mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1177 lines
44 KiB
1177 lines
44 KiB
/* |
|
* jmemmgr.c |
|
* |
|
* This file was part of the Independent JPEG Group's software: |
|
* Copyright (C) 1991-1997, Thomas G. Lane. |
|
* libjpeg-turbo Modifications: |
|
* Copyright (C) 2016, 2021-2022, D. R. Commander. |
|
* For conditions of distribution and use, see the accompanying README.ijg |
|
* file. |
|
* |
|
* This file contains the JPEG system-independent memory management |
|
* routines. This code is usable across a wide variety of machines; most |
|
* of the system dependencies have been isolated in a separate file. |
|
* The major functions provided here are: |
|
* * pool-based allocation and freeing of memory; |
|
* * policy decisions about how to divide available memory among the |
|
* virtual arrays; |
|
* * control logic for swapping virtual arrays between main memory and |
|
* backing storage. |
|
* The separate system-dependent file provides the actual backing-storage |
|
* access code, and it contains the policy decision about how much total |
|
* main memory to use. |
|
* This file is system-dependent in the sense that some of its functions |
|
* are unnecessary in some systems. For example, if there is enough virtual |
|
* memory so that backing storage will never be used, much of the virtual |
|
* array control logic could be removed. (Of course, if you have that much |
|
* memory then you shouldn't care about a little bit of unused code...) |
|
*/ |
|
|
|
#define JPEG_INTERNALS |
|
#define AM_MEMORY_MANAGER /* we define jvirt_Xarray_control structs */ |
|
#include "jinclude.h" |
|
#include "jpeglib.h" |
|
#include "jmemsys.h" /* import the system-dependent declarations */ |
|
#if !defined(_MSC_VER) || _MSC_VER > 1600 |
|
#include <stdint.h> |
|
#endif |
|
#include <limits.h> |
|
|
|
|
|
LOCAL(size_t) |
|
round_up_pow2(size_t a, size_t b) |
|
/* a rounded up to the next multiple of b, i.e. ceil(a/b)*b */ |
|
/* Assumes a >= 0, b > 0, and b is a power of 2 */ |
|
{ |
|
return ((a + b - 1) & (~(b - 1))); |
|
} |
|
|
|
|
|
/* |
|
* Some important notes: |
|
* The allocation routines provided here must never return NULL. |
|
* They should exit to error_exit if unsuccessful. |
|
* |
|
* It's not a good idea to try to merge the sarray and barray routines, |
|
* even though they are textually almost the same, because samples are |
|
* usually stored as bytes while coefficients are shorts or ints. Thus, |
|
* in machines where byte pointers have a different representation from |
|
* word pointers, the resulting machine code could not be the same. |
|
*/ |
|
|
|
|
|
/* |
|
* Many machines require storage alignment: longs must start on 4-byte |
|
* boundaries, doubles on 8-byte boundaries, etc. On such machines, malloc() |
|
* always returns pointers that are multiples of the worst-case alignment |
|
* requirement, and we had better do so too. |
|
* There isn't any really portable way to determine the worst-case alignment |
|
* requirement. This module assumes that the alignment requirement is |
|
* multiples of ALIGN_SIZE. |
|
* By default, we define ALIGN_SIZE as sizeof(double). This is necessary on |
|
* some workstations (where doubles really do need 8-byte alignment) and will |
|
* work fine on nearly everything. If your machine has lesser alignment needs, |
|
* you can save a few bytes by making ALIGN_SIZE smaller. |
|
* The only place I know of where this will NOT work is certain Macintosh |
|
* 680x0 compilers that define double as a 10-byte IEEE extended float. |
|
* Doing 10-byte alignment is counterproductive because longwords won't be |
|
* aligned well. Put "#define ALIGN_SIZE 4" in jconfig.h if you have |
|
* such a compiler. |
|
*/ |
|
|
|
#ifndef ALIGN_SIZE /* so can override from jconfig.h */ |
|
#ifndef WITH_SIMD |
|
#define ALIGN_SIZE sizeof(double) |
|
#else |
|
#define ALIGN_SIZE 32 /* Most of the SIMD instructions we support require |
|
16-byte (128-bit) alignment, but AVX2 requires |
|
32-byte alignment. */ |
|
#endif |
|
#endif |
|
|
|
/* |
|
* We allocate objects from "pools", where each pool is gotten with a single |
|
* request to jpeg_get_small() or jpeg_get_large(). There is no per-object |
|
* overhead within a pool, except for alignment padding. Each pool has a |
|
* header with a link to the next pool of the same class. |
|
* Small and large pool headers are identical. |
|
*/ |
|
|
|
typedef struct small_pool_struct *small_pool_ptr; |
|
|
|
typedef struct small_pool_struct { |
|
small_pool_ptr next; /* next in list of pools */ |
|
size_t bytes_used; /* how many bytes already used within pool */ |
|
size_t bytes_left; /* bytes still available in this pool */ |
|
} small_pool_hdr; |
|
|
|
typedef struct large_pool_struct *large_pool_ptr; |
|
|
|
typedef struct large_pool_struct { |
|
large_pool_ptr next; /* next in list of pools */ |
|
size_t bytes_used; /* how many bytes already used within pool */ |
|
size_t bytes_left; /* bytes still available in this pool */ |
|
} large_pool_hdr; |
|
|
|
/* |
|
* Here is the full definition of a memory manager object. |
|
*/ |
|
|
|
typedef struct { |
|
struct jpeg_memory_mgr pub; /* public fields */ |
|
|
|
/* Each pool identifier (lifetime class) names a linked list of pools. */ |
|
small_pool_ptr small_list[JPOOL_NUMPOOLS]; |
|
large_pool_ptr large_list[JPOOL_NUMPOOLS]; |
|
|
|
/* Since we only have one lifetime class of virtual arrays, only one |
|
* linked list is necessary (for each datatype). Note that the virtual |
|
* array control blocks being linked together are actually stored somewhere |
|
* in the small-pool list. |
