srcsz; |
|
srcsz.height = src.rows; |
|
srcsz.width = src.cols; |
|
|
|
NppiRect srcroi; |
|
srcroi.x = 0; |
|
srcroi.y = 0; |
|
srcroi.height = src.rows; |
|
srcroi.width = src.cols; |
|
|
|
NppiRect dstroi; |
|
dstroi.x = 0; |
|
dstroi.y = 0; |
|
dstroi.height = dst.rows; |
|
dstroi.width = dst.cols; |
|
|
|
cv::gpu::NppStreamHandler h(stream); |
|
|
|
nppSafeCall( func(src.ptr<npp_t>(), srcsz, static_cast<int>(src.step), srcroi, |
|
dst.ptr<npp_t>(), static_cast<int>(dst.step), dstroi, |
|
coeffs, npp_inter[interpolation]) ); |
|
|
|
if (stream == 0) |
|
cudaSafeCall( cudaDeviceSynchronize() ); |
|
} |
|
}; |
|
} |
|
|
|
void cv::gpu::warpAffine(const GpuMat& src, GpuMat& dst, const Mat& M, Size dsize, int flags, int borderMode, Scalar borderValue, Stream& s) |
|
{ |
|
CV_Assert(M.rows == 2 && M.cols == 3); |
|
|
|
int interpolation = flags & INTER_MAX; |
|
|
|
CV_Assert(src.depth() <= CV_32F && src.channels() <= 4); |
|
CV_Assert(interpolation == INTER_NEAREST || interpolation == INTER_LINEAR || interpolation == INTER_CUBIC); |
|
CV_Assert(borderMode == BORDER_REFLECT101 || borderMode == BORDER_REPLICATE || borderMode == BORDER_CONSTANT || borderMode == BORDER_REFLECT || borderMode == BORDER_WRAP); |
|
|
|
dst.create(dsize, src.type()); |
|
|
|
Size wholeSize; |
|
Point ofs; |
|
src.locateROI(wholeSize, ofs); |
|
|
|
static const bool useNppTab[6][4][3] = |
|
{ |
|
{ |
|
{false, false, true}, |
|
{false, false, false}, |
|
{false, true, true}, |
|
{false, false, false} |
|
}, |
|
{ |
|
{false, false, false}, |
|
{false, false, false}, |
|
{false, false, false}, |
|
{false, false, false} |
|
}, |
|
{ |
|
{false, true, true}, |
|
{false, false, false}, |
|
{false, true, true}, |
|
{false, false, false} |
|
}, |
|
{ |
|
{false, false, false}, |
|
{false, false, false}, |
|
{false, false, false}, |
|
{false, false, false} |
|
}, |
|
{ |
|
{false, true, true}, |
|
{false, false, false}, |
|
{false, true, true}, |
|
{false, false, true} |
|
}, |
|
{ |
|
{false, true, true}, |
|
{false, false, false}, |
|
{false, true, true}, |
|
{false, false, true} |
|
} |
|
}; |
|
|
|
bool useNpp = borderMode == BORDER_CONSTANT && ofs.x == 0 && ofs.y == 0 && useNppTab[src.depth()][src.channels() - 1][interpolation]; |
|
// NPP bug on float data |
|
useNpp = useNpp && src.depth() != CV_32F; |
|
|
|
if (useNpp) |
|
{ |
|
typedef void (*func_t)(const cv::gpu::GpuMat& src, cv::gpu::GpuMat& dst, double coeffs[][3], int flags, cudaStream_t stream); |
|
|
|
static const func_t funcs[2][6][4] = |
|
{ |
|
{ |
|
{NppWarp<CV_8U, nppiWarpAffine_8u_C1R>::call, 0, NppWarp<CV_8U, nppiWarpAffine_8u_C3R>::call, NppWarp<CV_8U, nppiWarpAffine_8u_C4R>::call}, |
|
{0, 0, 0, 0}, |
|
{NppWarp<CV_16U, nppiWarpAffine_16u_C1R>::call, 0, NppWarp<CV_16U, nppiWarpAffine_16u_C3R>::call, NppWarp<CV_16U, nppiWarpAffine_16u_C4R>::call}, |
|
{0, 0, 0, 0}, |
|
{NppWarp<CV_32S, nppiWarpAffine_32s_C1R>::call, 0, NppWarp<CV_32S, nppiWarpAffine_32s_C3R>::call, NppWarp<CV_32S, nppiWarpAffine_32s_C4R>::call}, |
