mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
362 lines
10 KiB
362 lines
10 KiB
/*M/////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// |
|
// License Agreement |
|
// For Open Source Computer Vision Library |
|
// |
|
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. |
|
// Copyright (C) 2009, Willow Garage Inc., all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
// |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistribution's of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistribution's in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other materials provided with the distribution. |
|
// |
|
// * The name of the copyright holders may not be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors "as is" and |
|
// any express or implied warranties, including, but not limited to, the implied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall the Intel Corporation or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
// |
|
//M*/ |
|
|
|
#include "test_precomp.hpp" |
|
|
|
#ifdef HAVE_CUDA |
|
|
|
namespace opencv_test { namespace { |
|
|
|
/////////////////////////////////////////////////////////////////////////////////////////////////////// |
|
// HistEven |
|
|
|
PARAM_TEST_CASE(HistEven, cv::cuda::DeviceInfo, cv::Size) |
|
{ |
|
cv::cuda::DeviceInfo devInfo; |
|
cv::Size size; |
|
|
|
virtual void SetUp() |
|
{ |
|
devInfo = GET_PARAM(0); |
|
size = GET_PARAM(1); |
|
|
|
cv::cuda::setDevice(devInfo.deviceID()); |
|
} |
|
}; |
|
|
|
CUDA_TEST_P(HistEven, Accuracy) |
|
{ |
|
cv::Mat src = randomMat(size, CV_8UC1); |
|
|
|
int hbins = 30; |
|
float hranges[] = {50.0f, 200.0f}; |
|
|
|
cv::cuda::GpuMat hist; |
|
cv::cuda::histEven(loadMat(src), hist, hbins, (int) hranges[0], (int) hranges[1]); |
|
|
|
cv::Mat hist_gold; |
|
|
|
int histSize[] = {hbins}; |
|
const float* ranges[] = {hranges}; |
|
int channels[] = {0}; |
|
cv::calcHist(&src, 1, channels, cv::Mat(), hist_gold, 1, histSize, ranges); |
|
|
|
hist_gold = hist_gold.t(); |
|
hist_gold.convertTo(hist_gold, CV_32S); |
|
|
|
EXPECT_MAT_NEAR(hist_gold, hist, 0.0); |
|
} |
|
|
|
INSTANTIATE_TEST_CASE_P(CUDA_ImgProc, HistEven, testing::Combine( |
|
ALL_DEVICES, |
|
DIFFERENT_SIZES)); |
|
|
|
/////////////////////////////////////////////////////////////////////////////////////////////////////// |
|
// CalcHist |
|
|
|
PARAM_TEST_CASE(CalcHist, cv::cuda::DeviceInfo, cv::Size) |
|
{ |
|
cv::cuda::DeviceInfo devInfo; |
|
|
|
cv::Size size; |
|
|
|
virtual void SetUp() |
|
{ |
|
devInfo = GET_PARAM(0); |
|
size = GET_PARAM(1); |
|
|
|
cv::cuda::setDevice(devInfo.deviceID()); |
|
} |
|
}; |
|
|
|
CUDA_TEST_P(CalcHist, Accuracy) |
|
{ |
|
cv::Mat src = randomMat(size, CV_8UC1); |
|
|
|
cv::cuda::GpuMat hist; |
|
cv::cuda::calcHist(loadMat(src), hist); |
|
|
|
cv::Mat hist_gold; |
|
|
|
const int hbins = 256; |
|
const float hranges[] = {0.0f, 256.0f}; |
|
const int histSize[] = {hbins}; |
|
const float* ranges[] = {hranges}; |
|
const int channels[] = {0}; |
|
|
|
cv::calcHist(&src, 1, channels, cv::Mat(), hist_gold, 1, histSize, ranges); |
|
hist_gold = hist_gold.reshape(1, 1); |
|
hist_gold.convertTo(hist_gold, CV_32S); |
|
|
|
