mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1915 lines
60 KiB
1915 lines
60 KiB
/*M/////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// |
|
// Intel License Agreement |
|
// For Open Source Computer Vision Library |
|
// |
|
// Copyright (C) 2000, Intel Corporation, all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
// |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistribution's of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistribution's in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other materials provided with the distribution. |
|
// |
|
// * The name of Intel Corporation may not be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors "as is" and |
|
// any express or implied warranties, including, but not limited to, the implied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall the Intel Corporation or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
// |
|
//M*/ |
|
|
|
#include "test_precomp.hpp" |
|
|
|
namespace opencv_test { namespace { |
|
|
|
CV_INLINE double |
|
cvTsDist( const Point2f& a, const Point2f& b ) |
|
{ |
|
double dx = a.x - b.x; |
|
double dy = a.y - b.y; |
|
return sqrt(dx*dx + dy*dy); |
|
} |
|
|
|
CV_INLINE double |
|
cvTsPtLineDist( const Point2f& pt, const Point2f& a, const Point2f& b ) |
|
{ |
|
double d0 = cvTsDist( pt, a ), d1; |
|
double dd = cvTsDist( a, b ); |
|
if( dd < FLT_EPSILON ) |
|
return d0; |
|
d1 = cvTsDist( pt, b ); |
|
dd = fabs((double)(pt.x - a.x)*(b.y - a.y) - (double)(pt.y - a.y)*(b.x - a.x))/dd; |
|
d0 = MIN( d0, d1 ); |
|
return MIN( d0, dd ); |
|
} |
|
|
|
static double |
|
cvTsPointPolygonTest( Point2f pt, const Point2f* vv, int n, int* _idx=0, int* _on_edge=0 ) |
|
{ |
|
int i; |
|
Point2f v = vv[n-1], v0; |
|
double min_dist_num = FLT_MAX, min_dist_denom = 1; |
|
int min_dist_idx = -1, min_on_edge = 0; |
|
int counter = 0; |
|
double result; |
|
|
|
for( i = 0; i < n; i++ ) |
|
{ |
|
double dx, dy, dx1, dy1, dx2, dy2, dist_num, dist_denom = 1; |
|
int on_edge = 0, idx = i; |
|
|
|
v0 = v; v = vv[i]; |
|
dx = v.x - v0.x; dy = v.y - v0.y; |
|
dx1 = pt.x - v0.x; dy1 = pt.y - v0.y; |
|
dx2 = pt.x - v.x; dy2 = pt.y - v.y; |
|
|
|
if( dx2*dx + dy2*dy >= 0 ) |
|
dist_num = dx2*dx2 + dy2*dy2; |
|
else if( dx1*dx + dy1*dy <= 0 ) |
|
{ |
|
dist_num = dx1*dx1 + dy1*dy1; |
|
idx = i - 1; |
|
if( idx < 0 ) idx = n-1; |
|
} |
|
else |
|
{ |
|
dist_num = (dy1*dx - dx1*dy); |
|
dist_num *= dist_num; |
|
dist_denom = dx*dx + dy*dy; |
|
on_edge = 1; |
|
} |
|
|
|
if( dist_num*min_dist_denom < min_dist_num*dist_denom ) |
|
{ |
|
min_dist_num = dist_num; |
|
min_dist_denom = dist_denom; |
|
min_dist_idx = idx; |
|
min_on_edge = on_edge; |
|
if( min_dist_num == 0 ) |
|
break; |
|
} |
|
|
|
if( (v0.y <= pt.y && v.y <= pt.y) || |
|
(v0.y > pt.y && v.y > pt.y) || |
|
(v0.x < pt.x && v.x < pt.x) ) |
|
continue; |
|
|
|
dist_num = dy1*dx - dx1*dy; |
|
if( dy < 0 ) |
|
dist_num = -dist_num; |
|
counter += dist_num > 0; |
|
} |
|
|
|
result = sqrt(min_dist_num/min_dist_denom); |
|
if( counter % 2 == 0 ) |
|
result = -result; |
|
|
|
if( _idx ) |
|
*_idx = min_dist_idx; |
|
if( _on_edge ) |
|
*_on_edge = min_on_edge; |
|
|
|
return result; |
|
} |
|
|
|
static cv::Point2f |
|
cvTsMiddlePoint(const cv::Point2f &a, const cv::Point2f &b) |
|
{ |
|
return cv::Point2f((a.x + b.x) / 2, (a.y + b.y) / 2); |
|
} |
|
|
|
static bool |
|
cvTsIsPointOnLineSegment(const cv::Point2f &x, const cv::Point2f &a, const cv::Point2f &b) |
|
{ |
|
double d1 = cvTsDist(x, a); |
|
double d2 = cvTsDist(x, b); |
|
double d3 = cvTsDist(a, b); |
|
|
|
return (abs(d1 + d2 - d3) <= (1E-4)); |
|
} |
|
|
|
|
|
/****************************************************************************************\ |
