mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
289 lines
9.1 KiB
289 lines
9.1 KiB
/*M/////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// This file originates from the openFABMAP project: |
|
// [http://code.google.com/p/openfabmap/] |
|
// |
|
// For published work which uses all or part of OpenFABMAP, please cite: |
|
// [http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6224843] |
|
// |
|
// Original Algorithm by Mark Cummins and Paul Newman: |
|
// [http://ijr.sagepub.com/content/27/6/647.short] |
|
// [http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=5613942] |
|
// [http://ijr.sagepub.com/content/30/9/1100.abstract] |
|
// |
|
// License Agreement |
|
// |
|
// Copyright (C) 2012 Arren Glover [aj.glover@qut.edu.au] and |
|
// Will Maddern [w.maddern@qut.edu.au], all rights reserved. |
|
// |
|
// |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistribution's of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistribution's in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other materials provided with the distribution. |
|
// |
|
// * The name of the copyright holders may not be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors "as is" and |
|
// any express or implied warranties, including, but not limited to, the implied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall the Intel Corporation or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
// |
|
//M*/ |
|
|
|
#include "precomp.hpp" |
|
#include "opencv2/contrib/openfabmap.hpp" |
|
|
|
namespace cv { |
|
|
|
namespace of2 { |
|
|
|
ChowLiuTree::ChowLiuTree() { |
|
} |
|
|
|
ChowLiuTree::~ChowLiuTree() { |
|
} |
|
|
|
void ChowLiuTree::add(const Mat& imgDescriptor) { |
|
CV_Assert(!imgDescriptor.empty()); |
|
if (!imgDescriptors.empty()) { |
|
CV_Assert(imgDescriptors[0].cols == imgDescriptor.cols); |
|
CV_Assert(imgDescriptors[0].type() == imgDescriptor.type()); |
|
} |
|
|
|
imgDescriptors.push_back(imgDescriptor); |
|
|
|
} |
|
|
|
void ChowLiuTree::add(const std::vector<Mat>& _imgDescriptors) { |
|
for (size_t i = 0; i < _imgDescriptors.size(); i++) { |
|
add(_imgDescriptors[i]); |
|
} |
|
} |
|
|
|
const std::vector<cv::Mat>& ChowLiuTree::getImgDescriptors() const { |
|
return imgDescriptors; |
|
} |
|
|
|
Mat ChowLiuTree::make(double infoThreshold) { |
|
CV_Assert(!imgDescriptors.empty()); |
|
|
|
unsigned int descCount = 0; |
|
for (size_t i = 0; i < imgDescriptors.size(); i++) |
|
descCount += imgDescriptors[i].rows; |
|
|
|
mergedImgDescriptors = cv::Mat(descCount, imgDescriptors[0].cols, |
|
imgDescriptors[0].type()); |
|
for (size_t i = 0, start = 0; i < imgDescriptors.size(); i++) |
|
{ |
|
Mat submut = mergedImgDescriptors.rowRange((int)start, |
|
(int)(start + imgDescriptors[i].rows)); |
|
imgDescriptors[i].copyTo(submut); |
|
start += imgDescriptors[i].rows; |
|
} |
|
|
|
std::list<info> edges; |
|
createBaseEdges(edges, infoThreshold); |
|
|
|
// TODO: if it cv_asserts here they really won't know why. |
|
|
|
CV_Assert(reduceEdgesToMinSpan(edges)); |
|
|
|
return buildTree(edges.front().word1, edges); |
|
} |
|
|
|
double ChowLiuTree::P(int a, bool za) { |
|
|
|
if(za) { |
|
return (0.98 * cv::countNonZero(mergedImgDescriptors.col(a)) / |
|
mergedImgDescriptors.rows) + 0.01; |
|
} else { |
|
return 1 - ((0.98 * cv::countNonZero(mergedImgDescriptors.col(a)) / |
|
mergedImgDescriptors.rows) + 0.01); |
|
} |
|
|
|
} |
|
double ChowLiuTree::JP(int a, bool za, int b, bool zb) { |
|
|
|
double count = 0; |
|
for(int i = 0; i < mergedImgDescriptors.rows; i++) { |
|
if((mergedImgDescriptors.at<float>(i,a) > 0) == za && |
|
(mergedImgDescriptors.at<float>(i,b) > 0) == zb) { |
|
count++; |
|
} |
|
} |
|
return count / mergedImgDescriptors.rows; |
|
|
|
} |
|
double ChowLiuTree::CP(int a, bool za, int b, bool zb){ |
|
|
|
int count = 0, total = 0; |
|
for(int i = 0; i < mergedImgDescriptors.rows; i++) { |
|
if((mergedImgDescriptors.at<float>(i,b) > 0) == zb) { |
|
total++; |
|
if((mergedImgDescriptors.at<float>(i,a) > 0) == za) { |
|
count++; |
|
} |
|
} |
|
} |
|
if(total) { |
|