EXPECT_MAT_NEAR(hist_gold, hist, 0.0); |
|
} |
|
|
|
INSTANTIATE_TEST_CASE_P(CUDA_ImgProc, CalcHist, testing::Combine( |
|
ALL_DEVICES, |
|
DIFFERENT_SIZES)); |
|
|
|
PARAM_TEST_CASE(CalcHistWithMask, cv::cuda::DeviceInfo, cv::Size) |
|
{ |
|
cv::cuda::DeviceInfo devInfo; |
|
|
|
cv::Size size; |
|
|
|
virtual void SetUp() |
|
{ |
|
devInfo = GET_PARAM(0); |
|
size = GET_PARAM(1); |
|
|
|
cv::cuda::setDevice(devInfo.deviceID()); |
|
} |
|
}; |
|
|
|
CUDA_TEST_P(CalcHistWithMask, Accuracy) |
|
{ |
|
cv::Mat src = randomMat(size, CV_8UC1); |
|
cv::Mat mask = randomMat(size, CV_8UC1); |
|
cv::Mat(mask, cv::Rect(0, 0, size.width / 2, size.height / 2)).setTo(0); |
|
|
|
cv::cuda::GpuMat hist; |
|
cv::cuda::calcHist(loadMat(src), loadMat(mask), hist); |
|
|
|
cv::Mat hist_gold; |
|
|
|
const int hbins = 256; |
|
const float hranges[] = {0.0f, 256.0f}; |
|
const int histSize[] = {hbins}; |
|
const float* ranges[] = {hranges}; |
|
const int channels[] = {0}; |
|
|
|
cv::calcHist(&src, 1, channels, mask, hist_gold, 1, histSize, ranges); |
|
hist_gold = hist_gold.reshape(1, 1); |
|
hist_gold.convertTo(hist_gold, CV_32S); |
|
|
|
EXPECT_MAT_NEAR(hist_gold, hist, 0.0); |
|
} |
|
|
|
INSTANTIATE_TEST_CASE_P(CUDA_ImgProc, CalcHistWithMask, testing::Combine( |
|
ALL_DEVICES, |
|
DIFFERENT_SIZES)); |
|
|
|
/////////////////////////////////////////////////////////////////////////////////////////////////////// |
|
// EqualizeHist |
|
|
|
PARAM_TEST_CASE(EqualizeHist, cv::cuda::DeviceInfo, cv::Size) |
|
{ |
|
cv::cuda::DeviceInfo devInfo; |
|
cv::Size size; |
|
|
|
virtual void SetUp() |
|
{ |
|
devInfo = GET_PARAM(0); |
|
size = GET_PARAM(1); |
|
|
|
cv::cuda::setDevice(devInfo.deviceID()); |
|
} |
|
}; |
|
|
|
CUDA_TEST_P(EqualizeHist, Async) |
|
{ |
|
cv::Mat src = randomMat(size, CV_8UC1); |
|
|
|
cv::cuda::Stream stream; |
|
|
|
cv::cuda::GpuMat dst; |
|
cv::cuda::equalizeHist(loadMat(src), dst, stream); |
|
|
|
stream.waitForCompletion(); |
|
|
|
cv::Mat dst_gold; |
|
cv::equalizeHist(src, dst_gold); |
|
|
|
EXPECT_MAT_NEAR(dst_gold, dst, 0.0); |
|
} |
|
|
|
CUDA_TEST_P(EqualizeHist, Accuracy) |
|
{ |
|
cv::Mat src = randomMat(size, CV_8UC1); |
|
|
|
cv::cuda::GpuMat dst; |
|
cv::cuda::equalizeHist(loadMat(src), dst); |
|
|
|
cv::Mat dst_gold; |
|
cv::equalizeHist(src, dst_gold); |
|
|
|
EXPECT_MAT_NEAR(dst_gold, dst, 0.0); |
|
} |
|
|
|
INSTANTIATE_TEST_CASE_P(CUDA_ImgProc, EqualizeHist, testing::Combine( |
|
ALL_DEVICES, |
|
DIFFERENT_SIZES)); |
|
|
|
TEST(EqualizeHistIssue, Issue18035) |
|
{ |
|
std::vector<std::string> imgPaths; |
|
imgPaths.push_back(std::string(cvtest::TS::ptr()->get_data_path()) + "../cv/shared/3MP.png"); |
|
imgPaths.push_back(std::string(cvtest::TS::ptr()->get_data_path()) + "../cv/shared/5MP.png"); |
|
imgPaths.push_back(std::string(cvtest::TS::ptr()->get_data_path()) + "../cv/shared/airplane.png"); |
|
imgPaths.push_back(std::string(cvtest::TS::ptr()->get_data_path()) + "../cv/shared/baboon.png"); |
|
imgPaths.push_back(std::string(cvtest::TS::ptr()->get_data_path()) + "../cv/shared/box.png"); |
|
imgPaths.push_back(std::string(cvtest::TS::ptr()->get_data_path()) + "../cv/shared/box_in_scene.png"); |
|