|
* Base class for shape descriptor tests * |
|
\****************************************************************************************/ |
|
|
|
class CV_BaseShapeDescrTest : public cvtest::BaseTest |
|
{ |
|
public: |
|
CV_BaseShapeDescrTest(); |
|
virtual ~CV_BaseShapeDescrTest(); |
|
void clear(); |
|
|
|
protected: |
|
int read_params( const cv::FileStorage& fs ); |
|
void run_func(void); |
|
int prepare_test_case( int test_case_idx ); |
|
int validate_test_results( int test_case_idx ); |
|
virtual void generate_point_set( void* points ); |
|
virtual void extract_points(); |
|
|
|
int min_log_size; |
|
int max_log_size; |
|
int dims; |
|
bool enable_flt_points; |
|
|
|
CvSeq* points1; |
|
CvMat* points2; |
|
void* points; |
|
void* result; |
|
double low_high_range; |
|
Scalar low, high; |
|
}; |
|
|
|
|
|
CV_BaseShapeDescrTest::CV_BaseShapeDescrTest() |
|
{ |
|
points1 = 0; |
|
points2 = 0; |
|
points = 0; |
|
test_case_count = 500; |
|
min_log_size = 0; |
|
max_log_size = 10; |
|
low = high = cvScalarAll(0); |
|
low_high_range = 50; |
|
dims = 2; |
|
enable_flt_points = true; |
|
} |
|
|
|
|
|
CV_BaseShapeDescrTest::~CV_BaseShapeDescrTest() |
|
{ |
|
clear(); |
|
} |
|
|
|
|
|
void CV_BaseShapeDescrTest::clear() |
|
{ |
|
cvtest::BaseTest::clear(); |
|
cvReleaseMat( &points2 ); |
|
points1 = 0; |
|
points = 0; |
|
} |
|
|
|
|
|
int CV_BaseShapeDescrTest::read_params( const cv::FileStorage& fs ) |
|
{ |
|
int code = cvtest::BaseTest::read_params( fs ); |
|
if( code < 0 ) |
|
return code; |
|
|
|
read( find_param( fs, "struct_count" ), test_case_count, test_case_count ); |
|
read( find_param( fs, "min_log_size" ), min_log_size, min_log_size ); |
|
read( find_param( fs, "max_log_size" ), max_log_size, max_log_size ); |
|
|
|
min_log_size = cvtest::clipInt( min_log_size, 0, 8 ); |
|
max_log_size = cvtest::clipInt( max_log_size, 0, 10 ); |
|
if( min_log_size > max_log_size ) |
|
{ |
|
int t; |
|
CV_SWAP( min_log_size, max_log_size, t ); |
|
} |
|
|
|
return 0; |
|
} |
|
|
|
|
|
void CV_BaseShapeDescrTest::generate_point_set( void* pointsSet ) |
|
{ |
|
RNG& rng = ts->get_rng(); |
|
int i, k, n, total, point_type; |
|
CvSeqReader reader; |
|
uchar* data = 0; |
|
double a[4], b[4]; |
|
|
|
for( k = 0; k < 4; k++ ) |
|
{ |
|
a[k] = high.val[k] - low.val[k]; |
|
b[k] = low.val[k]; |
|
} |
|
memset( &reader, 0, sizeof(reader) ); |
|
|
|
if( CV_IS_SEQ(pointsSet) ) |
|
{ |
|
CvSeq* ptseq = (CvSeq*)pointsSet; |
|
total = ptseq->total; |
|
point_type = CV_SEQ_ELTYPE(ptseq); |
|
cvStartReadSeq( ptseq, &reader ); |
|
} |
|
else |
|
{ |
|
CvMat* ptm = (CvMat*)pointsSet; |
|
CV_Assert( CV_IS_MAT(ptm) && CV_IS_MAT_CONT(ptm->type) ); |
|
total = ptm->rows + ptm->cols - 1; |
|
point_type = CV_MAT_TYPE(ptm->type); |
|
data = ptm->data.ptr; |
|
} |
|
|
|
n = CV_MAT_CN(point_type); |
|
point_type = CV_MAT_DEPTH(point_type); |
|
|
|
CV_Assert( (point_type == CV_32S || point_type == CV_32F) && n <= 4 ); |
|
|
|
for( i = 0; i < total; i++ ) |
|
{ |
|
int* pi; |
|
float* pf; |
|
if( reader.ptr ) |
|
{ |
|
pi = (int*)reader.ptr; |
|
pf = (float*)reader.ptr; |
|
CV_NEXT_SEQ_ELEM( reader.seq->elem_size, reader ); |
|
} |
|
else |
|
{ |
|
pi = (int*)data + i*n; |
|
pf = (float*)data + i*n; |
|
} |
|
if( point_type == CV_32S ) |
|
for( k = 0; k < n; k++ ) |
|
pi[k] = cvRound(cvtest::randReal(rng)*a[k] + b[k]); |
|
else |
|
for( k = 0; k < n; k++ ) |
|
pf[k] = (float)(cvtest::randReal(rng)*a[k] + b[k]); |
|
} |
|
} |
|
|
|
|
|
int CV_BaseShapeDescrTest::prepare_test_case( int test_case_idx ) |
|
{ |
|
int size; |
|
int point_type; |
|
int i; |
|
RNG& rng = ts->get_rng(); |
|
|
|
cvtest::BaseTest::prepare_test_case( test_case_idx ); |
|
|
|
clear(); |
|