|
{NppWarp<CV_32F, nppiWarpAffine_32f_C1R>::call, 0, NppWarp<CV_32F, nppiWarpAffine_32f_C3R>::call, NppWarp<CV_32F, nppiWarpAffine_32f_C4R>::call} |
|
}, |
|
{ |
|
{NppWarp<CV_8U, nppiWarpAffineBack_8u_C1R>::call, 0, NppWarp<CV_8U, nppiWarpAffineBack_8u_C3R>::call, NppWarp<CV_8U, nppiWarpAffineBack_8u_C4R>::call}, |
|
{0, 0, 0, 0}, |
|
{NppWarp<CV_16U, nppiWarpAffineBack_16u_C1R>::call, 0, NppWarp<CV_16U, nppiWarpAffineBack_16u_C3R>::call, NppWarp<CV_16U, nppiWarpAffineBack_16u_C4R>::call}, |
|
{0, 0, 0, 0}, |
|
{NppWarp<CV_32S, nppiWarpAffineBack_32s_C1R>::call, 0, NppWarp<CV_32S, nppiWarpAffineBack_32s_C3R>::call, NppWarp<CV_32S, nppiWarpAffineBack_32s_C4R>::call}, |
|
{NppWarp<CV_32F, nppiWarpAffineBack_32f_C1R>::call, 0, NppWarp<CV_32F, nppiWarpAffineBack_32f_C3R>::call, NppWarp<CV_32F, nppiWarpAffineBack_32f_C4R>::call} |
|
} |
|
}; |
|
|
|
dst.setTo(borderValue); |
|
|
|
double coeffs[2][3]; |
|
Mat coeffsMat(2, 3, CV_64F, (void*)coeffs); |
|
M.convertTo(coeffsMat, coeffsMat.type()); |
|
|
|
const func_t func = funcs[(flags & WARP_INVERSE_MAP) != 0][src.depth()][src.channels() - 1]; |
|
CV_Assert(func != 0); |
|
|
|
func(src, dst, coeffs, interpolation, StreamAccessor::getStream(s)); |
|
} |
|
else |
|
{ |
|
using namespace cv::gpu::device::imgproc; |
|
|
|
typedef void (*func_t)(PtrStepSzb src, PtrStepSzb srcWhole, int xoff, int yoff, float coeffs[2 * 3], PtrStepSzb dst, int interpolation, |
|
int borderMode, const float* borderValue, cudaStream_t stream, bool cc20); |
|
|
|
static const func_t funcs[6][4] = |
|
{ |
|
{warpAffine_gpu<uchar> , 0 /*warpAffine_gpu<uchar2>*/ , warpAffine_gpu<uchar3> , warpAffine_gpu<uchar4> }, |
|
{0 /*warpAffine_gpu<schar>*/, 0 /*warpAffine_gpu<char2>*/ , 0 /*warpAffine_gpu<char3>*/, 0 /*warpAffine_gpu<char4>*/}, |
|
{warpAffine_gpu<ushort> , 0 /*warpAffine_gpu<ushort2>*/, warpAffine_gpu<ushort3> , warpAffine_gpu<ushort4> }, |
|
{warpAffine_gpu<short> , 0 /*warpAffine_gpu<short2>*/ , warpAffine_gpu<short3> , warpAffine_gpu<short4> }, |
|
{0 /*warpAffine_gpu<int>*/ , 0 /*warpAffine_gpu<int2>*/ , 0 /*warpAffine_gpu<int3>*/ , 0 /*warpAffine_gpu<int4>*/ }, |
|
{warpAffine_gpu<float> , 0 /*warpAffine_gpu<float2>*/ , warpAffine_gpu<float3> , warpAffine_gpu<float4> } |
|
}; |
|
|
|
const func_t func = funcs[src.depth()][src.channels() - 1]; |
|
CV_Assert(func != 0); |
|
|
|
int gpuBorderType; |
|
CV_Assert(tryConvertToGpuBorderType(borderMode, gpuBorderType)); |
|
|
|
float coeffs[2 * 3]; |
|
Mat coeffsMat(2, 3, CV_32F, (void*)coeffs); |
|
|
|
if (flags & WARP_INVERSE_MAP) |
|
M.convertTo(coeffsMat, coeffsMat.type()); |
|
else |
|
{ |
|
cv::Mat iM; |
|
invertAffineTransform(M, iM); |
|
iM.convertTo(coeffsMat, coeffsMat.type()); |
|
} |
|
|
|
Scalar_<float> borderValueFloat; |
|
borderValueFloat = borderValue; |
|
|
|
func(src, PtrStepSzb(wholeSize.height, wholeSize.width, src.datastart, src.step), ofs.x, ofs.y, coeffs, |
