mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
140 lines
4.6 KiB
140 lines
4.6 KiB
import numpy as np |
|
import sys |
|
import os |
|
import fnmatch |
|
import argparse |
|
|
|
try: |
|
import cv2 as cv |
|
except ImportError: |
|
raise ImportError('Can\'t find OpenCV Python module. If you\'ve built it from sources without installation, ' |
|
'configure environemnt variable PYTHONPATH to "opencv_build_dir/lib" directory (with "python3" subdirectory if required)') |
|
try: |
|
import torch |
|
except ImportError: |
|
raise ImportError('Can\'t find pytorch. Please intall it by following instructions on the official site') |
|
|
|
from torch.utils.serialization import load_lua |
|
from pascal_semsegm_test_fcn import eval_segm_result, get_conf_mat, get_metrics, DatasetImageFetch, SemSegmEvaluation |
|
from imagenet_cls_test_alexnet import Framework, DnnCaffeModel |
|
|
|
|
|
class NormalizePreproc: |
|
def __init__(self): |
|
pass |
|
|
|
@staticmethod |
|
def process(img): |
|
image_data = np.array(img).transpose(2, 0, 1).astype(np.float32) |
|
image_data = np.expand_dims(image_data, 0) |
|
image_data /= 255.0 |
|
return image_data |
|
|
|
|
|
class CityscapesDataFetch(DatasetImageFetch): |
|
img_dir = '' |
|
segm_dir = '' |
|
segm_files = [] |
|
colors = [] |
|
i = 0 |
|
|
|
def __init__(self, img_dir, segm_dir, preproc): |
|
self.img_dir = img_dir |
|
self.segm_dir = segm_dir |
|
self.segm_files = sorted([img for img in self.locate('*_color.png', segm_dir)]) |
|
self.colors = self.get_colors() |
|
self.data_prepoc = preproc |
|
self.i = 0 |
|
|
|
@staticmethod |
|
def get_colors(): |
|
result = [] |
|
colors_list = ( |
|
(0, 0, 0), (128, 64, 128), (244, 35, 232), (70, 70, 70), (102, 102, 156), (190, 153, 153), (153, 153, 153), |
|
(250, 170, 30), (220, 220, 0), (107, 142, 35), (152, 251, 152), (70, 130, 180), (220, 20, 60), (255, 0, 0), |
|
(0, 0, 142), (0, 0, 70), (0, 60, 100), (0, 80, 100), (0, 0, 230), (119, 11, 32)) |
|
|
|
for c in colors_list: |
|
result.append(DatasetImageFetch.pix_to_c(c)) |
|
return result |
|
|
|
def __iter__(self): |
|
return self |
|
|
|
def next(self): |
|
if self.i < len(self.segm_files): |
|
segm_file = self.segm_files[self.i] |
|
segm = cv.imread(segm_file, cv.IMREAD_COLOR)[:, :, ::-1] |
|
segm = cv.resize(segm, (1024, 512), interpolation=cv.INTER_NEAREST) |
|
|
|
img_file = self.rreplace(self.img_dir + segm_file[len(self.segm_dir):], 'gtFine_color', 'leftImg8bit') |
|
assert os.path.exists(img_file) |
|
img = cv.imread(img_file, cv.IMREAD_COLOR)[:, :, ::-1] |
|
img = cv.resize(img, (1024, 512)) |
|
|
|
self.i += 1 |
|
gt = self.color_to_gt(segm, self.colors) |
|
img = self.data_prepoc.process(img) |
|
return img, gt |
|
else: |
|
self.i = 0 |
|
raise StopIteration |
|
|
|
def get_num_classes(self): |
|
return len(self.colors) |
|
|
|
@staticmethod |
|
def locate(pattern, root_path): |
|
for path, dirs, files in os.walk(os.path.abspath(root_path)): |
|
for filename in fnmatch.filter(files, pattern): |
|
yield os.path.join(path, filename) |
|
|
|
@staticmethod |
|
def rreplace(s, old, new, occurrence=1): |
|
li = s.rsplit(old, occurrence) |
|
return new.join(li) |
|
|
|
|
|
class TorchModel(Framework): |
|
net = object |
|
|
|
def __init__(self, model_file): |
|
self.net = load_lua(model_file) |
|
|
|
def get_name(self): |
|
return 'Torch' |
|
|
|
def get_output(self, input_blob): |
|
tensor = torch.FloatTensor(input_blob) |
|
out = self.net.forward(tensor).numpy() |
|
return out |
|
|
|
|
|
class DnnTorchModel(DnnCaffeModel): |
|
net = cv.dnn.Net() |
|
|
|
def __init__(self, model_file): |
|
self.net = cv.dnn.readNetFromTorch(model_file) |
|
|
|
def get_output(self, input_blob): |
|
self.net.setBlob("", input_blob) |
|
self.net.forward() |
|
return self.net.getBlob(self.net.getLayerNames()[-1]) |
|
|
|
if __name__ == "__main__": |
|
parser = argparse.ArgumentParser() |
|
parser.add_argument("--imgs_dir", help="path to Cityscapes validation images dir, imgsfine/leftImg8bit/val") |
|
parser.add_argument("--segm_dir", help="path to Cityscapes dir with segmentation, gtfine/gtFine/val") |
|
parser.add_argument("--model", help="path to torch model, download it here: " |
|
"https://www.dropbox.com/sh/dywzk3gyb12hpe5/AAD5YkUa8XgMpHs2gCRgmCVCa") |
|
parser.add_argument("--log", help="path to logging file") |
|
args = parser.parse_args() |
|
|
|
prep = NormalizePreproc() |
|
df = CityscapesDataFetch(args.imgs_dir, args.segm_dir, prep) |
|
|
|
fw = [TorchModel(args.model), |
|
DnnTorchModel(args.model)] |
|
|
|
segm_eval = SemSegmEvaluation(args.log) |
|
segm_eval.process(fw, df)
|
|
|