size = cvRound( exp((cvtest::randReal(rng) * (max_log_size - min_log_size) + min_log_size)*CV_LOG2) ); |
|
point_type = CV_MAKETYPE(cvtest::randInt(rng) % |
|
(enable_flt_points ? 2 : 1) ? CV_32F : CV_32S, dims); |
|
|
|
int rows = 1, cols = size; |
|
if( cvtest::randInt(rng) % 2 ) |
|
rows = size, cols = 1; |
|
|
|
points2 = cvCreateMat( rows, cols, point_type ); |
|
points = points2; |
|
|
|
for( i = 0; i < 4; i++ ) |
|
{ |
|
low.val[i] = (cvtest::randReal(rng)-0.5)*low_high_range*2; |
|
high.val[i] = (cvtest::randReal(rng)-0.5)*low_high_range*2; |
|
if( low.val[i] > high.val[i] ) |
|
{ |
|
double t; |
|
CV_SWAP( low.val[i], high.val[i], t ); |
|
} |
|
if( high.val[i] < low.val[i] + 1 ) |
|
high.val[i] += 1; |
|
} |
|
|
|
generate_point_set( points ); |
|
return 1; |
|
} |
|
|
|
|
|
void CV_BaseShapeDescrTest::extract_points() |
|
{ |
|
if( points1 ) |
|
{ |
|
points2 = cvCreateMat( 1, points1->total, CV_SEQ_ELTYPE(points1) ); |
|
cvCvtSeqToArray( points1, points2->data.ptr ); |
|
} |
|
|
|
if( CV_MAT_DEPTH(points2->type) != CV_32F && enable_flt_points ) |
|
{ |
|
CvMat tmp = cvMat( points2->rows, points2->cols, |
|
(points2->type & ~CV_MAT_DEPTH_MASK) | CV_32F, points2->data.ptr ); |
|
cvConvert( points2, &tmp ); |
|
} |
|
} |
|
|
|
|
|
void CV_BaseShapeDescrTest::run_func(void) |
|
{ |
|
} |
|
|
|
|
|
int CV_BaseShapeDescrTest::validate_test_results( int /*test_case_idx*/ ) |
|
{ |
|
extract_points(); |
|
return 0; |
|
} |
|
|
|
|
|
/****************************************************************************************\ |
|
* Convex Hull Test * |
|
\****************************************************************************************/ |
|
|
|
class CV_ConvHullTest : public CV_BaseShapeDescrTest |
|
{ |
|
public: |
|
CV_ConvHullTest(); |
|
virtual ~CV_ConvHullTest(); |
|
void clear(); |
|
|
|
protected: |
|
void run_func(void); |
|
int prepare_test_case( int test_case_idx ); |
|
int validate_test_results( int test_case_idx ); |
|
|
|
CvSeq* hull1; |
|
CvMat* hull2; |
|
bool clockwise; |
|
int return_points; |
|
}; |
|
|
|
|
|
CV_ConvHullTest::CV_ConvHullTest() |
|
{ |
|
hull1 = 0; |
|
hull2 = 0; |
|
return_points = 0; |
|
clockwise = false; |
|
} |
|
|
|
|
|
CV_ConvHullTest::~CV_ConvHullTest() |
|
{ |
|
clear(); |
|
} |
|
|
|
|
|
void CV_ConvHullTest::clear() |
|
{ |
|
CV_BaseShapeDescrTest::clear(); |
|
cvReleaseMat( &hull2 ); |
|
hull1 = 0; |
|
} |
|
|
|
|
|
int CV_ConvHullTest::prepare_test_case( int test_case_idx ) |
|
{ |
|
int code = CV_BaseShapeDescrTest::prepare_test_case( test_case_idx ); |
|
RNG& rng = ts->get_rng(); |
|
|
|
if( code <= 0 ) |
|
return code; |
|
|
|
clockwise = cvtest::randInt(rng) % 2 != 0; |
|
return_points = cvtest::randInt(rng) % 2; |
|
|
|
int rows, cols; |
|
int sz = points1 ? points1->total : points2->cols + points2->rows - 1; |
|
int point_type = points1 ? CV_SEQ_ELTYPE(points1) : CV_MAT_TYPE(points2->type); |
|
|
|
if( cvtest::randInt(rng) % 2 ) |
|
rows = sz, cols = 1; |
|
else |
|
rows = 1, cols = sz; |
|
|
|
hull2 = cvCreateMat( rows, cols, return_points ? point_type : CV_32SC1 ); |
|
|
|
return code; |
|
} |
|
|
|
|
|
void CV_ConvHullTest::run_func() |
|
{ |
|
cv::Mat _points = cv::cvarrToMat(points); |
|
size_t n = 0; |
|
if( !return_points ) |
|
{ |
|
std::vector<int> _hull; |
|
cv::convexHull(_points, _hull, clockwise); |
|
n = _hull.size(); |
|
memcpy(hull2->data.ptr, &_hull[0], n*sizeof(_hull[0])); |
|
} |
|
else if(_points.type() == CV_32SC2) |
|
{ |
|
std::vector<cv::Point> _hull; |
|
cv::convexHull(_points, _hull, clockwise); |
|
n = _hull.size(); |
|
memcpy(hull2->data.ptr, &_hull[0], n*sizeof(_hull[0])); |
|
} |
|
else if(_points.type() == CV_32FC2) |
|
{ |
|
std::vector<cv::Point2f> _hull; |
|