|
*/ |
|
jvirt_sarray_ptr virt_sarray_list; |
|
jvirt_barray_ptr virt_barray_list; |
|
|
|
/* This counts total space obtained from jpeg_get_small/large */ |
|
size_t total_space_allocated; |
|
|
|
/* alloc_sarray and alloc_barray set this value for use by virtual |
|
* array routines. |
|
*/ |
|
JDIMENSION last_rowsperchunk; /* from most recent alloc_sarray/barray */ |
|
} my_memory_mgr; |
|
|
|
typedef my_memory_mgr *my_mem_ptr; |
|
|
|
|
|
/* |
|
* The control blocks for virtual arrays. |
|
* Note that these blocks are allocated in the "small" pool area. |
|
* System-dependent info for the associated backing store (if any) is hidden |
|
* inside the backing_store_info struct. |
|
*/ |
|
|
|
struct jvirt_sarray_control { |
|
JSAMPARRAY mem_buffer; /* => the in-memory buffer */ |
|
JDIMENSION rows_in_array; /* total virtual array height */ |
|
JDIMENSION samplesperrow; /* width of array (and of memory buffer) */ |
|
JDIMENSION maxaccess; /* max rows accessed by access_virt_sarray */ |
|
JDIMENSION rows_in_mem; /* height of memory buffer */ |
|
JDIMENSION rowsperchunk; /* allocation chunk size in mem_buffer */ |
|
JDIMENSION cur_start_row; /* first logical row # in the buffer */ |
|
JDIMENSION first_undef_row; /* row # of first uninitialized row */ |
|
boolean pre_zero; /* pre-zero mode requested? */ |
|
boolean dirty; /* do current buffer contents need written? */ |
|
boolean b_s_open; /* is backing-store data valid? */ |
|
jvirt_sarray_ptr next; /* link to next virtual sarray control block */ |
|
backing_store_info b_s_info; /* System-dependent control info */ |
|
}; |
|
|
|
struct jvirt_barray_control { |
|
JBLOCKARRAY mem_buffer; /* => the in-memory buffer */ |
|
JDIMENSION rows_in_array; /* total virtual array height */ |
|
JDIMENSION blocksperrow; /* width of array (and of memory buffer) */ |
|
JDIMENSION maxaccess; /* max rows accessed by access_virt_barray */ |
|
JDIMENSION rows_in_mem; /* height of memory buffer */ |
|
JDIMENSION rowsperchunk; /* allocation chunk size in mem_buffer */ |
|
JDIMENSION cur_start_row; /* first logical row # in the buffer */ |
|
JDIMENSION first_undef_row; /* row # of first uninitialized row */ |
|
boolean pre_zero; /* pre-zero mode requested? */ |
|
boolean dirty; /* do current buffer contents need written? */ |
|
boolean b_s_open; /* is backing-store data valid? */ |
|
jvirt_barray_ptr next; /* link to next virtual barray control block */ |
|
backing_store_info b_s_info; /* System-dependent control info */ |
|
}; |
|
|
|
|
|
#ifdef MEM_STATS /* optional extra stuff for statistics */ |
|
|
|
LOCAL(void) |
|
print_mem_stats(j_common_ptr cinfo, int pool_id) |
|
{ |
|
my_mem_ptr mem = (my_mem_ptr)cinfo->mem; |
|
small_pool_ptr shdr_ptr; |
|
large_pool_ptr lhdr_ptr; |
|
|
|
/* Since this is only a debugging stub, we can cheat a little by using |
|
* fprintf directly rather than going through the trace message code. |
|
* This is helpful because message parm array can't handle longs. |
|
*/ |
|
fprintf(stderr, "Freeing pool %d, total space = %ld\n", |
|
pool_id, mem->total_space_allocated); |
|
|
|
for (lhdr_ptr = mem->large_list[pool_id]; lhdr_ptr != NULL; |
|
lhdr_ptr = lhdr_ptr->next) { |
|
fprintf(stderr, " Large chunk used %ld\n", (long)lhdr_ptr->bytes_used); |
|
} |
|
|
|
for (shdr_ptr = mem->small_list[pool_id]; shdr_ptr != NULL; |
|
shdr_ptr = shdr_ptr->next) { |
|
fprintf(stderr, " Small chunk used %ld free %ld\n", |
|
(long)shdr_ptr->bytes_used, (long)shdr_ptr->bytes_left); |
|
} |
|
} |
|
|
|
#endif /* MEM_STATS */ |
|
|
|
|
|
LOCAL(void) |
|
out_of_memory(j_common_ptr cinfo, int which) |
|
/* Report an out-of-memory error and stop execution */ |
|
/* If we compiled MEM_STATS support, report alloc requests before dying */ |
|
{ |
|
#ifdef MEM_STATS |
|
cinfo->err->trace_level = 2; /* force self_destruct to report stats */ |
|
#endif |
|
ERREXIT1(cinfo, JERR_OUT_OF_MEMORY, which); |
|
} |
|
|
|
|
|
/* |
|
* Allocation of "small" objects. |
|
* |
|
* For these, we use pooled storage. When a new pool must be created, |
|
* we try to get enough space for the current request plus a "slop" factor, |
|
* where the slop will be the amount of leftover space in the new pool. |
|
* The speed vs. space tradeoff is largely determined by the slop values. |
|
* A different slop value is provided for each pool class (lifetime), |
|
* and we also distinguish the first pool of a class from later ones. |
|
* NOTE: the values given work fairly well on both 16- and 32-bit-int |
|
* machines, but may be too small if longs are 64 bits or more. |
|
* |
|
* Since we do not know what alignment malloc() gives us, we have to |
|
* allocate ALIGN_SIZE-1 extra space per pool to have room for alignment |
|
* adjustment. |
|
*/ |
|
|
|
static const size_t first_pool_slop[JPOOL_NUMPOOLS] = { |
|
1600, /* first PERMANENT pool */ |
|
16000 /* first IMAGE pool */ |
|
}; |
|
|
|
static const size_t extra_pool_slop[JPOOL_NUMPOOLS] = { |
|
0, /* additional PERMANENT pools */ |
|
5000 /* additional IMAGE pools */ |
|
}; |
|
|
|
#define MIN_SLOP 50 /* greater than 0 to avoid futile looping */ |
|
|
|
|
|
METHODDEF(void *) |
|
alloc_small(j_common_ptr cinfo, int pool_id, size_t sizeofobject) |
|
/* Allocate a "small" object */ |
|
{ |
|
my_mem_ptr mem = (my_mem_ptr)cinfo->mem; |
|
small_pool_ptr hdr_ptr, prev_hdr_ptr; |
|
char *data_ptr; |
|
size_t min_request, slop; |
|
|
|
/* |
|
* Round up the requested size to a multiple of ALIGN_SIZE in order |
|
* to assure alignment for the next object allocated in the same pool |
|
* and so that algorithms can straddle outside the proper area up |
