mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
545 lines
20 KiB
545 lines
20 KiB
/* |
|
* jcsample.c |
|
* |
|
* Copyright (C) 1991-1996, Thomas G. Lane. |
|
* This file is part of the Independent JPEG Group's software. |
|
* For conditions of distribution and use, see the accompanying README file. |
|
* |
|
* This file contains downsampling routines. |
|
* |
|
* Downsampling input data is counted in "row groups". A row group |
|
* is defined to be max_v_samp_factor pixel rows of each component, |
|
* from which the downsampler produces v_samp_factor sample rows. |
|
* A single row group is processed in each call to the downsampler module. |
|
* |
|
* The downsampler is responsible for edge-expansion of its output data |
|
* to fill an integral number of DCT blocks horizontally. The source buffer |
|
* may be modified if it is helpful for this purpose (the source buffer is |
|
* allocated wide enough to correspond to the desired output width). |
|
* The caller (the prep controller) is responsible for vertical padding. |
|
* |
|
* The downsampler may request "context rows" by setting need_context_rows |
|
* during startup. In this case, the input arrays will contain at least |
|
* one row group's worth of pixels above and below the passed-in data; |
|
* the caller will create dummy rows at image top and bottom by replicating |
|
* the first or last real pixel row. |
|
* |
|
* An excellent reference for image resampling is |
|
* Digital Image Warping, George Wolberg, 1990. |
|
* Pub. by IEEE Computer Society Press, Los Alamitos, CA. ISBN 0-8186-8944-7. |
|
* |
|
* The downsampling algorithm used here is a simple average of the source |
|
* pixels covered by the output pixel. The hi-falutin sampling literature |
|
* refers to this as a "box filter". In general the characteristics of a box |
|
* filter are not very good, but for the specific cases we normally use (1:1 |
|
* and 2:1 ratios) the box is equivalent to a "triangle filter" which is not |
|
* nearly so bad. If you intend to use other sampling ratios, you'd be well |
|
* advised to improve this code. |
|
* |
|
* A simple input-smoothing capability is provided. This is mainly intended |
|
* for cleaning up color-dithered GIF input files (if you find it inadequate, |
|
* we suggest using an external filtering program such as pnmconvol). When |
|
* enabled, each input pixel P is replaced by a weighted sum of itself and its |
|
* eight neighbors. P's weight is 1-8*SF and each neighbor's weight is SF, |
|
* where SF = (smoothing_factor / 1024). |
|
* Currently, smoothing is only supported for 2h2v sampling factors. |
|
*/ |
|
|
|
#define JPEG_INTERNALS |
|
#include "jinclude.h" |
|
#include "jpeglib.h" |
|
|
|
|
|
/* Pointer to routine to downsample a single component */ |
|
typedef JMETHOD(void, downsample1_ptr, |
|
(j_compress_ptr cinfo, jpeg_component_info * compptr, |
|
JSAMPARRAY input_data, JSAMPARRAY output_data)); |
|
|
|
/* Private subobject */ |
|
|
|