cv::convexHull(_points, _hull, clockwise); |
|
n = _hull.size(); |
|
memcpy(hull2->data.ptr, &_hull[0], n*sizeof(_hull[0])); |
|
} |
|
if(hull2->rows > hull2->cols) |
|
hull2->rows = (int)n; |
|
else |
|
hull2->cols = (int)n; |
|
} |
|
|
|
|
|
int CV_ConvHullTest::validate_test_results( int test_case_idx ) |
|
{ |
|
int code = CV_BaseShapeDescrTest::validate_test_results( test_case_idx ); |
|
CvMat* hull = 0; |
|
CvMat* mask = 0; |
|
int i, point_count, hull_count; |
|
Point2f *p, *h; |
|
CvSeq header, hheader, *ptseq, *hseq; |
|
CvSeqBlock block, hblock; |
|
|
|
if( points1 ) |
|
ptseq = points1; |
|
else |
|
ptseq = cvMakeSeqHeaderForArray( CV_MAT_TYPE(points2->type), |
|
sizeof(CvSeq), CV_ELEM_SIZE(points2->type), points2->data.ptr, |
|
points2->rows + points2->cols - 1, &header, &block ); |
|
point_count = ptseq->total; |
|
p = (Point2f*)(points2->data.ptr); |
|
|
|
if( hull1 ) |
|
hseq = hull1; |
|
else |
|
hseq = cvMakeSeqHeaderForArray( CV_MAT_TYPE(hull2->type), |
|
sizeof(CvSeq), CV_ELEM_SIZE(hull2->type), hull2->data.ptr, |
|
hull2->rows + hull2->cols - 1, &hheader, &hblock ); |
|
hull_count = hseq->total; |
|
hull = cvCreateMat( 1, hull_count, CV_32FC2 ); |
|
mask = cvCreateMat( 1, hull_count, CV_8UC1 ); |
|
cvZero( mask ); |
|
Mat _mask = cvarrToMat(mask); |
|
|
|
h = (Point2f*)(hull->data.ptr); |
|
|
|
// extract convex hull points |
|
if( return_points ) |
|
{ |
|
cvCvtSeqToArray( hseq, hull->data.ptr ); |
|
if( CV_SEQ_ELTYPE(hseq) != CV_32FC2 ) |
|
{ |
|
CvMat tmp = cvMat( hull->rows, hull->cols, CV_32SC2, hull->data.ptr ); |
|
cvConvert( &tmp, hull ); |
|
} |
|
} |
|
else |
|
{ |
|
CvSeqReader reader; |
|
cvStartReadSeq( hseq, &reader ); |
|
|
|
for( i = 0; i < hull_count; i++ ) |
|
{ |
|
schar* ptr = reader.ptr; |
|
int idx; |
|
CV_NEXT_SEQ_ELEM( hseq->elem_size, reader ); |
|
|
|
if( hull1 ) |
|
idx = cvSeqElemIdx( ptseq, *(uchar**)ptr ); |
|
else |
|
idx = *(int*)ptr; |
|
|
|
if( idx < 0 || idx >= point_count ) |
|
{ |
|
ts->printf( cvtest::TS::LOG, "Invalid convex hull point #%d\n", i ); |
|
code = cvtest::TS::FAIL_INVALID_OUTPUT; |
|
goto _exit_; |
|
} |
|
h[i] = p[idx]; |
|
} |
|
} |
|
|
|
// check that the convex hull is a convex polygon |
|
if( hull_count >= 3 ) |
|
{ |
|
Point2f pt0 = h[hull_count-1]; |
|
for( i = 0; i < hull_count; i++ ) |
|
{ |
|
int j = i+1; |
|
Point2f pt1 = h[i], pt2 = h[j < hull_count ? j : 0]; |
|
float dx0 = pt1.x - pt0.x, dy0 = pt1.y - pt0.y; |
|
float dx1 = pt2.x - pt1.x, dy1 = pt2.y - pt1.y; |
|
double t = (double)dx0*dy1 - (double)dx1*dy0; |
|
if( (t < 0) ^ clockwise ) |
|
{ |
|
ts->printf( cvtest::TS::LOG, "The convex hull is not convex or has a wrong orientation (vtx %d)\n", i ); |
|
code = cvtest::TS::FAIL_INVALID_OUTPUT; |
|
goto _exit_; |
|
} |
|
pt0 = pt1; |
|
} |
|
} |
|
|
|
// check that all the points are inside the hull or on the hull edge |
|
// and at least hull_point points are at the hull vertices |
|
for( i = 0; i < point_count; i++ ) |
|
{ |
|
int idx = 0, on_edge = 0; |
|
double pptresult = cvTsPointPolygonTest( p[i], h, hull_count, &idx, &on_edge ); |
|
|
|
if( pptresult < 0 ) |
|
{ |
|
ts->printf( cvtest::TS::LOG, "The point #%d is outside of the convex hull\n", i ); |
|
code = cvtest::TS::FAIL_BAD_ACCURACY; |
|
goto _exit_; |
|
} |
|
|
|
if( pptresult < FLT_EPSILON && !on_edge ) |
|
mask->data.ptr[idx] = (uchar)1; |
|
} |
|
|
|
if( cvtest::norm( _mask, Mat::zeros(_mask.dims, _mask.size, _mask.type()), NORM_L1 ) != hull_count ) |
|
{ |
|
ts->printf( cvtest::TS::LOG, "Not every convex hull vertex coincides with some input point\n" ); |
|
code = cvtest::TS::FAIL_BAD_ACCURACY; |
|
goto _exit_; |
|
} |
|
|
|
_exit_: |
|
|
|
cvReleaseMat( &hull ); |
|
cvReleaseMat( &mask ); |
|
if( code < 0 ) |
|