|
* to the next alignment. |
|
*/ |
|
if (sizeofobject > MAX_ALLOC_CHUNK) { |
|
/* This prevents overflow/wrap-around in round_up_pow2() if sizeofobject |
|
is close to SIZE_MAX. */ |
|
out_of_memory(cinfo, 7); |
|
} |
|
sizeofobject = round_up_pow2(sizeofobject, ALIGN_SIZE); |
|
|
|
/* Check for unsatisfiable request (do now to ensure no overflow below) */ |
|
if ((sizeof(small_pool_hdr) + sizeofobject + ALIGN_SIZE - 1) > |
|
MAX_ALLOC_CHUNK) |
|
out_of_memory(cinfo, 1); /* request exceeds malloc's ability */ |
|
|
|
/* See if space is available in any existing pool */ |
|
if (pool_id < 0 || pool_id >= JPOOL_NUMPOOLS) |
|
ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */ |
|
prev_hdr_ptr = NULL; |
|
hdr_ptr = mem->small_list[pool_id]; |
|
while (hdr_ptr != NULL) { |
|
if (hdr_ptr->bytes_left >= sizeofobject) |
|
break; /* found pool with enough space */ |
|
prev_hdr_ptr = hdr_ptr; |
|
hdr_ptr = hdr_ptr->next; |
|
} |
|
|
|
/* Time to make a new pool? */ |
|
if (hdr_ptr == NULL) { |
|
/* min_request is what we need now, slop is what will be leftover */ |
|
min_request = sizeof(small_pool_hdr) + sizeofobject + ALIGN_SIZE - 1; |
|
if (prev_hdr_ptr == NULL) /* first pool in class? */ |
|
slop = first_pool_slop[pool_id]; |
|
else |
|
slop = extra_pool_slop[pool_id]; |
|
/* Don't ask for more than MAX_ALLOC_CHUNK */ |
|
if (slop > (size_t)(MAX_ALLOC_CHUNK - min_request)) |
|
slop = (size_t)(MAX_ALLOC_CHUNK - min_request); |
|
/* Try to get space, if fail reduce slop and try again */ |
|
for (;;) { |
|
hdr_ptr = (small_pool_ptr)jpeg_get_small(cinfo, min_request + slop); |
|
if (hdr_ptr != NULL) |
|
break; |
|
slop /= 2; |
|
if (slop < MIN_SLOP) /* give up when it gets real small */ |
|
out_of_memory(cinfo, 2); /* jpeg_get_small failed */ |
|
} |
|
mem->total_space_allocated += min_request + slop; |
|
/* Success, initialize the new pool header and add to end of list */ |
|
hdr_ptr->next = NULL; |
|
hdr_ptr->bytes_used = 0; |
|
hdr_ptr->bytes_left = sizeofobject + slop; |
|
if (prev_hdr_ptr == NULL) /* first pool in class? */ |
|
mem->small_list[pool_id] = hdr_ptr; |
|
else |
|
prev_hdr_ptr->next = hdr_ptr; |
|
} |
|
|
|
/* OK, allocate the object from the current pool */ |
|
data_ptr = (char *)hdr_ptr; /* point to first data byte in pool... */ |
|
data_ptr += sizeof(small_pool_hdr); /* ...by skipping the header... */ |
|
if ((size_t)data_ptr % ALIGN_SIZE) /* ...and adjust for alignment */ |
|
data_ptr += ALIGN_SIZE - (size_t)data_ptr % ALIGN_SIZE; |
|
data_ptr += hdr_ptr->bytes_used; /* point to place for object */ |
|
hdr_ptr->bytes_used += sizeofobject; |
|
hdr_ptr->bytes_left -= sizeofobject; |
|
|
|
return (void *)data_ptr; |
|
} |
|
|
|
|
|
/* |
|
* Allocation of "large" objects. |
|
* |
|
* The external semantics of these are the same as "small" objects. However, |
|
* the pool management heuristics are quite different. We assume that each |
|
* request is large enough that it may as well be passed directly to |
|
* jpeg_get_large; the pool management just links everything together |
|
* so that we can free it all on demand. |
|
* Note: the major use of "large" objects is in JSAMPARRAY and JBLOCKARRAY |
|
* structures. The routines that create these structures (see below) |
|
* deliberately bunch rows together to ensure a large request size. |
|
*/ |
|
|
|
METHODDEF(void *) |
|
alloc_large(j_common_ptr cinfo, int pool_id, size_t sizeofobject) |
|
/* Allocate a "large" object */ |
|
{ |
|
my_mem_ptr mem = (my_mem_ptr)cinfo->mem; |
|
large_pool_ptr hdr_ptr; |
|
char *data_ptr; |
|
|
|
/* |
|
* Round up the requested size to a multiple of ALIGN_SIZE so that |
|
* algorithms can straddle outside the proper area up to the next |
|
* alignment. |
|
*/ |
|
if (sizeofobject > MAX_ALLOC_CHUNK) { |
|
/* This prevents overflow/wrap-around in round_up_pow2() if sizeofobject |
|
is close to SIZE_MAX. */ |
|
out_of_memory(cinfo, 8); |
|
} |
|
sizeofobject = round_up_pow2(sizeofobject, ALIGN_SIZE); |
|
|
|
/* Check for unsatisfiable request (do now to ensure no overflow below) */ |
|
if ((sizeof(large_pool_hdr) + sizeofobject + ALIGN_SIZE - 1) > |
|
MAX_ALLOC_CHUNK) |
|
out_of_memory(cinfo, 3); /* request exceeds malloc's ability */ |
|
|
|
/* Always make a new pool */ |
|
if (pool_id < 0 || pool_id >= JPOOL_NUMPOOLS) |
|
ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */ |
|
|
|
hdr_ptr = (large_pool_ptr)jpeg_get_large(cinfo, sizeofobject + |
|
sizeof(large_pool_hdr) + |
|
ALIGN_SIZE - 1); |
|
if (hdr_ptr == NULL) |
|
out_of_memory(cinfo, 4); /* jpeg_get_large failed */ |
|
mem->total_space_allocated += sizeofobject + sizeof(large_pool_hdr) + |
|
ALIGN_SIZE - 1; |
|
|
|
/* Success, initialize the new pool header and add to list */ |
|
hdr_ptr->next = mem->large_list[pool_id]; |
|
/* We maintain space counts in each pool header for statistical purposes, |
|
* even though they are not needed for allocation. |
|
*/ |
|
hdr_ptr->bytes_used = sizeofobject; |
|
hdr_ptr->bytes_left = 0; |
|
mem->large_list[pool_id] = hdr_ptr; |
|
|
|
data_ptr = (char *)hdr_ptr; /* point to first data byte in pool... */ |
|
data_ptr += sizeof(small_pool_hdr); /* ...by skipping the header... */ |
|
if ((size_t)data_ptr % ALIGN_SIZE) /* ...and adjust for alignment */ |
|
data_ptr += ALIGN_SIZE - (size_t)data_ptr % ALIGN_SIZE; |
|
|
|
return (void *)data_ptr; |
|
} |
|
|
|
|
|
/* |
|
* Creation of 2-D sample arrays. |
|
* |
|
* To minimize allocation overhead and to allow I/O of large contiguous |
|
* blocks, we allocate the sample rows in groups of as many rows as possible |
|
* without exceeding MAX_ALLOC_CHUNK total bytes per allocation request. |