return (double)(0.98 * count)/total + 0.01; |
|
} else { |
|
return (za) ? 0.01 : 0.99; |
|
} |
|
} |
|
|
|
cv::Mat ChowLiuTree::buildTree(int root_word, std::list<info> &edges) { |
|
|
|
int q = root_word; |
|
cv::Mat cltree(4, (int)edges.size()+1, CV_64F); |
|
|
|
cltree.at<double>(0, q) = q; |
|
cltree.at<double>(1, q) = P(q, true); |
|
cltree.at<double>(2, q) = P(q, true); |
|
cltree.at<double>(3, q) = P(q, true); |
|
//setting P(zq|zpq) to P(zq) gives the root node of the chow-liu |
|
//independence from a parent node. |
|
|
|
//find all children and do the same |
|
std::vector<int> nextqs = extractChildren(edges, q); |
|
|
|
int pq = q; |
|
std::vector<int>::iterator nextq; |
|
for(nextq = nextqs.begin(); nextq != nextqs.end(); nextq++) { |
|
recAddToTree(cltree, *nextq, pq, edges); |
|
} |
|
|
|
return cltree; |
|
|
|
|
|
} |
|
|
|
void ChowLiuTree::recAddToTree(cv::Mat &cltree, int q, int pq, |
|
std::list<info>& remaining_edges) { |
|
|
|
cltree.at<double>(0, q) = pq; |
|
cltree.at<double>(1, q) = P(q, true); |
|
cltree.at<double>(2, q) = CP(q, true, pq, true); |
|
cltree.at<double>(3, q) = CP(q, true, pq, false); |
|
|
|
//find all children and do the same |
|
std::vector<int> nextqs = extractChildren(remaining_edges, q); |
|
|
|
pq = q; |
|
std::vector<int>::iterator nextq; |
|
for(nextq = nextqs.begin(); nextq != nextqs.end(); nextq++) { |
|
recAddToTree(cltree, *nextq, pq, remaining_edges); |
|
} |
|
} |
|
|
|
std::vector<int> ChowLiuTree::extractChildren(std::list<info> &remaining_edges, int q) { |
|
|
|
std::vector<int> children; |
|
std::list<info>::iterator edge = remaining_edges.begin(); |
|
|
|
while(edge != remaining_edges.end()) { |
|
if(edge->word1 == q) { |
|
children.push_back(edge->word2); |
|
edge = remaining_edges.erase(edge); |
|
continue; |
|
} |
|
if(edge->word2 == q) { |
|
children.push_back(edge->word1); |
|
edge = remaining_edges.erase(edge); |
|
continue; |
|
} |
|
edge++; |
|
} |
|
|
|
return children; |
|
} |
|
|
|
bool ChowLiuTree::sortInfoScores(const info& first, const info& second) { |
|
return first.score > second.score; |
|
} |
|
|
|
double ChowLiuTree::calcMutInfo(int word1, int word2) { |
|
double accumulation = 0; |
|
|
|
double P00 = JP(word1, false, word2, false); |
|
if(P00) accumulation += P00 * std::log(P00 / (P(word1, false)*P(word2, false))); |
|
|
|
double P01 = JP(word1, false, word2, true); |
|
if(P01) accumulation += P01 * std::log(P01 / (P(word1, false)*P(word2, true))); |
|
|
|
double P10 = JP(word1, true, word2, false); |
|
if(P10) accumulation += P10 * std::log(P10 / (P(word1, true)*P(word2, false))); |
|
|
|
double P11 = JP(word1, true, word2, true); |
|
if(P11) accumulation += P11 * std::log(P11 / (P(word1, true)*P(word2, true))); |
|
|
|
return accumulation; |
|
} |
|
|
|
void ChowLiuTree::createBaseEdges(std::list<info>& edges, double infoThreshold) { |
|
|
|
int nWords = imgDescriptors[0].cols; |
|
info mutInfo; |
|
|
|
for(int word1 = 0; word1 < nWords; word1++) { |
|
for(int word2 = word1 + 1; word2 < nWords; word2++) { |
|
mutInfo.word1 = (short)word1; |
|
mutInfo.word2 = (short)word2; |
|
mutInfo.score = (float)calcMutInfo(word1, word2); |
|
if(mutInfo.score >= infoThreshold) |
|
edges.push_back(mutInfo); |
|
} |
|
} |
|
edges.sort(sortInfoScores); |
|
} |
|
|
|
bool ChowLiuTree::reduceEdgesToMinSpan(std::list<info>& edges) { |
|
|
|
std::map<int, int> groups; |
|
std::map<int, int>::iterator groupIt; |
|
for(int i = 0; i < imgDescriptors[0].cols; i++) groups[i] = i; |
|
int group1, group2; |
|
|
|
std::list<info>::iterator edge = edges.begin(); |
|
while(edge != edges.end()) { |
|
if(groups[edge->word1] != groups[edge->word2]) { |
|
group1 = groups[edge->word1]; |
|
group2 = groups[edge->word2]; |
|
for(groupIt = groups.begin(); groupIt != groups.end(); groupIt++) |
|
if(groupIt->second == group2) groupIt->second = group1; |
|
edge++; |
|
} else { |
|
edge = edges.erase(edge); |
|
} |
|
} |
|
|
|
if(edges.size() != (unsigned int)imgDescriptors[0].cols - 1) { |
|
return false; |
|
} else { |
|
return true; |
|
} |
|
|
|
} |
|
|
|
} |
|
|
|
}
|
|
|