Open Source Computer Vision Library https://opencv.org/
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

289 lines
9.1 KiB

/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
// This file originates from the openFABMAP project:
// [http://code.google.com/p/openfabmap/]
//
// For published work which uses all or part of OpenFABMAP, please cite:
// [http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6224843]
//
// Original Algorithm by Mark Cummins and Paul Newman:
// [http://ijr.sagepub.com/content/27/6/647.short]
// [http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=5613942]
// [http://ijr.sagepub.com/content/30/9/1100.abstract]
//
// License Agreement
//
// Copyright (C) 2012 Arren Glover [aj.glover@qut.edu.au] and
// Will Maddern [w.maddern@qut.edu.au], all rights reserved.
//
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "precomp.hpp"
#include "opencv2/contrib/openfabmap.hpp"
namespace cv {
namespace of2 {
ChowLiuTree::ChowLiuTree() {
}
ChowLiuTree::~ChowLiuTree() {
}
void ChowLiuTree::add(const Mat& imgDescriptor) {
CV_Assert(!imgDescriptor.empty());
if (!imgDescriptors.empty()) {
CV_Assert(imgDescriptors[0].cols == imgDescriptor.cols);
CV_Assert(imgDescriptors[0].type() == imgDescriptor.type());
}
imgDescriptors.push_back(imgDescriptor);
}
void ChowLiuTree::add(const std::vector<Mat>& _imgDescriptors) {
for (size_t i = 0; i < _imgDescriptors.size(); i++) {
add(_imgDescriptors[i]);
}
}
const std::vector<cv::Mat>& ChowLiuTree::getImgDescriptors() const {
return imgDescriptors;
}
Mat ChowLiuTree::make(double infoThreshold) {
CV_Assert(!imgDescriptors.empty());
unsigned int descCount = 0;
for (size_t i = 0; i < imgDescriptors.size(); i++)
descCount += imgDescriptors[i].rows;
mergedImgDescriptors = cv::Mat(descCount, imgDescriptors[0].cols,
imgDescriptors[0].type());
for (size_t i = 0, start = 0; i < imgDescriptors.size(); i++)
{
Mat submut = mergedImgDescriptors.rowRange((int)start,
(int)(start + imgDescriptors[i].rows));
imgDescriptors[i].copyTo(submut);
start += imgDescriptors[i].rows;
}
std::list<info> edges;
createBaseEdges(edges, infoThreshold);
// TODO: if it cv_asserts here they really won't know why.
CV_Assert(reduceEdgesToMinSpan(edges));
return buildTree(edges.front().word1, edges);
}
double ChowLiuTree::P(int a, bool za) {
if(za) {
return (0.98 * cv::countNonZero(mergedImgDescriptors.col(a)) /
mergedImgDescriptors.rows) + 0.01;
} else {
return 1 - ((0.98 * cv::countNonZero(mergedImgDescriptors.col(a)) /
mergedImgDescriptors.rows) + 0.01);
}
}
double ChowLiuTree::JP(int a, bool za, int b, bool zb) {
double count = 0;
for(int i = 0; i < mergedImgDescriptors.rows; i++) {
if((mergedImgDescriptors.at<float>(i,a) > 0) == za &&
(mergedImgDescriptors.at<float>(i,b) > 0) == zb) {
count++;
}
}
return count / mergedImgDescriptors.rows;
}
double ChowLiuTree::CP(int a, bool za, int b, bool zb){
int count = 0, total = 0;
for(int i = 0; i < mergedImgDescriptors.rows; i++) {
if((mergedImgDescriptors.at<float>(i,b) > 0) == zb) {
total++;
if((mergedImgDescriptors.at<float>(i,a) > 0) == za) {
count++;
}
}
}
if(total) {
return (double)(0.98 * count)/total + 0.01;
} else {
return (za) ? 0.01 : 0.99;
}
}
cv::Mat ChowLiuTree::buildTree(int root_word, std::list<info> &edges) {
int q = root_word;
cv::Mat cltree(4, (int)edges.size()+1, CV_64F);
cltree.at<double>(0, q) = q;
cltree.at<double>(1, q) = P(q, true);
cltree.at<double>(2, q) = P(q, true);
cltree.at<double>(3, q) = P(q, true);
//setting P(zq|zpq) to P(zq) gives the root node of the chow-liu
//independence from a parent node.
