mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
159 lines
5.4 KiB
159 lines
5.4 KiB
/* |
|
* By downloading, copying, installing or using the software you agree to this license. |
|
* If you do not agree to this license, do not download, install, |
|
* copy or use the software. |
|
* |
|
* |
|
* License Agreement |
|
* For Open Source Computer Vision Library |
|
* (3 - clause BSD License) |
|
* |
|
* Redistribution and use in source and binary forms, with or without modification, |
|
* are permitted provided that the following conditions are met : |
|
* |
|
* *Redistributions of source code must retain the above copyright notice, |
|
* this list of conditions and the following disclaimer. |
|
* |
|
* * Redistributions in binary form must reproduce the above copyright notice, |
|
* this list of conditions and the following disclaimer in the documentation |
|
* and / or other materials provided with the distribution. |
|
* |
|
* * Neither the names of the copyright holders nor the names of the contributors |
|
* may be used to endorse or promote products derived from this software |
|
* without specific prior written permission. |
|
* |
|
* This software is provided by the copyright holders and contributors "as is" and |
|
* any express or implied warranties, including, but not limited to, the implied |
|
* warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
* In no event shall copyright holders or contributors be liable for any direct, |
|
* indirect, incidental, special, exemplary, or consequential damages |
|
* (including, but not limited to, procurement of substitute goods or services; |
|
* loss of use, data, or profits; or business interruption) however caused |
|
* and on any theory of liability, whether in contract, strict liability, |
|
* or tort(including negligence or otherwise) arising in any way out of |
|
* the use of this software, even if advised of the possibility of such damage. |
|
*/ |
|
|
|
#include "perf_precomp.hpp" |
|
|
|
namespace cvtest |
|
{ |
|
|
|
using std::tr1::tuple; |
|
using std::tr1::get; |
|
using namespace perf; |
|
using namespace testing; |
|
using namespace cv; |
|
|
|
void MakeArtificialExample(RNG rng, Mat& dst_left_view, Mat& dst_view); |
|
|
|
CV_ENUM(SGBMModes, StereoSGBM::MODE_SGBM, StereoSGBM::MODE_SGBM_3WAY, StereoSGBM::MODE_HH4); |
|
typedef tuple<Size, int, SGBMModes> SGBMParams; |
|
typedef TestBaseWithParam<SGBMParams> TestStereoCorresp; |
|
|
|
PERF_TEST_P( TestStereoCorresp, SGBM, Combine(Values(Size(1280,720),Size(640,480)), Values(256,128), SGBMModes::all()) ) |
|
{ |
|
RNG rng(0); |
|
|
|
SGBMParams params = GetParam(); |
|
|
|
Size sz = get<0>(params); |
|
int num_disparities = get<1>(params); |
|
int mode = get<2>(params); |
|
|
|
Mat src_left(sz, CV_8UC3); |
|
Mat src_right(sz, CV_8UC3); |
|
Mat dst(sz, CV_16S); |
|
|
|
MakeArtificialExample(rng,src_left,src_right); |
|
|
|
cv::setNumThreads(cv::getNumberOfCPUs()); |
|
int wsize = 3; |
|
int P1 = 8*src_left.channels()*wsize*wsize; |
|
TEST_CYCLE() |
|
{ |
|
Ptr<StereoSGBM> sgbm = StereoSGBM::create(0,num_disparities,wsize,P1,4*P1,1,63,25,0,0,mode); |
|
sgbm->compute(src_left,src_right,dst); |
|
} |
|
|
|
SANITY_CHECK(dst, .01, ERROR_RELATIVE); |
|
} |
|
|
|
void MakeArtificialExample(RNG rng, Mat& dst_left_view, Mat& dst_right_view) |
|
{ |
|
int w = dst_left_view.cols; |
|
int h = dst_left_view.rows; |
|
|
|
//params: |
|
unsigned char bg_level = (unsigned char)rng.uniform(0.0,255.0); |
|
unsigned char fg_level = (unsigned char)rng.uniform(0.0,255.0); |
|
int rect_width = (int)rng.uniform(w/16,w/2); |
|
int rect_height = (int)rng.uniform(h/16,h/2); |
|
int rect_disparity = (int)(0.15*w); |
|
double sigma = 3.0; |
|
|
|
int rect_x_offset = (w-rect_width) /2; |
|
int rect_y_offset = (h-rect_height)/2; |
|
|
|
if(dst_left_view.channels()==3) |
|
{ |
|
dst_left_view = Scalar(Vec3b(bg_level,bg_level,bg_level)); |
|
dst_right_view = Scalar(Vec3b(bg_level,bg_level,bg_level)); |
|
} |
|
else |
|
{ |
|
dst_left_view = Scalar(bg_level); |
|
dst_right_view = Scalar(bg_level); |
|
} |
|
|
|
Mat dst_left_view_rect = Mat(dst_left_view, Rect(rect_x_offset,rect_y_offset,rect_width,rect_height)); |
|
if(dst_left_view.channels()==3) |
|
dst_left_view_rect = Scalar(Vec3b(fg_level,fg_level,fg_level)); |
|
else |
|
dst_left_view_rect = Scalar(fg_level); |
|
|
|
rect_x_offset-=rect_disparity; |
|
|
|
Mat dst_right_view_rect = Mat(dst_right_view, Rect(rect_x_offset,rect_y_offset,rect_width,rect_height)); |
|
if(dst_right_view.channels()==3) |
|
dst_right_view_rect = Scalar(Vec3b(fg_level,fg_level,fg_level)); |
|
else |
|
dst_right_view_rect = Scalar(fg_level); |
|
|
|
//add some gaussian noise: |
|
unsigned char *l, *r; |
|
for(int i=0;i<h;i++) |
|
{ |
|
l = dst_left_view.ptr(i); |
|
r = dst_right_view.ptr(i); |
|
|
|
if(dst_left_view.channels()==3) |
|
{ |
|
for(int j=0;j<w;j++) |
|
{ |
|
l[0] = saturate_cast<unsigned char>(l[0] + rng.gaussian(sigma)); |
|
l[1] = saturate_cast<unsigned char>(l[1] + rng.gaussian(sigma)); |
|
l[2] = saturate_cast<unsigned char>(l[2] + rng.gaussian(sigma)); |
|
l+=3; |
|
|
|
r[0] = saturate_cast<unsigned char>(r[0] + rng.gaussian(sigma)); |
|
r[1] = saturate_cast<unsigned char>(r[1] + rng.gaussian(sigma)); |
|
r[2] = saturate_cast<unsigned char>(r[2] + rng.gaussian(sigma)); |
|
r+=3; |
|
} |
|
} |
|
else |
|
{ |
|
for(int j=0;j<w;j++) |
|
{ |
|
l[0] = saturate_cast<unsigned char>(l[0] + rng.gaussian(sigma)); |
|
l++; |
|
|
|
r[0] = saturate_cast<unsigned char>(r[0] + rng.gaussian(sigma)); |
|
r++; |
|
} |
|
} |
|
} |
|
} |
|
|
|
}
|
|
|