typedef struct { |
|
struct jpeg_downsampler pub; /* public fields */ |
|
|
|
/* Downsampling method pointers, one per component */ |
|
downsample1_ptr methods[MAX_COMPONENTS]; |
|
|
|
/* Height of an output row group for each component. */ |
|
int rowgroup_height[MAX_COMPONENTS]; |
|
|
|
/* These arrays save pixel expansion factors so that int_downsample need not |
|
* recompute them each time. They are unused for other downsampling methods. |
|
*/ |
|
UINT8 h_expand[MAX_COMPONENTS]; |
|
UINT8 v_expand[MAX_COMPONENTS]; |
|
} my_downsampler; |
|
|
|
typedef my_downsampler * my_downsample_ptr; |
|
|
|
|
|
/* |
|
* Initialize for a downsampling pass. |
|
*/ |
|
|
|
METHODDEF(void) |
|
start_pass_downsample (j_compress_ptr cinfo) |
|
{ |
|
/* no work for now */ |
|
} |
|
|
|
|
|
/* |
|
* Expand a component horizontally from width input_cols to width output_cols, |
|
* by duplicating the rightmost samples. |
|
*/ |
|
|
|
LOCAL(void) |
|
expand_right_edge (JSAMPARRAY image_data, int num_rows, |
|
JDIMENSION input_cols, JDIMENSION output_cols) |
|
{ |
|
register JSAMPROW ptr; |
|
register JSAMPLE pixval; |
|
register int count; |
|
int row; |
|
int numcols = (int) (output_cols - input_cols); |
|
|
|
if (numcols > 0) { |
|
for (row = 0; row < num_rows; row++) { |
|
ptr = image_data[row] + input_cols; |
|
pixval = ptr[-1]; /* don't need GETJSAMPLE() here */ |
|
for (count = numcols; count > 0; count--) |
|
*ptr++ = pixval; |
|
} |
|
} |
|
} |
|
|
|
|
|
/* |
|
* Do downsampling for a whole row group (all components). |
|
* |
|
* In this version we simply downsample each component independently. |
|
*/ |
|
|
|
METHODDEF(void) |
|
sep_downsample (j_compress_ptr cinfo, |
|
JSAMPIMAGE input_buf, JDIMENSION in_row_index, |
|
JSAMPIMAGE output_buf, JDIMENSION out_row_group_index) |
|
{ |
|
my_downsample_ptr downsample = (my_downsample_ptr) cinfo->downsample; |
|
int ci; |
|
jpeg_component_info * compptr; |
|
JSAMPARRAY in_ptr, out_ptr; |
|
|
|
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; |
|
ci++, compptr++) { |
|
in_ptr = input_buf[ci] + in_row_index; |
|
out_ptr = output_buf[ci] + |
|
(out_row_group_index * downsample->rowgroup_height[ci]); |
|
(*downsample->methods[ci]) (cinfo, compptr, in_ptr, out_ptr); |
|
} |
|
} |
|
|
|
|
|
/* |
|
* Downsample pixel values of a single component. |
|
* One row group is processed per call. |
|
* This version handles arbitrary integral sampling ratios, without smoothing. |
|
* Note that this version is not actually used for customary sampling ratios. |
|
*/ |
|
|
|
METHODDEF(void) |
|
int_downsample (j_compress_ptr cinfo, jpeg_component_info * compptr, |
|
JSAMPARRAY input_data, JSAMPARRAY output_data) |
|
{ |
|
my_downsample_ptr downsample = (my_downsample_ptr) cinfo->downsample; |
|
int inrow, outrow, h_expand, v_expand, numpix, numpix2, h, v; |
|
JDIMENSION outcol, outcol_h; /* outcol_h == outcol*h_expand */ |
|
JDIMENSION output_cols = compptr->width_in_blocks * compptr->DCT_h_scaled_size; |