|
* NB: the virtual array control routines, later in this file, know about |
|
* this chunking of rows. The rowsperchunk value is left in the mem manager |
|
* object so that it can be saved away if this sarray is the workspace for |
|
* a virtual array. |
|
* |
|
* Since we are often upsampling with a factor 2, we align the size (not |
|
* the start) to 2 * ALIGN_SIZE so that the upsampling routines don't have |
|
* to be as careful about size. |
|
*/ |
|
|
|
METHODDEF(JSAMPARRAY) |
|
alloc_sarray(j_common_ptr cinfo, int pool_id, JDIMENSION samplesperrow, |
|
JDIMENSION numrows) |
|
/* Allocate a 2-D sample array */ |
|
{ |
|
my_mem_ptr mem = (my_mem_ptr)cinfo->mem; |
|
JSAMPARRAY result; |
|
JSAMPROW workspace; |
|
JDIMENSION rowsperchunk, currow, i; |
|
long ltemp; |
|
|
|
/* Make sure each row is properly aligned */ |
|
if ((ALIGN_SIZE % sizeof(JSAMPLE)) != 0) |
|
out_of_memory(cinfo, 5); /* safety check */ |
|
|
|
if (samplesperrow > MAX_ALLOC_CHUNK) { |
|
/* This prevents overflow/wrap-around in round_up_pow2() if sizeofobject |
|
is close to SIZE_MAX. */ |
|
out_of_memory(cinfo, 9); |
|
} |
|
samplesperrow = (JDIMENSION)round_up_pow2(samplesperrow, (2 * ALIGN_SIZE) / |
|
sizeof(JSAMPLE)); |
|
|
|
/* Calculate max # of rows allowed in one allocation chunk */ |
|
ltemp = (MAX_ALLOC_CHUNK - sizeof(large_pool_hdr)) / |
|
((long)samplesperrow * sizeof(JSAMPLE)); |
|
if (ltemp <= 0) |
|
ERREXIT(cinfo, JERR_WIDTH_OVERFLOW); |
|
if (ltemp < (long)numrows) |
|
rowsperchunk = (JDIMENSION)ltemp; |
|
else |
|
rowsperchunk = numrows; |
|
mem->last_rowsperchunk = rowsperchunk; |
|
|
|
/* Get space for row pointers (small object) */ |
|
result = (JSAMPARRAY)alloc_small(cinfo, pool_id, |
|
(size_t)(numrows * sizeof(JSAMPROW))); |
|
|
|
/* Get the rows themselves (large objects) */ |
|
currow = 0; |
|
while (currow < numrows) { |
|
rowsperchunk = MIN(rowsperchunk, numrows - currow); |
|
workspace = (JSAMPROW)alloc_large(cinfo, pool_id, |
|
(size_t)((size_t)rowsperchunk * (size_t)samplesperrow * |
|
sizeof(JSAMPLE))); |
|
for (i = rowsperchunk; i > 0; i--) { |
|
result[currow++] = workspace; |
|
workspace += samplesperrow; |
|
} |
|
} |
|
|
|
return result; |
|
} |
|
|
|
|
|
/* |
|
* Creation of 2-D coefficient-block arrays. |
|
* This is essentially the same as the code for sample arrays, above. |
|
*/ |
|
|
|
METHODDEF(JBLOCKARRAY) |
|
alloc_barray(j_common_ptr cinfo, int pool_id, JDIMENSION blocksperrow, |
|
JDIMENSION numrows) |
|
/* Allocate a 2-D coefficient-block array */ |
|
{ |
|
my_mem_ptr mem = (my_mem_ptr)cinfo->mem; |
|
JBLOCKARRAY result; |
|
JBLOCKROW workspace; |
|
JDIMENSION rowsperchunk, currow, i; |
|
long ltemp; |
|
|
|
/* Make sure each row is properly aligned */ |
|
if ((sizeof(JBLOCK) % ALIGN_SIZE) != 0) |
|
out_of_memory(cinfo, 6); /* safety check */ |
|
|
|
/* Calculate max # of rows allowed in one allocation chunk */ |
|
ltemp = (MAX_ALLOC_CHUNK - sizeof(large_pool_hdr)) / |
|
((long)blocksperrow * sizeof(JBLOCK)); |
|
if (ltemp <= 0) |
|
ERREXIT(cinfo, JERR_WIDTH_OVERFLOW); |
|
if (ltemp < (long)numrows) |
|
rowsperchunk = (JDIMENSION)ltemp; |
|
else |
|
rowsperchunk = numrows; |
|
mem->last_rowsperchunk = rowsperchunk; |
|
|
|
/* Get space for row pointers (small object) */ |
|
result = (JBLOCKARRAY)alloc_small(cinfo, pool_id, |
|
(size_t)(numrows * sizeof(JBLOCKROW))); |
|
|
|
/* Get the rows themselves (large objects) */ |
|
currow = 0; |
|
while (currow < numrows) { |
|
rowsperchunk = MIN(rowsperchunk, numrows - currow); |
|
workspace = (JBLOCKROW)alloc_large(cinfo, pool_id, |
|
(size_t)((size_t)rowsperchunk * (size_t)blocksperrow * |
|
sizeof(JBLOCK))); |
|
for (i = rowsperchunk; i > 0; i--) { |
|
result[currow++] = workspace; |
|
workspace += blocksperrow; |
|
} |
|
} |
|
|
|
return result; |
|
} |
|
|
|
|
|
/* |
|
* About virtual array management: |
|
* |
|
* The above "normal" array routines are only used to allocate strip buffers |
|
* (as wide as the image, but just a few rows high). Full-image-sized buffers |
|
* are handled as "virtual" arrays. The array is still accessed a strip at a |
|
* time, but the memory manager must save the whole array for repeated |
|
* accesses. The intended implementation is that there is a strip buffer in |
|
* memory (as high as is possible given the desired memory limit), plus a |
|
* backing file that holds the rest of the array. |
|
* |
|
* The request_virt_array routines are told the total size of the image and |
|
* the maximum number of rows that will be accessed at once. The in-memory |
|
* buffer must be at least as large as the maxaccess value. |
|
* |
|
* The request routines create control blocks but not the in-memory buffers. |
|
* That is postponed until realize_virt_arrays is called. At that time the |
|
* total amount of space needed is known (approximately, anyway), so free |
|
* memory can be divided up fairly. |
|
* |
|
* The access_virt_array routines are responsible for making a specific strip |
|
* area accessible (after reading or writing the backing file, if necessary). |
|
* Note that the access routines are told whether the caller intends to modify |
|
* the accessed strip; during a read-only pass this saves having to rewrite |
|
* data to disk. The access routines are also responsible for pre-zeroing |
|
* any newly accessed rows, if pre-zeroing was requested. |
|
* |
|
* In current usage, the access requests are usually for nonoverlapping |
|
* strips; that is, successive access start_row numbers differ by exactly |
|
* num_rows = maxaccess. This means we can get good performance with simple |
|