imgPaths.push_back(std::string(cvtest::TS::ptr()->get_data_path()) + "../cv/shared/fruits.png"); |
|
imgPaths.push_back(std::string(cvtest::TS::ptr()->get_data_path()) + "../cv/shared/fruits_ecc.png"); |
|
imgPaths.push_back(std::string(cvtest::TS::ptr()->get_data_path()) + "../cv/shared/graffiti.png"); |
|
imgPaths.push_back(std::string(cvtest::TS::ptr()->get_data_path()) + "../cv/shared/lena.png"); |
|
|
|
for (size_t i = 0; i < imgPaths.size(); ++i) |
|
{ |
|
std::string imgPath = imgPaths[i]; |
|
cv::Mat src = cv::imread(imgPath, cv::IMREAD_GRAYSCALE); |
|
src = src / 30; |
|
|
|
cv::cuda::GpuMat d_src, dst; |
|
d_src.upload(src); |
|
cv::cuda::equalizeHist(d_src, dst); |
|
|
|
cv::Mat dst_gold; |
|
cv::equalizeHist(src, dst_gold); |
|
|
|
EXPECT_MAT_NEAR(dst_gold, dst, 0.0); |
|
} |
|
} |
|
|
|
PARAM_TEST_CASE(EqualizeHistExtreme, cv::cuda::DeviceInfo, cv::Size, int) |
|
{ |
|
cv::cuda::DeviceInfo devInfo; |
|
cv::Size size; |
|
int val; |
|
|
|
virtual void SetUp() |
|
{ |
|
devInfo = GET_PARAM(0); |
|
size = GET_PARAM(1); |
|
val = GET_PARAM(2); |
|
|
|
cv::cuda::setDevice(devInfo.deviceID()); |
|
} |
|
}; |
|
|
|
CUDA_TEST_P(EqualizeHistExtreme, Case1) |
|
{ |
|
cv::Mat src(size, CV_8UC1, val); |
|
|
|
cv::cuda::GpuMat dst; |
|
cv::cuda::equalizeHist(loadMat(src), dst); |
|
|
|
cv::Mat dst_gold; |
|
cv::equalizeHist(src, dst_gold); |
|
|
|
EXPECT_MAT_NEAR(dst_gold, dst, 0.0); |
|
} |
|
|
|
CUDA_TEST_P(EqualizeHistExtreme, Case2) |
|
{ |
|
cv::Mat src = randomMat(size, CV_8UC1, val); |
|
|
|
cv::cuda::GpuMat dst; |
|
cv::cuda::equalizeHist(loadMat(src), dst); |
|
|
|
cv::Mat dst_gold; |
|
cv::equalizeHist(src, dst_gold); |
|
|
|
EXPECT_MAT_NEAR(dst_gold, dst, 0.0); |
|
} |
|
|
|
INSTANTIATE_TEST_CASE_P(CUDA_ImgProc, EqualizeHistExtreme, testing::Combine( |
|
ALL_DEVICES, |
|
DIFFERENT_SIZES, |
|
testing::Range(0, 256))); |
|
|
|
/////////////////////////////////////////////////////////////////////////////////////////////////////// |
|
// CLAHE |
|
|
|
namespace |
|
{ |
|
IMPLEMENT_PARAM_CLASS(ClipLimit, double) |
|
} |
|
|
|
PARAM_TEST_CASE(CLAHE, cv::cuda::DeviceInfo, cv::Size, ClipLimit, MatType) |
|
{ |
|
cv::cuda::DeviceInfo devInfo; |
|
cv::Size size; |
|
double clipLimit; |
|
int type; |
|
|
|
virtual void SetUp() |
|
{ |
|
devInfo = GET_PARAM(0); |
|
size = GET_PARAM(1); |
|
clipLimit = GET_PARAM(2); |
|
type = GET_PARAM(3); |
|
|
|
cv::cuda::setDevice(devInfo.deviceID()); |
|
} |
|
}; |
|
|
|
CUDA_TEST_P(CLAHE, Accuracy) |
|
{ |
|
cv::Mat src; |
|
if (type == CV_8UC1) |
|
src = randomMat(size, type); |
|
else if (type == CV_16UC1) |
|
src = randomMat(size, type, 0, 65535); |
|
|
|
cv::Ptr<cv::cuda::CLAHE> clahe = cv::cuda::createCLAHE(clipLimit); |
|
cv::cuda::GpuMat dst; |
|
clahe->apply(loadMat(src), dst); |
|
|
|
cv::Ptr<cv::CLAHE> clahe_gold = cv::createCLAHE(clipLimit); |
|
cv::Mat dst_gold; |
|
clahe_gold->apply(src, dst_gold); |
|
|
|
ASSERT_MAT_NEAR(dst_gold, dst, 1.0); |
|
} |
|
|
|
INSTANTIATE_TEST_CASE_P(CUDA_ImgProc, CLAHE, testing::Combine( |
|
ALL_DEVICES, |
|
DIFFERENT_SIZES, |
|
testing::Values(0.0, 5.0, 10.0, 20.0, 40.0), |
|
testing::Values(MatType(CV_8UC1), MatType(CV_16UC1)))); |
|
|
|
|
|
}} // namespace |
|
#endif // HAVE_CUDA
|
|
|