|
JSAMPROW inptr, outptr; |
|
INT32 outvalue; |
|
|
|
h_expand = downsample->h_expand[compptr->component_index]; |
|
v_expand = downsample->v_expand[compptr->component_index]; |
|
numpix = h_expand * v_expand; |
|
numpix2 = numpix/2; |
|
|
|
/* Expand input data enough to let all the output samples be generated |
|
* by the standard loop. Special-casing padded output would be more |
|
* efficient. |
|
*/ |
|
expand_right_edge(input_data, cinfo->max_v_samp_factor, |
|
cinfo->image_width, output_cols * h_expand); |
|
|
|
inrow = outrow = 0; |
|
while (inrow < cinfo->max_v_samp_factor) { |
|
outptr = output_data[outrow]; |
|
for (outcol = 0, outcol_h = 0; outcol < output_cols; |
|
outcol++, outcol_h += h_expand) { |
|
outvalue = 0; |
|
for (v = 0; v < v_expand; v++) { |
|
inptr = input_data[inrow+v] + outcol_h; |
|
for (h = 0; h < h_expand; h++) { |
|
outvalue += (INT32) GETJSAMPLE(*inptr++); |
|
} |
|
} |
|
*outptr++ = (JSAMPLE) ((outvalue + numpix2) / numpix); |
|
} |
|
inrow += v_expand; |
|
outrow++; |
|
} |
|
} |
|
|
|
|
|
/* |
|
* Downsample pixel values of a single component. |
|
* This version handles the special case of a full-size component, |
|
* without smoothing. |
|
*/ |
|
|
|
METHODDEF(void) |
|
fullsize_downsample (j_compress_ptr cinfo, jpeg_component_info * compptr, |
|
JSAMPARRAY input_data, JSAMPARRAY output_data) |
|
{ |
|
/* Copy the data */ |
|
jcopy_sample_rows(input_data, 0, output_data, 0, |
|
cinfo->max_v_samp_factor, cinfo->image_width); |
|
/* Edge-expand */ |
|
expand_right_edge(output_data, cinfo->max_v_samp_factor, cinfo->image_width, |
|
compptr->width_in_blocks * compptr->DCT_h_scaled_size); |
|
} |
|
|
|
|
|
/* |
|
* Downsample pixel values of a single component. |
|
* This version handles the common case of 2:1 horizontal and 1:1 vertical, |
|
* without smoothing. |
|
* |
|
* A note about the "bias" calculations: when rounding fractional values to |
|
* integer, we do not want to always round 0.5 up to the next integer. |
|
* If we did that, we'd introduce a noticeable bias towards larger values. |
|
* Instead, this code is arranged so that 0.5 will be rounded up or down at |
|
* alternate pixel locations (a simple ordered dither pattern). |
|
*/ |
|
|
|
METHODDEF(void) |
|
h2v1_downsample (j_compress_ptr cinfo, jpeg_component_info * compptr, |
|
JSAMPARRAY input_data, JSAMPARRAY output_data) |
|
{ |
|
int inrow; |
|
JDIMENSION outcol; |
|
JDIMENSION output_cols = compptr->width_in_blocks * compptr->DCT_h_scaled_size; |
|
register JSAMPROW inptr, outptr; |
|
register int bias; |
|
|
|
/* Expand input data enough to let all the output samples be generated |
|
* by the standard loop. Special-casing padded output would be more |
|
* efficient. |
|
*/ |
|
expand_right_edge(input_data, cinfo->max_v_samp_factor, |
|
cinfo->image_width, output_cols * 2); |
|
|
|
for (inrow = 0; inrow < cinfo->max_v_samp_factor; inrow++) { |
|
outptr = output_data[inrow]; |
|
inptr = input_data[inrow]; |