* buffer dump/reload logic, by making the in-memory buffer be a multiple |
|
* of the access height; then there will never be accesses across bufferload |
|
* boundaries. The code will still work with overlapping access requests, |
|
* but it doesn't handle bufferload overlaps very efficiently. |
|
*/ |
|
|
|
|
|
METHODDEF(jvirt_sarray_ptr) |
|
request_virt_sarray(j_common_ptr cinfo, int pool_id, boolean pre_zero, |
|
JDIMENSION samplesperrow, JDIMENSION numrows, |
|
JDIMENSION maxaccess) |
|
/* Request a virtual 2-D sample array */ |
|
{ |
|
my_mem_ptr mem = (my_mem_ptr)cinfo->mem; |
|
jvirt_sarray_ptr result; |
|
|
|
/* Only IMAGE-lifetime virtual arrays are currently supported */ |
|
if (pool_id != JPOOL_IMAGE) |
|
ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */ |
|
|
|
/* get control block */ |
|
result = (jvirt_sarray_ptr)alloc_small(cinfo, pool_id, |
|
sizeof(struct jvirt_sarray_control)); |
|
|
|
result->mem_buffer = NULL; /* marks array not yet realized */ |
|
result->rows_in_array = numrows; |
|
result->samplesperrow = samplesperrow; |
|
result->maxaccess = maxaccess; |
|
result->pre_zero = pre_zero; |
|
result->b_s_open = FALSE; /* no associated backing-store object */ |
|
result->next = mem->virt_sarray_list; /* add to list of virtual arrays */ |
|
mem->virt_sarray_list = result; |
|
|
|
return result; |
|
} |
|
|
|
|
|
METHODDEF(jvirt_barray_ptr) |
|
request_virt_barray(j_common_ptr cinfo, int pool_id, boolean pre_zero, |
|
JDIMENSION blocksperrow, JDIMENSION numrows, |
|
JDIMENSION maxaccess) |
|
/* Request a virtual 2-D coefficient-block array */ |
|
{ |
|
my_mem_ptr mem = (my_mem_ptr)cinfo->mem; |
|
jvirt_barray_ptr result; |
|
|
|
/* Only IMAGE-lifetime virtual arrays are currently supported */ |
|
if (pool_id != JPOOL_IMAGE) |
|
ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */ |
|
|
|
/* get control block */ |
|
result = (jvirt_barray_ptr)alloc_small(cinfo, pool_id, |
|
sizeof(struct jvirt_barray_control)); |
|
|
|
result->mem_buffer = NULL; /* marks array not yet realized */ |
|
result->rows_in_array = numrows; |
|
result->blocksperrow = blocksperrow; |
|
result->maxaccess = maxaccess; |
|
result->pre_zero = pre_zero; |
|
result->b_s_open = FALSE; /* no associated backing-store object */ |
|
result->next = mem->virt_barray_list; /* add to list of virtual arrays */ |
|
mem->virt_barray_list = result; |
|
|
|
return result; |
|
} |
|
|
|
|
|
METHODDEF(void) |
|
realize_virt_arrays(j_common_ptr cinfo) |
|
/* Allocate the in-memory buffers for any unrealized virtual arrays */ |
|
{ |
|
my_mem_ptr mem = (my_mem_ptr)cinfo->mem; |
|
size_t space_per_minheight, maximum_space, avail_mem; |
|
size_t minheights, max_minheights; |
|
jvirt_sarray_ptr sptr; |
|
jvirt_barray_ptr bptr; |
|
|
|
/* Compute the minimum space needed (maxaccess rows in each buffer) |
|
* and the maximum space needed (full image height in each buffer). |
|
* These may be of use to the system-dependent jpeg_mem_available routine. |
|
*/ |
|
space_per_minheight = 0; |
|
maximum_space = 0; |
|
for (sptr = mem->virt_sarray_list; sptr != NULL; sptr = sptr->next) { |
|
if (sptr->mem_buffer == NULL) { /* if not realized yet */ |
|
size_t new_space = (long)sptr->rows_in_array * |
|
(long)sptr->samplesperrow * sizeof(JSAMPLE); |
|
|
|
space_per_minheight += (long)sptr->maxaccess * |
|
(long)sptr->samplesperrow * sizeof(JSAMPLE); |
|
if (SIZE_MAX - maximum_space < new_space) |
|
out_of_memory(cinfo, 10); |
|
maximum_space += new_space; |
|
} |
|
} |
|
for (bptr = mem->virt_barray_list; bptr != NULL; bptr = bptr->next) { |
|
if (bptr->mem_buffer == NULL) { /* if not realized yet */ |
|
size_t new_space = (long)bptr->rows_in_array * |
|
(long)bptr->blocksperrow * sizeof(JBLOCK); |
|
|
|
space_per_minheight += (long)bptr->maxaccess * |
|
(long)bptr->blocksperrow * sizeof(JBLOCK); |
|
if (SIZE_MAX - maximum_space < new_space) |
|
out_of_memory(cinfo, 11); |
|
maximum_space += new_space; |
|
} |
|
} |
|
|
|
if (space_per_minheight <= 0) |
|
return; /* no unrealized arrays, no work */ |
|
|
|
/* Determine amount of memory to actually use; this is system-dependent. */ |
|
avail_mem = jpeg_mem_available(cinfo, space_per_minheight, maximum_space, |
|
mem->total_space_allocated); |
|
|
|
/* If the maximum space needed is available, make all the buffers full |
|
* height; otherwise parcel it out with the same number of minheights |
|
* in each buffer. |
|
*/ |
|
if (avail_mem >= maximum_space) |
|
max_minheights = 1000000000L; |
|
else { |
|
max_minheights = avail_mem / space_per_minheight; |
|
/* If there doesn't seem to be enough space, try to get the minimum |
|
* anyway. This allows a "stub" implementation of jpeg_mem_available(). |
|
*/ |
|
if (max_minheights <= 0) |
|
max_minheights = 1; |
|
} |
|
|
|
/* Allocate the in-memory buffers and initialize backing store as needed. */ |
|
|
|
for (sptr = mem->virt_sarray_list; sptr != NULL; sptr = sptr->next) { |
|
if (sptr->mem_buffer == NULL) { /* if not realized yet */ |
|
minheights = ((long)sptr->rows_in_array - 1L) / sptr->maxaccess + 1L; |
|
if (minheights <= max_minheights) { |
|
/* This buffer fits in memory */ |
|
sptr->rows_in_mem = sptr->rows_in_array; |
|
} else { |
|
/* It doesn't fit in memory, create backing store. */ |
|
sptr->rows_in_mem = (JDIMENSION)(max_minheights * sptr->maxaccess); |
|
jpeg_open_backing_store(cinfo, &sptr->b_s_info, |
|
(long)sptr->rows_in_array * |
|
(long)sptr->samplesperrow * |
|
(long)sizeof(JSAMPLE)); |
|
sptr->b_s_open = TRUE; |
|
} |
|
sptr->mem_buffer = alloc_sarray(cinfo, JPOOL_IMAGE, |
|
sptr->samplesperrow, sptr->rows_in_mem); |