ts->set_failed_test_info( code ); |
|
return code; |
|
} |
|
|
|
|
|
/****************************************************************************************\ |
|
* MinAreaRect Test * |
|
\****************************************************************************************/ |
|
|
|
class CV_MinAreaRectTest : public CV_BaseShapeDescrTest |
|
{ |
|
public: |
|
CV_MinAreaRectTest(); |
|
|
|
protected: |
|
void run_func(void); |
|
int validate_test_results( int test_case_idx ); |
|
|
|
Point2f box_pt[4]; |
|
}; |
|
|
|
|
|
CV_MinAreaRectTest::CV_MinAreaRectTest() |
|
{ |
|
} |
|
|
|
|
|
void CV_MinAreaRectTest::run_func() |
|
{ |
|
cv::RotatedRect r = cv::minAreaRect(cv::cvarrToMat(points)); |
|
r.points(box_pt); |
|
} |
|
|
|
|
|
int CV_MinAreaRectTest::validate_test_results( int test_case_idx ) |
|
{ |
|
double eps = 1e-1; |
|
int code = CV_BaseShapeDescrTest::validate_test_results( test_case_idx ); |
|
int i, j, point_count = points2->rows + points2->cols - 1; |
|
CvPoint2D32f *p = (CvPoint2D32f*)(points2->data.ptr); |
|
int mask[] = {0,0,0,0}; |
|
|
|
// check that the bounding box is a rotated rectangle: |
|
// 1. diagonals should be equal |
|
// 2. they must intersect in their middle points |
|
{ |
|
double d0 = cvTsDist( box_pt[0], box_pt[2] ); |
|
double d1 = cvTsDist( box_pt[1], box_pt[3] ); |
|
|
|
double x0 = (box_pt[0].x + box_pt[2].x)*0.5; |
|
double y0 = (box_pt[0].y + box_pt[2].y)*0.5; |
|
double x1 = (box_pt[1].x + box_pt[3].x)*0.5; |
|
double y1 = (box_pt[1].y + box_pt[3].y)*0.5; |
|
|
|
if( fabs(d0 - d1) + fabs(x0 - x1) + fabs(y0 - y1) > eps*MAX(d0,d1) ) |
|
{ |
|
ts->printf( cvtest::TS::LOG, "The bounding box is not a rectangle\n" ); |
|
code = cvtest::TS::FAIL_INVALID_OUTPUT; |
|
goto _exit_; |
|
} |
|
} |
|
|
|
// check that the box includes all the points |
|
// and there is at least one point at (or very close to) every box side |
|
for( i = 0; i < point_count; i++ ) |
|
{ |
|
int idx = 0, on_edge = 0; |
|
double pptresult = cvTsPointPolygonTest( p[i], box_pt, 4, &idx, &on_edge ); |
|
if( pptresult < -eps ) |
|
{ |
|
ts->printf( cvtest::TS::LOG, "The point #%d is outside of the box\n", i ); |
|
code = cvtest::TS::FAIL_BAD_ACCURACY; |
|
goto _exit_; |
|
} |
|
|
|
if( pptresult < eps ) |
|
{ |
|
for( j = 0; j < 4; j++ ) |
|
{ |
|
double d = cvTsPtLineDist( p[i], box_pt[(j-1)&3], box_pt[j] ); |
|
if( d < eps ) |
|
mask[j] = (uchar)1; |
|
} |
|
} |
|
} |
|
|
|
if( mask[0] + mask[1] + mask[2] + mask[3] != 4 ) |
|
{ |
|
ts->printf( cvtest::TS::LOG, "Not every box side has a point nearby\n" ); |
|
code = cvtest::TS::FAIL_BAD_ACCURACY; |
|
goto _exit_; |
|
} |
|
|
|
_exit_: |
|
|
|
if( code < 0 ) |
|
ts->set_failed_test_info( code ); |
|
return code; |
|
} |
|
|
|
|
|
/****************************************************************************************\ |
|
* MinEnclosingTriangle Test * |
|
\****************************************************************************************/ |
|
|
|
class CV_MinTriangleTest : public CV_BaseShapeDescrTest |
|
{ |
|
public: |
|
CV_MinTriangleTest(); |
|
|
|
protected: |
|
void run_func(void); |
|
int validate_test_results( int test_case_idx ); |
|
std::vector<cv::Point2f> getTriangleMiddlePoints(); |
|
|
|
std::vector<cv::Point2f> convexPolygon; |
|
std::vector<cv::Point2f> triangle; |
|
}; |
|
|
|
|
|
CV_MinTriangleTest::CV_MinTriangleTest() |
|
{ |
|
} |
|
|
|
std::vector<cv::Point2f> CV_MinTriangleTest::getTriangleMiddlePoints() |
|
{ |
|
std::vector<cv::Point2f> triangleMiddlePoints; |
|
|
|
for (int i = 0; i < 3; i++) { |
|
triangleMiddlePoints.push_back(cvTsMiddlePoint(triangle[i], triangle[(i + 1) % 3])); |
|
} |
|
|
|
return triangleMiddlePoints; |
|
} |
|
|
|
|
|
void CV_MinTriangleTest::run_func() |