|
bias = 0; /* bias = 0,1,0,1,... for successive samples */ |
|
for (outcol = 0; outcol < output_cols; outcol++) { |
|
*outptr++ = (JSAMPLE) ((GETJSAMPLE(*inptr) + GETJSAMPLE(inptr[1]) |
|
+ bias) >> 1); |
|
bias ^= 1; /* 0=>1, 1=>0 */ |
|
inptr += 2; |
|
} |
|
} |
|
} |
|
|
|
|
|
/* |
|
* Downsample pixel values of a single component. |
|
* This version handles the standard case of 2:1 horizontal and 2:1 vertical, |
|
* without smoothing. |
|
*/ |
|
|
|
METHODDEF(void) |
|
h2v2_downsample (j_compress_ptr cinfo, jpeg_component_info * compptr, |
|
JSAMPARRAY input_data, JSAMPARRAY output_data) |
|
{ |
|
int inrow, outrow; |
|
JDIMENSION outcol; |
|
JDIMENSION output_cols = compptr->width_in_blocks * compptr->DCT_h_scaled_size; |
|
register JSAMPROW inptr0, inptr1, outptr; |
|
register int bias; |
|
|
|
/* Expand input data enough to let all the output samples be generated |
|
* by the standard loop. Special-casing padded output would be more |
|
* efficient. |
|
*/ |
|
expand_right_edge(input_data, cinfo->max_v_samp_factor, |
|
cinfo->image_width, output_cols * 2); |
|
|
|
inrow = outrow = 0; |
|
while (inrow < cinfo->max_v_samp_factor) { |
|
outptr = output_data[outrow]; |
|
inptr0 = input_data[inrow]; |
|
inptr1 = input_data[inrow+1]; |
|
bias = 1; /* bias = 1,2,1,2,... for successive samples */ |
|
for (outcol = 0; outcol < output_cols; outcol++) { |
|
*outptr++ = (JSAMPLE) ((GETJSAMPLE(*inptr0) + GETJSAMPLE(inptr0[1]) + |
|
GETJSAMPLE(*inptr1) + GETJSAMPLE(inptr1[1]) |
|
+ bias) >> 2); |
|
bias ^= 3; /* 1=>2, 2=>1 */ |
|
inptr0 += 2; inptr1 += 2; |
|
} |
|
inrow += 2; |
|
outrow++; |
|
} |
|
} |
|
|
|
|
|
#ifdef INPUT_SMOOTHING_SUPPORTED |
|
|
|
/* |
|
* Downsample pixel values of a single component. |
|
* This version handles the standard case of 2:1 horizontal and 2:1 vertical, |
|
* with smoothing. One row of context is required. |
|
*/ |
|
|
|
METHODDEF(void) |
|
h2v2_smooth_downsample (j_compress_ptr cinfo, jpeg_component_info * compptr, |
|
JSAMPARRAY input_data, JSAMPARRAY output_data) |
|
{ |
|
int inrow, outrow; |
|
JDIMENSION colctr; |
|
JDIMENSION output_cols = compptr->width_in_blocks * compptr->DCT_h_scaled_size; |
|
register JSAMPROW inptr0, inptr1, above_ptr, below_ptr, outptr; |
|
INT32 membersum, neighsum, memberscale, neighscale; |
|
|
|
/* Expand input data enough to let all the output samples be generated |
|
* by the standard loop. Special-casing padded output would be more |
|
* efficient. |
|
*/ |
|
expand_right_edge(input_data - 1, cinfo->max_v_samp_factor + 2, |
|
cinfo->image_width, output_cols * 2); |
|
|
|
/* We don't bother to form the individual "smoothed" input pixel values; |
|
* we can directly compute the output which is the average of the four |
|
* smoothed values. Each of the four member pixels contributes a fraction |
|
* (1-8*SF) to its own smoothed image and a fraction SF to each of the three |
|
* other smoothed pixels, therefore a total fraction (1-5*SF)/4 to the final |