|
sptr->rowsperchunk = mem->last_rowsperchunk; |
|
sptr->cur_start_row = 0; |
|
sptr->first_undef_row = 0; |
|
sptr->dirty = FALSE; |
|
} |
|
} |
|
|
|
for (bptr = mem->virt_barray_list; bptr != NULL; bptr = bptr->next) { |
|
if (bptr->mem_buffer == NULL) { /* if not realized yet */ |
|
minheights = ((long)bptr->rows_in_array - 1L) / bptr->maxaccess + 1L; |
|
if (minheights <= max_minheights) { |
|
/* This buffer fits in memory */ |
|
bptr->rows_in_mem = bptr->rows_in_array; |
|
} else { |
|
/* It doesn't fit in memory, create backing store. */ |
|
bptr->rows_in_mem = (JDIMENSION)(max_minheights * bptr->maxaccess); |
|
jpeg_open_backing_store(cinfo, &bptr->b_s_info, |
|
(long)bptr->rows_in_array * |
|
(long)bptr->blocksperrow * |
|
(long)sizeof(JBLOCK)); |
|
bptr->b_s_open = TRUE; |
|
} |
|
bptr->mem_buffer = alloc_barray(cinfo, JPOOL_IMAGE, |
|
bptr->blocksperrow, bptr->rows_in_mem); |
|
bptr->rowsperchunk = mem->last_rowsperchunk; |
|
bptr->cur_start_row = 0; |
|
bptr->first_undef_row = 0; |
|
bptr->dirty = FALSE; |
|
} |
|
} |
|
} |
|
|
|
|
|
LOCAL(void) |
|
do_sarray_io(j_common_ptr cinfo, jvirt_sarray_ptr ptr, boolean writing) |
|
/* Do backing store read or write of a virtual sample array */ |
|
{ |
|
long bytesperrow, file_offset, byte_count, rows, thisrow, i; |
|
|
|
bytesperrow = (long)ptr->samplesperrow * sizeof(JSAMPLE); |
|
file_offset = ptr->cur_start_row * bytesperrow; |
|
/* Loop to read or write each allocation chunk in mem_buffer */ |
|
for (i = 0; i < (long)ptr->rows_in_mem; i += ptr->rowsperchunk) { |
|
/* One chunk, but check for short chunk at end of buffer */ |
|
rows = MIN((long)ptr->rowsperchunk, (long)ptr->rows_in_mem - i); |
|
/* Transfer no more than is currently defined */ |
|
thisrow = (long)ptr->cur_start_row + i; |
|
rows = MIN(rows, (long)ptr->first_undef_row - thisrow); |
|
/* Transfer no more than fits in file */ |
|
rows = MIN(rows, (long)ptr->rows_in_array - thisrow); |
|
if (rows <= 0) /* this chunk might be past end of file! */ |
|
break; |
|
byte_count = rows * bytesperrow; |
|
if (writing) |
|
(*ptr->b_s_info.write_backing_store) (cinfo, &ptr->b_s_info, |
|
(void *)ptr->mem_buffer[i], |
|
file_offset, byte_count); |
|
else |
|
(*ptr->b_s_info.read_backing_store) (cinfo, &ptr->b_s_info, |
|
(void *)ptr->mem_buffer[i], |
|
file_offset, byte_count); |
|
file_offset += byte_count; |
|
} |
|
} |
|
|
|
|
|
LOCAL(void) |
|
do_barray_io(j_common_ptr cinfo, jvirt_barray_ptr ptr, boolean writing) |
|
/* Do backing store read or write of a virtual coefficient-block array */ |
|
{ |
|
long bytesperrow, file_offset, byte_count, rows, thisrow, i; |
|
|
|
bytesperrow = (long)ptr->blocksperrow * sizeof(JBLOCK); |
|
file_offset = ptr->cur_start_row * bytesperrow; |
|
/* Loop to read or write each allocation chunk in mem_buffer */ |
|
for (i = 0; i < (long)ptr->rows_in_mem; i += ptr->rowsperchunk) { |
|
/* One chunk, but check for short chunk at end of buffer */ |
|
rows = MIN((long)ptr->rowsperchunk, (long)ptr->rows_in_mem - i); |
|
/* Transfer no more than is currently defined */ |
|
thisrow = (long)ptr->cur_start_row + i; |
|
rows = MIN(rows, (long)ptr->first_undef_row - thisrow); |
|
/* Transfer no more than fits in file */ |
|
rows = MIN(rows, (long)ptr->rows_in_array - thisrow); |
|
if (rows <= 0) /* this chunk might be past end of file! */ |
|
break; |
|
byte_count = rows * bytesperrow; |
|
if (writing) |
|
(*ptr->b_s_info.write_backing_store) (cinfo, &ptr->b_s_info, |
|
(void *)ptr->mem_buffer[i], |
|
file_offset, byte_count); |
|
else |
|
(*ptr->b_s_info.read_backing_store) (cinfo, &ptr->b_s_info, |
|
(void *)ptr->mem_buffer[i], |
|
file_offset, byte_count); |
|
file_offset += byte_count; |
|
} |
|
} |
|
|
|
|
|
METHODDEF(JSAMPARRAY) |
|
access_virt_sarray(j_common_ptr cinfo, jvirt_sarray_ptr ptr, |
|
JDIMENSION start_row, JDIMENSION num_rows, boolean writable) |
|
/* Access the part of a virtual sample array starting at start_row */ |
|
/* and extending for num_rows rows. writable is true if */ |
|
/* caller intends to modify the accessed area. */ |
|
{ |
|
JDIMENSION end_row = start_row + num_rows; |
|
JDIMENSION undef_row; |
|
|
|
/* debugging check */ |
|
if (end_row > ptr->rows_in_array || num_rows > ptr->maxaccess || |
|
ptr->mem_buffer == NULL) |
|
ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS); |
|
|
|
/* Make the desired part of the virtual array accessible */ |
|
if (start_row < ptr->cur_start_row || |
|
end_row > ptr->cur_start_row + ptr->rows_in_mem) { |
|
if (!ptr->b_s_open) |
|
ERREXIT(cinfo, JERR_VIRTUAL_BUG); |
|
/* Flush old buffer contents if necessary */ |
|
if (ptr->dirty) { |
|
do_sarray_io(cinfo, ptr, TRUE); |
|
ptr->dirty = FALSE; |
|
} |
|
/* Decide what part of virtual array to access. |
|
* Algorithm: if target address > current window, assume forward scan, |
|
* load starting at target address. If target address < current window, |
|
* assume backward scan, load so that target area is top of window. |
|
* Note that when switching from forward write to forward read, will have |
|
* start_row = 0, so the limiting case applies and we load from 0 anyway. |
|
*/ |
|
if (start_row > ptr->cur_start_row) { |
|
ptr->cur_start_row = start_row; |
|
} else { |
|
/* use long arithmetic here to avoid overflow & unsigned problems */ |
|
long ltemp; |
|
|
|
ltemp = (long)end_row - (long)ptr->rows_in_mem; |
|
if (ltemp < 0) |
|
ltemp = 0; /* don't fall off front end of file */ |
|
ptr->cur_start_row = (JDIMENSION)ltemp; |
|
} |
|
/* Read in the selected part of the array. |
|
* During the initial write pass, we will do no actual read |
|