|
{ |
|
std::vector<cv::Point2f> pointsAsVector; |
|
|
|
cv::cvarrToMat(points).convertTo(pointsAsVector, CV_32F); |
|
|
|
cv::minEnclosingTriangle(pointsAsVector, triangle); |
|
cv::convexHull(pointsAsVector, convexPolygon, true, true); |
|
} |
|
|
|
|
|
int CV_MinTriangleTest::validate_test_results( int test_case_idx ) |
|
{ |
|
bool errorEnclosed = false, errorMiddlePoints = false, errorFlush = true; |
|
double eps = 1e-4; |
|
int code = CV_BaseShapeDescrTest::validate_test_results( test_case_idx ); |
|
|
|
int polygonVertices = (int) convexPolygon.size(); |
|
|
|
if (polygonVertices > 2) { |
|
// Check if all points are enclosed by the triangle |
|
for (int i = 0; (i < polygonVertices) && (!errorEnclosed); i++) |
|
{ |
|
if (cv::pointPolygonTest(triangle, cv::Point2f(convexPolygon[i].x, convexPolygon[i].y), true) < (-eps)) |
|
errorEnclosed = true; |
|
} |
|
|
|
// Check if triangle edges middle points touch the polygon |
|
std::vector<cv::Point2f> middlePoints = getTriangleMiddlePoints(); |
|
|
|
for (int i = 0; (i < 3) && (!errorMiddlePoints); i++) |
|
{ |
|
bool isTouching = false; |
|
|
|
for (int j = 0; (j < polygonVertices) && (!isTouching); j++) |
|
{ |
|
if (cvTsIsPointOnLineSegment(middlePoints[i], convexPolygon[j], |
|
convexPolygon[(j + 1) % polygonVertices])) |
|
isTouching = true; |
|
} |
|
|
|
errorMiddlePoints = (isTouching) ? false : true; |
|
} |
|
|
|
// Check if at least one of the edges is flush |
|
for (int i = 0; (i < 3) && (errorFlush); i++) |
|
{ |
|
for (int j = 0; (j < polygonVertices) && (errorFlush); j++) |
|
{ |
|
if ((cvTsIsPointOnLineSegment(convexPolygon[j], triangle[i], |
|
triangle[(i + 1) % 3])) && |
|
(cvTsIsPointOnLineSegment(convexPolygon[(j + 1) % polygonVertices], triangle[i], |
|
triangle[(i + 1) % 3]))) |
|
errorFlush = false; |
|
} |
|
} |
|
|
|
// Report any found errors |
|
if (errorEnclosed) |
|
{ |
|
ts->printf( cvtest::TS::LOG, |
|
"All points should be enclosed by the triangle.\n" ); |
|
code = cvtest::TS::FAIL_BAD_ACCURACY; |
|
} |
|
else if (errorMiddlePoints) |
|
{ |
|
ts->printf( cvtest::TS::LOG, |
|
"All triangle edges middle points should touch the convex hull of the points.\n" ); |
|
code = cvtest::TS::FAIL_INVALID_OUTPUT; |
|
} |
|
else if (errorFlush) |
|
{ |
|
ts->printf( cvtest::TS::LOG, |
|
"At least one edge of the enclosing triangle should be flush with one edge of the polygon.\n" ); |
|
code = cvtest::TS::FAIL_INVALID_OUTPUT; |
|
} |
|
} |
|
|
|
if ( code < 0 ) |
|
ts->set_failed_test_info( code ); |
|
|
|
return code; |
|
} |
|
|
|
|
|
/****************************************************************************************\ |
|
* MinEnclosingCircle Test * |
|
\****************************************************************************************/ |
|
|
|
class CV_MinCircleTest : public CV_BaseShapeDescrTest |
|
{ |
|
public: |
|
CV_MinCircleTest(); |
|
|
|
protected: |
|
void run_func(void); |
|
int validate_test_results( int test_case_idx ); |
|
|
|
Point2f center; |
|
float radius; |
|
}; |
|
|
|
|
|
CV_MinCircleTest::CV_MinCircleTest() |
|
{ |
|
} |
|
|
|
|
|
void CV_MinCircleTest::run_func() |
|
{ |
|
cv::minEnclosingCircle(cv::cvarrToMat(points), center, radius); |
|
} |
|
|
|
|
|
int CV_MinCircleTest::validate_test_results( int test_case_idx ) |
|
{ |
|
double eps = 1.03; |
|
int code = CV_BaseShapeDescrTest::validate_test_results( test_case_idx ); |
|
int i, j = 0, point_count = points2->rows + points2->cols - 1; |
|
Point2f *p = (Point2f*)(points2->data.ptr); |
|
Point2f v[3]; |
|
|
|
// check that the circle contains all the points inside and |
|
// remember at most 3 points that are close to the boundary |
|
for( i = 0; i < point_count; i++ ) |
|
{ |
|