|
* output. The four corner-adjacent neighbor pixels contribute a fraction |
|
* SF to just one smoothed pixel, or SF/4 to the final output; while the |
|
* eight edge-adjacent neighbors contribute SF to each of two smoothed |
|
* pixels, or SF/2 overall. In order to use integer arithmetic, these |
|
* factors are scaled by 2^16 = 65536. |
|
* Also recall that SF = smoothing_factor / 1024. |
|
*/ |
|
|
|
memberscale = 16384 - cinfo->smoothing_factor * 80; /* scaled (1-5*SF)/4 */ |
|
neighscale = cinfo->smoothing_factor * 16; /* scaled SF/4 */ |
|
|
|
inrow = outrow = 0; |
|
while (inrow < cinfo->max_v_samp_factor) { |
|
outptr = output_data[outrow]; |
|
inptr0 = input_data[inrow]; |
|
inptr1 = input_data[inrow+1]; |
|
above_ptr = input_data[inrow-1]; |
|
below_ptr = input_data[inrow+2]; |
|
|
|
/* Special case for first column: pretend column -1 is same as column 0 */ |
|
membersum = GETJSAMPLE(*inptr0) + GETJSAMPLE(inptr0[1]) + |
|
GETJSAMPLE(*inptr1) + GETJSAMPLE(inptr1[1]); |
|
neighsum = GETJSAMPLE(*above_ptr) + GETJSAMPLE(above_ptr[1]) + |
|
GETJSAMPLE(*below_ptr) + GETJSAMPLE(below_ptr[1]) + |
|
GETJSAMPLE(*inptr0) + GETJSAMPLE(inptr0[2]) + |
|
GETJSAMPLE(*inptr1) + GETJSAMPLE(inptr1[2]); |
|
neighsum += neighsum; |
|
neighsum += GETJSAMPLE(*above_ptr) + GETJSAMPLE(above_ptr[2]) + |
|
GETJSAMPLE(*below_ptr) + GETJSAMPLE(below_ptr[2]); |
|
membersum = membersum * memberscale + neighsum * neighscale; |
|
*outptr++ = (JSAMPLE) ((membersum + 32768) >> 16); |
|
inptr0 += 2; inptr1 += 2; above_ptr += 2; below_ptr += 2; |
|
|
|
for (colctr = output_cols - 2; colctr > 0; colctr--) { |
|
/* sum of pixels directly mapped to this output element */ |
|
membersum = GETJSAMPLE(*inptr0) + GETJSAMPLE(inptr0[1]) + |
|
GETJSAMPLE(*inptr1) + GETJSAMPLE(inptr1[1]); |
|
/* sum of edge-neighbor pixels */ |
|
neighsum = GETJSAMPLE(*above_ptr) + GETJSAMPLE(above_ptr[1]) + |
|
GETJSAMPLE(*below_ptr) + GETJSAMPLE(below_ptr[1]) + |
|
GETJSAMPLE(inptr0[-1]) + GETJSAMPLE(inptr0[2]) + |
|
GETJSAMPLE(inptr1[-1]) + GETJSAMPLE(inptr1[2]); |
|
/* The edge-neighbors count twice as much as corner-neighbors */ |
|
neighsum += neighsum; |
|
/* Add in the corner-neighbors */ |
|
neighsum += GETJSAMPLE(above_ptr[-1]) + GETJSAMPLE(above_ptr[2]) + |
|
GETJSAMPLE(below_ptr[-1]) + GETJSAMPLE(below_ptr[2]); |
|
/* form final output scaled up by 2^16 */ |
|
membersum = membersum * memberscale + neighsum * neighscale; |
|
/* round, descale and output it */ |
|
*outptr++ = (JSAMPLE) ((membersum + 32768) >> 16); |
|
inptr0 += 2; inptr1 += 2; above_ptr += 2; below_ptr += 2; |
|
} |
|
|
|
/* Special case for last column */ |
|
membersum = GETJSAMPLE(*inptr0) + GETJSAMPLE(inptr0[1]) + |
|
GETJSAMPLE(*inptr1) + GETJSAMPLE(inptr1[1]); |
|
neighsum = GETJSAMPLE(*above_ptr) + GETJSAMPLE(above_ptr[1]) + |
|
GETJSAMPLE(*below_ptr) + GETJSAMPLE(below_ptr[1]) + |
|
GETJSAMPLE(inptr0[-1]) + GETJSAMPLE(inptr0[1]) + |
|
GETJSAMPLE(inptr1[-1]) + GETJSAMPLE(inptr1[1]); |
|