* because the selected part is all undefined. |
|
*/ |
|
do_sarray_io(cinfo, ptr, FALSE); |
|
} |
|
/* Ensure the accessed part of the array is defined; prezero if needed. |
|
* To improve locality of access, we only prezero the part of the array |
|
* that the caller is about to access, not the entire in-memory array. |
|
*/ |
|
if (ptr->first_undef_row < end_row) { |
|
if (ptr->first_undef_row < start_row) { |
|
if (writable) /* writer skipped over a section of array */ |
|
ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS); |
|
undef_row = start_row; /* but reader is allowed to read ahead */ |
|
} else { |
|
undef_row = ptr->first_undef_row; |
|
} |
|
if (writable) |
|
ptr->first_undef_row = end_row; |
|
if (ptr->pre_zero) { |
|
size_t bytesperrow = (size_t)ptr->samplesperrow * sizeof(JSAMPLE); |
|
undef_row -= ptr->cur_start_row; /* make indexes relative to buffer */ |
|
end_row -= ptr->cur_start_row; |
|
while (undef_row < end_row) { |
|
jzero_far((void *)ptr->mem_buffer[undef_row], bytesperrow); |
|
undef_row++; |
|
} |
|
} else { |
|
if (!writable) /* reader looking at undefined data */ |
|
ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS); |
|
} |
|
} |
|
/* Flag the buffer dirty if caller will write in it */ |
|
if (writable) |
|
ptr->dirty = TRUE; |
|
/* Return address of proper part of the buffer */ |
|
return ptr->mem_buffer + (start_row - ptr->cur_start_row); |
|
} |
|
|
|
|
|
METHODDEF(JBLOCKARRAY) |
|
access_virt_barray(j_common_ptr cinfo, jvirt_barray_ptr ptr, |
|
JDIMENSION start_row, JDIMENSION num_rows, boolean writable) |
|
/* Access the part of a virtual block array starting at start_row */ |
|
/* and extending for num_rows rows. writable is true if */ |
|
/* caller intends to modify the accessed area. */ |
|
{ |
|
JDIMENSION end_row = start_row + num_rows; |
|
JDIMENSION undef_row; |
|
|
|
/* debugging check */ |
|
if (end_row > ptr->rows_in_array || num_rows > ptr->maxaccess || |
|
ptr->mem_buffer == NULL) |
|
ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS); |
|
|
|
/* Make the desired part of the virtual array accessible */ |
|
if (start_row < ptr->cur_start_row || |
|
end_row > ptr->cur_start_row + ptr->rows_in_mem) { |
|
if (!ptr->b_s_open) |
|
ERREXIT(cinfo, JERR_VIRTUAL_BUG); |
|
/* Flush old buffer contents if necessary */ |
|
if (ptr->dirty) { |
|
do_barray_io(cinfo, ptr, TRUE); |
|
ptr->dirty = FALSE; |
|
} |
|
/* Decide what part of virtual array to access. |
|
* Algorithm: if target address > current window, assume forward scan, |
|
* load starting at target address. If target address < current window, |
|
* assume backward scan, load so that target area is top of window. |
|
* Note that when switching from forward write to forward read, will have |
|
* start_row = 0, so the limiting case applies and we load from 0 anyway. |
|
*/ |
|
if (start_row > ptr->cur_start_row) { |
|
ptr->cur_start_row = start_row; |
|
} else { |
|
/* use long arithmetic here to avoid overflow & unsigned problems */ |
|
long ltemp; |
|
|
|
ltemp = (long)end_row - (long)ptr->rows_in_mem; |
|
if (ltemp < 0) |
|
ltemp = 0; /* don't fall off front end of file */ |
|
ptr->cur_start_row = (JDIMENSION)ltemp; |
|
} |
|
/* Read in the selected part of the array. |
|
* During the initial write pass, we will do no actual read |
|
* because the selected part is all undefined. |
|
*/ |
|
do_barray_io(cinfo, ptr, FALSE); |
|
} |
|
/* Ensure the accessed part of the array is defined; prezero if needed. |
|
* To improve locality of access, we only prezero the part of the array |
|
* that the caller is about to access, not the entire in-memory array. |
|
*/ |
|
if (ptr->first_undef_row < end_row) { |
|
if (ptr->first_undef_row < start_row) { |
|
if (writable) /* writer skipped over a section of array */ |
|
ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS); |
|
undef_row = start_row; /* but reader is allowed to read ahead */ |
|
} else { |
|
undef_row = ptr->first_undef_row; |
|
} |
|
if (writable) |
|
ptr->first_undef_row = end_row; |
|
if (ptr->pre_zero) { |
|
size_t bytesperrow = (size_t)ptr->blocksperrow * sizeof(JBLOCK); |
|
undef_row -= ptr->cur_start_row; /* make indexes relative to buffer */ |
|
end_row -= ptr->cur_start_row; |
|
while (undef_row < end_row) { |
|
jzero_far((void *)ptr->mem_buffer[undef_row], bytesperrow); |
|
undef_row++; |
|
} |
|
} else { |
|
if (!writable) /* reader looking at undefined data */ |
|
ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS); |
|
} |
|
} |
|
/* Flag the buffer dirty if caller will write in it */ |
|
if (writable) |
|
ptr->dirty = TRUE; |
|
/* Return address of proper part of the buffer */ |
|
return ptr->mem_buffer + (start_row - ptr->cur_start_row); |
|
} |
|
|
|
|
|
/* |
|
* Release all objects belonging to a specified pool. |
|
*/ |
|
|
|
METHODDEF(void) |
|
free_pool(j_common_ptr cinfo, int pool_id) |
|
{ |
|
my_mem_ptr mem = (my_mem_ptr)cinfo->mem; |
|
small_pool_ptr shdr_ptr; |
|
large_pool_ptr lhdr_ptr; |
|
size_t space_freed; |
|
|
|
if (pool_id < 0 || pool_id >= JPOOL_NUMPOOLS) |
|
ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */ |
|
|
|
#ifdef MEM_STATS |
|
if (cinfo->err->trace_level > 1) |
|
print_mem_stats(cinfo, pool_id); /* print pool's memory usage statistics */ |
|
#endif |
|
|
|
/* If freeing IMAGE pool, close any virtual arrays first */ |
|
if (pool_id == JPOOL_IMAGE) { |
|
jvirt_sarray_ptr sptr; |
|
jvirt_barray_ptr bptr; |
|
|
|
for (sptr = mem->virt_sarray_list; sptr != NULL; sptr = sptr->next) { |
|
if (sptr->b_s_open) { /* there may be no backing store */ |
|
sptr->b_s_open = FALSE; /* prevent recursive close if error */ |