double d = cvTsDist(p[i], center); |
|
if( d > radius ) |
|
{ |
|
ts->printf( cvtest::TS::LOG, "The point #%d is outside of the circle\n", i ); |
|
code = cvtest::TS::FAIL_BAD_ACCURACY; |
|
goto _exit_; |
|
} |
|
|
|
if( radius - d < eps*radius && j < 3 ) |
|
v[j++] = p[i]; |
|
} |
|
|
|
if( point_count >= 2 && (j < 2 || (j == 2 && cvTsDist(v[0],v[1]) < (radius-1)*2/eps)) ) |
|
{ |
|
ts->printf( cvtest::TS::LOG, |
|
"There should be at least 3 points near the circle boundary or 2 points on the diameter\n" ); |
|
code = cvtest::TS::FAIL_BAD_ACCURACY; |
|
goto _exit_; |
|
} |
|
|
|
_exit_: |
|
|
|
if( code < 0 ) |
|
ts->set_failed_test_info( code ); |
|
return code; |
|
} |
|
|
|
/****************************************************************************************\ |
|
* MinEnclosingCircle Test 2 * |
|
\****************************************************************************************/ |
|
|
|
class CV_MinCircleTest2 : public CV_BaseShapeDescrTest |
|
{ |
|
public: |
|
CV_MinCircleTest2(); |
|
protected: |
|
RNG rng; |
|
void run_func(void); |
|
int validate_test_results( int test_case_idx ); |
|
float delta; |
|
}; |
|
|
|
|
|
CV_MinCircleTest2::CV_MinCircleTest2() |
|
{ |
|
rng = ts->get_rng(); |
|
} |
|
|
|
|
|
void CV_MinCircleTest2::run_func() |
|
{ |
|
Point2f center = Point2f(rng.uniform(0.0f, 1000.0f), rng.uniform(0.0f, 1000.0f));; |
|
float radius = rng.uniform(0.0f, 500.0f); |
|
float angle = (float)rng.uniform(0.0f, (float)(CV_2PI)); |
|
vector<Point2f> pts; |
|
pts.push_back(center + Point2f(radius * cos(angle), radius * sin(angle))); |
|
angle += (float)CV_PI; |
|
pts.push_back(center + Point2f(radius * cos(angle), radius * sin(angle))); |
|
float radius2 = radius * radius; |
|
float x = rng.uniform(center.x - radius, center.x + radius); |
|
float deltaX = x - center.x; |
|
float upperBoundY = sqrt(radius2 - deltaX * deltaX); |
|
float y = rng.uniform(center.y - upperBoundY, center.y + upperBoundY); |
|
pts.push_back(Point2f(x, y)); |
|
// Find the minimum area enclosing circle |
|
Point2f calcCenter; |
|
float calcRadius; |
|
minEnclosingCircle(pts, calcCenter, calcRadius); |
|
delta = (float)cv::norm(calcCenter - center) + abs(calcRadius - radius); |
|
} |
|
|
|
int CV_MinCircleTest2::validate_test_results( int test_case_idx ) |
|
{ |
|
float eps = 1.0F; |
|
int code = CV_BaseShapeDescrTest::validate_test_results( test_case_idx ); |
|
if (delta > eps) |
|
{ |
|
ts->printf( cvtest::TS::LOG, "Delta center and calcCenter > %f\n", eps ); |
|
code = cvtest::TS::FAIL_BAD_ACCURACY; |
|
ts->set_failed_test_info( code ); |
|
} |
|
return code; |
|
} |
|
|
|
/****************************************************************************************\ |
|
* minEnclosingCircle Test 3 * |
|
\****************************************************************************************/ |
|
|
|
TEST(Imgproc_minEnclosingCircle, basic_test) |
|
{ |
|
vector<Point2f> pts; |
|
pts.push_back(Point2f(0, 0)); |
|
pts.push_back(Point2f(10, 0)); |
|
pts.push_back(Point2f(5, 1)); |
|
const float EPS = 1.0e-3f; |
|
Point2f center; |
|
float radius; |
|
|
|
// pts[2] is within the circle with diameter pts[0] - pts[1]. |
|
// 2 |
|
// 0 1 |
|
// NB: The triangle is obtuse, so the only pts[0] and pts[1] are on the circle. |
|
minEnclosingCircle(pts, center, radius); |
|
EXPECT_NEAR(center.x, 5, EPS); |
|
EXPECT_NEAR(center.y, 0, EPS); |
|
EXPECT_NEAR(5, radius, EPS); |
|
|
|
// pts[2] is on the circle with diameter pts[0] - pts[1]. |
|
// 2 |
|
// 0 1 |
|
pts[2] = Point2f(5, 5); |
|
minEnclosingCircle(pts, center, radius); |
|
EXPECT_NEAR(center.x, 5, EPS); |
|
EXPECT_NEAR(center.y, 0, EPS); |
|
EXPECT_NEAR(5, radius, EPS); |
|
|
|
// pts[2] is outside the circle with diameter pts[0] - pts[1]. |