neighsum += neighsum; |
|
neighsum += GETJSAMPLE(above_ptr[-1]) + GETJSAMPLE(above_ptr[1]) + |
|
GETJSAMPLE(below_ptr[-1]) + GETJSAMPLE(below_ptr[1]); |
|
membersum = membersum * memberscale + neighsum * neighscale; |
|
*outptr = (JSAMPLE) ((membersum + 32768) >> 16); |
|
|
|
inrow += 2; |
|
outrow++; |
|
} |
|
} |
|
|
|
|
|
/* |
|
* Downsample pixel values of a single component. |
|
* This version handles the special case of a full-size component, |
|
* with smoothing. One row of context is required. |
|
*/ |
|
|
|
METHODDEF(void) |
|
fullsize_smooth_downsample (j_compress_ptr cinfo, jpeg_component_info *compptr, |
|
JSAMPARRAY input_data, JSAMPARRAY output_data) |
|
{ |
|
int inrow; |
|
JDIMENSION colctr; |
|
JDIMENSION output_cols = compptr->width_in_blocks * compptr->DCT_h_scaled_size; |
|
register JSAMPROW inptr, above_ptr, below_ptr, outptr; |
|
INT32 membersum, neighsum, memberscale, neighscale; |
|
int colsum, lastcolsum, nextcolsum; |
|
|
|
/* Expand input data enough to let all the output samples be generated |
|
* by the standard loop. Special-casing padded output would be more |
|
* efficient. |
|
*/ |
|
expand_right_edge(input_data - 1, cinfo->max_v_samp_factor + 2, |
|
cinfo->image_width, output_cols); |
|
|
|
/* Each of the eight neighbor pixels contributes a fraction SF to the |
|
* smoothed pixel, while the main pixel contributes (1-8*SF). In order |
|
* to use integer arithmetic, these factors are multiplied by 2^16 = 65536. |
|
* Also recall that SF = smoothing_factor / 1024. |
|
*/ |
|
|
|
memberscale = 65536L - cinfo->smoothing_factor * 512L; /* scaled 1-8*SF */ |
|
neighscale = cinfo->smoothing_factor * 64; /* scaled SF */ |
|
|
|
for (inrow = 0; inrow < cinfo->max_v_samp_factor; inrow++) { |
|
outptr = output_data[inrow]; |
|
inptr = input_data[inrow]; |
|
above_ptr = input_data[inrow-1]; |
|
below_ptr = input_data[inrow+1]; |
|
|
|
/* Special case for first column */ |
|
colsum = GETJSAMPLE(*above_ptr++) + GETJSAMPLE(*below_ptr++) + |
|
GETJSAMPLE(*inptr); |
|
membersum = GETJSAMPLE(*inptr++); |
|
nextcolsum = GETJSAMPLE(*above_ptr) + GETJSAMPLE(*below_ptr) + |
|
GETJSAMPLE(*inptr); |
|
neighsum = colsum + (colsum - membersum) + nextcolsum; |
|
membersum = membersum * memberscale + neighsum * neighscale; |
|
*outptr++ = (JSAMPLE) ((membersum + 32768) >> 16); |
|
lastcolsum = colsum; colsum = nextcolsum; |
|
|
|
for (colctr = output_cols - 2; colctr > 0; colctr--) { |
|
membersum = GETJSAMPLE(*inptr++); |
|
above_ptr++; below_ptr++; |
|
nextcolsum = GETJSAMPLE(*above_ptr) + GETJSAMPLE(*below_ptr) + |
|
GETJSAMPLE(*inptr); |
|
neighsum = lastcolsum + (colsum - membersum) + nextcolsum; |
|
membersum = membersum * memberscale + neighsum * neighscale; |
|
*outptr++ = (JSAMPLE) ((membersum + 32768) >> 16); |
|
lastcolsum = colsum; colsum = nextcolsum; |
|
} |
|
|
|
/* Special case for last column */ |
|
membersum = GETJSAMPLE(*inptr); |
|
neighsum = lastcolsum + (colsum - membersum) + colsum; |
|