|
(*sptr->b_s_info.close_backing_store) (cinfo, &sptr->b_s_info); |
|
} |
|
} |
|
mem->virt_sarray_list = NULL; |
|
for (bptr = mem->virt_barray_list; bptr != NULL; bptr = bptr->next) { |
|
if (bptr->b_s_open) { /* there may be no backing store */ |
|
bptr->b_s_open = FALSE; /* prevent recursive close if error */ |
|
(*bptr->b_s_info.close_backing_store) (cinfo, &bptr->b_s_info); |
|
} |
|
} |
|
mem->virt_barray_list = NULL; |
|
} |
|
|
|
/* Release large objects */ |
|
lhdr_ptr = mem->large_list[pool_id]; |
|
mem->large_list[pool_id] = NULL; |
|
|
|
while (lhdr_ptr != NULL) { |
|
large_pool_ptr next_lhdr_ptr = lhdr_ptr->next; |
|
space_freed = lhdr_ptr->bytes_used + |
|
lhdr_ptr->bytes_left + |
|
sizeof(large_pool_hdr) + ALIGN_SIZE - 1; |
|
jpeg_free_large(cinfo, (void *)lhdr_ptr, space_freed); |
|
mem->total_space_allocated -= space_freed; |
|
lhdr_ptr = next_lhdr_ptr; |
|
} |
|
|
|
/* Release small objects */ |
|
shdr_ptr = mem->small_list[pool_id]; |
|
mem->small_list[pool_id] = NULL; |
|
|
|
while (shdr_ptr != NULL) { |
|
small_pool_ptr next_shdr_ptr = shdr_ptr->next; |
|
space_freed = shdr_ptr->bytes_used + shdr_ptr->bytes_left + |
|
sizeof(small_pool_hdr) + ALIGN_SIZE - 1; |
|
jpeg_free_small(cinfo, (void *)shdr_ptr, space_freed); |
|
mem->total_space_allocated -= space_freed; |
|
shdr_ptr = next_shdr_ptr; |
|
} |
|
} |
|
|
|
|
|
/* |
|
* Close up shop entirely. |
|
* Note that this cannot be called unless cinfo->mem is non-NULL. |
|
*/ |
|
|
|
METHODDEF(void) |
|
self_destruct(j_common_ptr cinfo) |
|
{ |
|
int pool; |
|
|
|
/* Close all backing store, release all memory. |
|
* Releasing pools in reverse order might help avoid fragmentation |
|
* with some (brain-damaged) malloc libraries. |
|
*/ |
|
for (pool = JPOOL_NUMPOOLS - 1; pool >= JPOOL_PERMANENT; pool--) { |
|
free_pool(cinfo, pool); |
|
} |
|
|
|
/* Release the memory manager control block too. */ |
|
jpeg_free_small(cinfo, (void *)cinfo->mem, sizeof(my_memory_mgr)); |
|
cinfo->mem = NULL; /* ensures I will be called only once */ |
|
|
|
jpeg_mem_term(cinfo); /* system-dependent cleanup */ |
|
} |
|
|
|
|
|
/* |
|
* Memory manager initialization. |
|
* When this is called, only the error manager pointer is valid in cinfo! |
|
*/ |
|
|
|
GLOBAL(void) |
|
jinit_memory_mgr(j_common_ptr cinfo) |
|
{ |
|
my_mem_ptr mem; |
|
long max_to_use; |
|
int pool; |
|
size_t test_mac; |
|
|
|
cinfo->mem = NULL; /* for safety if init fails */ |
|
|
|
/* Check for configuration errors. |
|
* sizeof(ALIGN_TYPE) should be a power of 2; otherwise, it probably |
|
* doesn't reflect any real hardware alignment requirement. |
|
* The test is a little tricky: for X>0, X and X-1 have no one-bits |
|
* in common if and only if X is a power of 2, ie has only one one-bit. |
|
* Some compilers may give an "unreachable code" warning here; ignore it. |
|
*/ |
|
if ((ALIGN_SIZE & (ALIGN_SIZE - 1)) != 0) |
|
ERREXIT(cinfo, JERR_BAD_ALIGN_TYPE); |
|
/* MAX_ALLOC_CHUNK must be representable as type size_t, and must be |
|
* a multiple of ALIGN_SIZE. |
|
* Again, an "unreachable code" warning may be ignored here. |
|
* But a "constant too large" warning means you need to fix MAX_ALLOC_CHUNK. |
|
*/ |
|
test_mac = (size_t)MAX_ALLOC_CHUNK; |
|
if ((long)test_mac != MAX_ALLOC_CHUNK || |
|
(MAX_ALLOC_CHUNK % ALIGN_SIZE) != 0) |
|
ERREXIT(cinfo, JERR_BAD_ALLOC_CHUNK); |
|
|
|
max_to_use = jpeg_mem_init(cinfo); /* system-dependent initialization */ |
|
|
|
/* Attempt to allocate memory manager's control block */ |
|
mem = (my_mem_ptr)jpeg_get_small(cinfo, sizeof(my_memory_mgr)); |
|
|
|
if (mem == NULL) { |
|
jpeg_mem_term(cinfo); /* system-dependent cleanup */ |
|
ERREXIT1(cinfo, JERR_OUT_OF_MEMORY, 0); |
|
} |
|
|
|
/* OK, fill in the method pointers */ |
|
mem->pub.alloc_small = alloc_small; |
|
mem->pub.alloc_large = alloc_large; |
|
mem->pub.alloc_sarray = alloc_sarray; |
|
mem->pub.alloc_barray = alloc_barray; |
|
mem->pub.request_virt_sarray = request_virt_sarray; |
|
mem->pub.request_virt_barray = request_virt_barray; |
|
mem->pub.realize_virt_arrays = realize_virt_arrays; |
|
mem->pub.access_virt_sarray = access_virt_sarray; |
|
mem->pub.access_virt_barray = access_virt_barray; |
|
mem->pub.free_pool = free_pool; |
|
mem->pub.self_destruct = self_destruct; |
|
|
|
/* Make MAX_ALLOC_CHUNK accessible to other modules */ |
|
mem->pub.max_alloc_chunk = MAX_ALLOC_CHUNK; |
|
|
|
/* Initialize working state */ |
|
mem->pub.max_memory_to_use = max_to_use; |
|
|
|
for (pool = JPOOL_NUMPOOLS - 1; pool >= JPOOL_PERMANENT; pool--) { |
|
mem->small_list[pool] = NULL; |
|
mem->large_list[pool] = NULL; |
|
} |
|
mem->virt_sarray_list = NULL; |
|
mem->virt_barray_list = NULL; |
|
|
|
mem->total_space_allocated = sizeof(my_memory_mgr); |
|
|
|
/* Declare ourselves open for business */ |
|
cinfo->mem = &mem->pub; |
|
|
|
/* Check for an environment variable JPEGMEM; if found, override the |
|
* default max_memory setting from jpeg_mem_init. Note that the |
|
* surrounding application may again override this value. |
|
* If your system doesn't support getenv(), define NO_GETENV to disable |
|
* this feature. |
|
*/ |
|
#ifndef NO_GETENV |
|
{ |
|
char memenv[30] = { 0 }; |
|
|
|
if (!GETENV_S(memenv, 30, "JPEGMEM") && strlen(memenv) > 0) { |
|
char ch = 'x'; |
|
|
|
#ifdef _MSC_VER |
|
if (sscanf_s(memenv, "%ld%c", &max_to_use, &ch, 1) > 0) { |
|
#else |
|
if (sscanf(memenv, "%ld%c", &max_to_use, &ch) > 0) { |
|
#endif |
|
if (ch == 'm' || ch == 'M') |
|
max_to_use *= 1000L; |
|
mem->pub.max_memory_to_use = max_to_use * 1000L; |
|
} |
|
} |
|
} |
|
#endif |
|
|
|
}
|
|
|