|
dst, interpolation, gpuBorderType, borderValueFloat.val, StreamAccessor::getStream(s), deviceSupports(FEATURE_SET_COMPUTE_20)); |
|
} |
|
} |
|
|
|
void cv::gpu::warpPerspective(const GpuMat& src, GpuMat& dst, const Mat& M, Size dsize, int flags, int borderMode, Scalar borderValue, Stream& s) |
|
{ |
|
CV_Assert(M.rows == 3 && M.cols == 3); |
|
|
|
int interpolation = flags & INTER_MAX; |
|
|
|
CV_Assert(src.depth() <= CV_32F && src.channels() <= 4); |
|
CV_Assert(interpolation == INTER_NEAREST || interpolation == INTER_LINEAR || interpolation == INTER_CUBIC); |
|
CV_Assert(borderMode == BORDER_REFLECT101 || borderMode == BORDER_REPLICATE || borderMode == BORDER_CONSTANT || borderMode == BORDER_REFLECT || borderMode == BORDER_WRAP); |
|
|
|
dst.create(dsize, src.type()); |
|
|
|
Size wholeSize; |
|
Point ofs; |
|
src.locateROI(wholeSize, ofs); |
|
|
|
static const bool useNppTab[6][4][3] = |
|
{ |
|
{ |
|
{false, false, true}, |
|
{false, false, false}, |
|
{false, true, true}, |
|
{false, false, false} |
|
}, |
|
{ |
|
{false, false, false}, |
|
{false, false, false}, |
|
{false, false, false}, |
|
{false, false, false} |
|
}, |
|
{ |
|
{false, true, true}, |
|
{false, false, false}, |
|
{false, true, true}, |
|
{false, false, false} |
|
}, |
|
{ |
|
{false, false, false}, |
|
{false, false, false}, |
|
{false, false, false}, |
|
{false, false, false} |
|
}, |
|
{ |
|
{false, true, true}, |
|
{false, false, false}, |
|
{false, true, true}, |
|
{false, false, true} |
|
}, |
|
{ |
|
{false, true, true}, |
|
{false, false, false}, |
|
{false, true, true}, |
|
{false, false, true} |
|
} |
|
}; |
|
|
|
bool useNpp = borderMode == BORDER_CONSTANT && ofs.x == 0 && ofs.y == 0 && useNppTab[src.depth()][src.channels() - 1][interpolation]; |
|
// NPP bug on float data |
|
useNpp = useNpp && src.depth() != CV_32F; |
|
|
|
if (useNpp) |
|
{ |
|
typedef void (*func_t)(const cv::gpu::GpuMat& src, cv::gpu::GpuMat& dst, double coeffs[][3], int flags, cudaStream_t stream); |
|
|
|
static const func_t funcs[2][6][4] = |
|
{ |
|
{ |
|
{NppWarp<CV_8U, nppiWarpPerspective_8u_C1R>::call, 0, NppWarp<CV_8U, nppiWarpPerspective_8u_C3R>::call, NppWarp<CV_8U, nppiWarpPerspective_8u_C4R>::call}, |
|
{0, 0, 0, 0}, |
|
{NppWarp<CV_16U, nppiWarpPerspective_16u_C1R>::call, 0, NppWarp<CV_16U, nppiWarpPerspective_16u_C3R>::call, NppWarp<CV_16U, nppiWarpPerspective_16u_C4R>::call}, |
|
{0, 0, 0, 0}, |
|
{NppWarp<CV_32S, nppiWarpPerspective_32s_C1R>::call, 0, NppWarp<CV_32S, nppiWarpPerspective_32s_C3R>::call, NppWarp<CV_32S, nppiWarpPerspective_32s_C4R>::call}, |
|
{NppWarp<CV_32F, nppiWarpPerspective_32f_C1R>::call, 0, NppWarp<CV_32F, nppiWarpPerspective_32f_C3R>::call, NppWarp<CV_32F, nppiWarpPerspective_32f_C4R>::call} |
|
}, |
|
{ |
|
{NppWarp<CV_8U, nppiWarpPerspectiveBack_8u_C1R>::call, 0, NppWarp<CV_8U, nppiWarpPerspectiveBack_8u_C3R>::call, NppWarp<CV_8U, nppiWarpPerspectiveBack_8u_C4R>::call}, |