membersum = membersum * memberscale + neighsum * neighscale; |
|
*outptr = (JSAMPLE) ((membersum + 32768) >> 16); |
|
|
|
} |
|
} |
|
|
|
#endif /* INPUT_SMOOTHING_SUPPORTED */ |
|
|
|
|
|
/* |
|
* Module initialization routine for downsampling. |
|
* Note that we must select a routine for each component. |
|
*/ |
|
|
|
GLOBAL(void) |
|
jinit_downsampler (j_compress_ptr cinfo) |
|
{ |
|
my_downsample_ptr downsample; |
|
int ci; |
|
jpeg_component_info * compptr; |
|
boolean smoothok = TRUE; |
|
int h_in_group, v_in_group, h_out_group, v_out_group; |
|
|
|
downsample = (my_downsample_ptr) |
|
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, |
|
SIZEOF(my_downsampler)); |
|
cinfo->downsample = (struct jpeg_downsampler *) downsample; |
|
downsample->pub.start_pass = start_pass_downsample; |
|
downsample->pub.downsample = sep_downsample; |
|
downsample->pub.need_context_rows = FALSE; |
|
|
|
if (cinfo->CCIR601_sampling) |
|
ERREXIT(cinfo, JERR_CCIR601_NOTIMPL); |
|
|
|
/* Verify we can handle the sampling factors, and set up method pointers */ |
|
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; |
|
ci++, compptr++) { |
|
/* Compute size of an "output group" for DCT scaling. This many samples |
|
* are to be converted from max_h_samp_factor * max_v_samp_factor pixels. |
|
*/ |
|
h_out_group = (compptr->h_samp_factor * compptr->DCT_h_scaled_size) / |
|
cinfo->min_DCT_h_scaled_size; |
|
v_out_group = (compptr->v_samp_factor * compptr->DCT_v_scaled_size) / |
|
cinfo->min_DCT_v_scaled_size; |
|
h_in_group = cinfo->max_h_samp_factor; |
|
v_in_group = cinfo->max_v_samp_factor; |
|
downsample->rowgroup_height[ci] = v_out_group; /* save for use later */ |
|
if (h_in_group == h_out_group && v_in_group == v_out_group) { |
|
#ifdef INPUT_SMOOTHING_SUPPORTED |
|
if (cinfo->smoothing_factor) { |
|
downsample->methods[ci] = fullsize_smooth_downsample; |
|
downsample->pub.need_context_rows = TRUE; |
|
} else |
|
#endif |
|
downsample->methods[ci] = fullsize_downsample; |
|
} else if (h_in_group == h_out_group * 2 && |
|
v_in_group == v_out_group) { |
|
smoothok = FALSE; |
|
downsample->methods[ci] = h2v1_downsample; |
|
} else if (h_in_group == h_out_group * 2 && |
|
v_in_group == v_out_group * 2) { |
|
#ifdef INPUT_SMOOTHING_SUPPORTED |
|
if (cinfo->smoothing_factor) { |
|
downsample->methods[ci] = h2v2_smooth_downsample; |
|
downsample->pub.need_context_rows = TRUE; |
|
} else |
|
#endif |
|
downsample->methods[ci] = h2v2_downsample; |
|
} else if ((h_in_group % h_out_group) == 0 && |
|
(v_in_group % v_out_group) == 0) { |
|
smoothok = FALSE; |
|
downsample->methods[ci] = int_downsample; |
|
downsample->h_expand[ci] = (UINT8) (h_in_group / h_out_group); |
|
downsample->v_expand[ci] = (UINT8) (v_in_group / v_out_group); |
|
} else |
|
ERREXIT(cinfo, JERR_FRACT_SAMPLE_NOTIMPL); |
|
} |
|
|
|
#ifdef INPUT_SMOOTHING_SUPPORTED |
|
if (cinfo->smoothing_factor && !smoothok) |
|
TRACEMS(cinfo, 0, JTRC_SMOOTH_NOTIMPL); |
|
#endif |
|
}
|
|
|