//find all children and do the same
std::vector<int> nextqs = extractChildren(edges, q);
int pq = q;
std::vector<int>::iterator nextq;
for(nextq = nextqs.begin(); nextq != nextqs.end(); nextq++) {
recAddToTree(cltree, *nextq, pq, edges);
}
return cltree;
}
void ChowLiuTree::recAddToTree(cv::Mat &cltree, int q, int pq,
std::list<info>& remaining_edges) {
cltree.at<double>(0, q) = pq;
cltree.at<double>(1, q) = P(q, true);
cltree.at<double>(2, q) = CP(q, true, pq, true);
cltree.at<double>(3, q) = CP(q, true, pq, false);
//find all children and do the same
std::vector<int> nextqs = extractChildren(remaining_edges, q);
pq = q;
std::vector<int>::iterator nextq;
for(nextq = nextqs.begin(); nextq != nextqs.end(); nextq++) {
recAddToTree(cltree, *nextq, pq, remaining_edges);
}
}
std::vector<int> ChowLiuTree::extractChildren(std::list<info> &remaining_edges, int q) {
std::vector<int> children;
std::list<info>::iterator edge = remaining_edges.begin();
while(edge != remaining_edges.end()) {
if(edge->word1 == q) {
children.push_back(edge->word2);
edge = remaining_edges.erase(edge);
continue;
}
if(edge->word2 == q) {
children.push_back(edge->word1);
edge = remaining_edges.erase(edge);
continue;
}
edge++;
}
return children;
}
bool ChowLiuTree::sortInfoScores(const info& first, const info& second) {
return first.score > second.score;
}
double ChowLiuTree::calcMutInfo(int word1, int word2) {
double accumulation = 0;
double P00 = JP(word1, false, word2, false);
if(P00) accumulation += P00 * std::log(P00 / (P(word1, false)*P(word2, false)));
double P01 = JP(word1, false, word2, true);
if(P01) accumulation += P01 * std::log(P01 / (P(word1, false)*P(word2, true)));
double P10 = JP(word1, true, word2, false);
if(P10) accumulation += P10 * std::log(P10 / (P(word1, true)*P(word2, false)));
double P11 = JP(word1, true, word2, true);
if(P11) accumulation += P11 * std::log(P11 / (P(word1, true)*P(word2, true)));
return accumulation;
}
void ChowLiuTree::createBaseEdges(std::list<info>& edges, double infoThreshold) {
int nWords = imgDescriptors[0].cols;
info mutInfo;
for(int word1 = 0; word1 < nWords; word1++) {
for(int word2 = word1 + 1; word2 < nWords; word2++) {
mutInfo.word1 = (short)word1;
mutInfo.word2 = (short)word2;
mutInfo.score = (float)calcMutInfo(word1, word2);
if(mutInfo.score >= infoThreshold)
edges.push_back(mutInfo);
}
}
edges.sort(sortInfoScores);
}
bool ChowLiuTree::reduceEdgesToMinSpan(std::list<info>& edges) {
std::map<int, int> groups;
std::map<int, int>::iterator groupIt;
for(int i = 0; i < imgDescriptors[0].cols; i++) groups[i] = i;
int group1, group2;
std::list<info>::iterator edge = edges.begin();
while(edge != edges.end()) {
if(groups[edge->word1] != groups[edge->word2]) {
group1 = groups[edge->word1];
group2 = groups[edge->word2];
for(groupIt = groups.begin(); groupIt != groups.end(); groupIt++)
if(groupIt->second == group2) groupIt->second = group1;
edge++;
} else {
edge = edges.erase(edge);
}
}
if(edges.size() != (unsigned int)imgDescriptors[0].cols - 1) {
return false;
} else {
return true;
}
}
}
}