|
{0, 0, 0, 0}, |
|
{NppWarp<CV_16U, nppiWarpPerspectiveBack_16u_C1R>::call, 0, NppWarp<CV_16U, nppiWarpPerspectiveBack_16u_C3R>::call, NppWarp<CV_16U, nppiWarpPerspectiveBack_16u_C4R>::call}, |
|
{0, 0, 0, 0}, |
|
{NppWarp<CV_32S, nppiWarpPerspectiveBack_32s_C1R>::call, 0, NppWarp<CV_32S, nppiWarpPerspectiveBack_32s_C3R>::call, NppWarp<CV_32S, nppiWarpPerspectiveBack_32s_C4R>::call}, |
|
{NppWarp<CV_32F, nppiWarpPerspectiveBack_32f_C1R>::call, 0, NppWarp<CV_32F, nppiWarpPerspectiveBack_32f_C3R>::call, NppWarp<CV_32F, nppiWarpPerspectiveBack_32f_C4R>::call} |
|
} |
|
}; |
|
|
|
dst.setTo(borderValue); |
|
|
|
double coeffs[3][3]; |
|
Mat coeffsMat(3, 3, CV_64F, (void*)coeffs); |
|
M.convertTo(coeffsMat, coeffsMat.type()); |
|
|
|
const func_t func = funcs[(flags & WARP_INVERSE_MAP) != 0][src.depth()][src.channels() - 1]; |
|
CV_Assert(func != 0); |
|
|
|
func(src, dst, coeffs, interpolation, StreamAccessor::getStream(s)); |
|
} |
|
else |
|
{ |
|
using namespace cv::gpu::device::imgproc; |
|
|
|
typedef void (*func_t)(PtrStepSzb src, PtrStepSzb srcWhole, int xoff, int yoff, float coeffs[2 * 3], PtrStepSzb dst, int interpolation, |
|
int borderMode, const float* borderValue, cudaStream_t stream, bool cc20); |
|
|
|
static const func_t funcs[6][4] = |
|
{ |
|
{warpPerspective_gpu<uchar> , 0 /*warpPerspective_gpu<uchar2>*/ , warpPerspective_gpu<uchar3> , warpPerspective_gpu<uchar4> }, |
|
{0 /*warpPerspective_gpu<schar>*/, 0 /*warpPerspective_gpu<char2>*/ , 0 /*warpPerspective_gpu<char3>*/, 0 /*warpPerspective_gpu<char4>*/}, |
|
{warpPerspective_gpu<ushort> , 0 /*warpPerspective_gpu<ushort2>*/, warpPerspective_gpu<ushort3> , warpPerspective_gpu<ushort4> }, |
|
{warpPerspective_gpu<short> , 0 /*warpPerspective_gpu<short2>*/ , warpPerspective_gpu<short3> , warpPerspective_gpu<short4> }, |
|
{0 /*warpPerspective_gpu<int>*/ , 0 /*warpPerspective_gpu<int2>*/ , 0 /*warpPerspective_gpu<int3>*/ , 0 /*warpPerspective_gpu<int4>*/ }, |
|
{warpPerspective_gpu<float> , 0 /*warpPerspective_gpu<float2>*/ , warpPerspective_gpu<float3> , warpPerspective_gpu<float4> } |
|
}; |
|
|
|
const func_t func = funcs[src.depth()][src.channels() - 1]; |
|
CV_Assert(func != 0); |
|
|
|
int gpuBorderType; |
|
CV_Assert(tryConvertToGpuBorderType(borderMode, gpuBorderType)); |
|
|
|
float coeffs[3 * 3]; |
|
Mat coeffsMat(3, 3, CV_32F, (void*)coeffs); |
|
|
|
if (flags & WARP_INVERSE_MAP) |
|
M.convertTo(coeffsMat, coeffsMat.type()); |
|
else |
|
{ |
|
cv::Mat iM; |
|
invert(M, iM); |
|
iM.convertTo(coeffsMat, coeffsMat.type()); |
|
} |
|
|
|
Scalar_<float> borderValueFloat; |
|
borderValueFloat = borderValue; |
|
|
|
func(src, PtrStepSzb(wholeSize.height, wholeSize.width, src.datastart, src.step), ofs.x, ofs.y, coeffs, |
|
dst, interpolation, gpuBorderType, borderValueFloat.val, StreamAccessor::getStream(s), deviceSupports(FEATURE_SET_COMPUTE_20)); |
|
} |
|
} |
|
|
|
#endif // HAVE_CUDA
|
|
|