|
// 2 |
|
// |
|
// |
|
// 0 1 |
|
// NB: The triangle is acute, so all 3 points are on the circle. |
|
pts[2] = Point2f(5, 10); |
|
minEnclosingCircle(pts, center, radius); |
|
EXPECT_NEAR(center.x, 5, EPS); |
|
EXPECT_NEAR(center.y, 3.75, EPS); |
|
EXPECT_NEAR(6.25f, radius, EPS); |
|
|
|
// The 3 points are colinear. |
|
pts[2] = Point2f(3, 0); |
|
minEnclosingCircle(pts, center, radius); |
|
EXPECT_NEAR(center.x, 5, EPS); |
|
EXPECT_NEAR(center.y, 0, EPS); |
|
EXPECT_NEAR(5, radius, EPS); |
|
|
|
// 2 points are the same. |
|
pts[2] = pts[1]; |
|
minEnclosingCircle(pts, center, radius); |
|
EXPECT_NEAR(center.x, 5, EPS); |
|
EXPECT_NEAR(center.y, 0, EPS); |
|
EXPECT_NEAR(5, radius, EPS); |
|
|
|
// 3 points are the same. |
|
pts[0] = pts[1]; |
|
minEnclosingCircle(pts, center, radius); |
|
EXPECT_NEAR(center.x, 10, EPS); |
|
EXPECT_NEAR(center.y, 0, EPS); |
|
EXPECT_NEAR(0, radius, EPS); |
|
} |
|
|
|
TEST(Imgproc_minEnclosingCircle, regression_16051) { |
|
vector<Point2f> pts; |
|
pts.push_back(Point2f(85, 1415)); |
|
pts.push_back(Point2f(87, 1415)); |
|
pts.push_back(Point2f(89, 1414)); |
|
pts.push_back(Point2f(89, 1414)); |
|
pts.push_back(Point2f(87, 1412)); |
|
Point2f center; |
|
float radius; |
|
minEnclosingCircle(pts, center, radius); |
|
EXPECT_NEAR(center.x, 86.9f, 1e-3); |
|
EXPECT_NEAR(center.y, 1414.1f, 1e-3); |
|
EXPECT_NEAR(2.1024551f, radius, 1e-3); |
|
} |
|
|
|
/****************************************************************************************\ |
|
* FitEllipse Test * |
|
\****************************************************************************************/ |
|
|
|
class CV_FitEllipseTest : public CV_BaseShapeDescrTest |
|
{ |
|
public: |
|
CV_FitEllipseTest(); |
|
|
|
protected: |
|
int prepare_test_case( int test_case_idx ); |
|
void generate_point_set( void* points ); |
|
void run_func(void); |
|
int validate_test_results( int test_case_idx ); |
|
RotatedRect box0, box; |
|
double min_ellipse_size, max_noise; |
|
}; |
|
|
|
|
|
CV_FitEllipseTest::CV_FitEllipseTest() |
|
{ |
|
min_log_size = 5; // for robust ellipse fitting a dozen of points is needed at least |
|
max_log_size = 10; |
|
min_ellipse_size = 10; |
|
max_noise = 0.05; |
|
} |
|
|
|
|
|
void CV_FitEllipseTest::generate_point_set( void* pointsSet ) |
|
{ |
|
RNG& rng = ts->get_rng(); |
|
int i, total, point_type; |
|
CvSeqReader reader; |
|
uchar* data = 0; |
|
double a, b; |
|
|
|
box0.center.x = (float)((low.val[0] + high.val[0])*0.5); |
|
box0.center.y = (float)((low.val[1] + high.val[1])*0.5); |
|
box0.size.width = (float)(MAX(high.val[0] - low.val[0], min_ellipse_size)*2); |
|
box0.size.height = (float)(MAX(high.val[1] - low.val[1], min_ellipse_size)*2); |
|
box0.angle = (float)(cvtest::randReal(rng)*180); |
|
a = cos(box0.angle*CV_PI/180.); |
|
b = sin(box0.angle*CV_PI/180.); |
|
|
|
if( box0.size.width > box0.size.height ) |
|
{ |
|
float t; |
|
CV_SWAP( box0.size.width, box0.size.height, t ); |
|
} |
|
memset( &reader, 0, sizeof(reader) ); |
|
|
|
if( CV_IS_SEQ(pointsSet) ) |
|
{ |
|
CvSeq* ptseq = (CvSeq*)pointsSet; |
|
total = ptseq->total; |
|
point_type = CV_SEQ_ELTYPE(ptseq); |
|
cvStartReadSeq( ptseq, &reader ); |
|
} |
|
else |
|
{ |
|
CvMat* ptm = (CvMat*)pointsSet; |
|
CV_Assert( CV_IS_MAT(ptm) && CV_IS_MAT_CONT(ptm->type) ); |
|
total = ptm->rows + ptm->cols - 1; |
|
point_type = CV_MAT_TYPE(ptm->type); |
|
data = ptm->data.ptr; |
|
} |
|
|
|
CV_Assert(point_type == CV_32SC2 || point_type == CV_32FC2); |
|
|
|
for( i = 0; i < total; i++ ) |
|
{ |
|
CvPoint* pp; |
|
CvPoint2D32f p = {0, 0}; |
|
double angle = cvtest::randReal(rng)*CV_PI*2; |
|
double x = box0.size.height*0.5*(cos(angle) + (cvtest::randReal(rng)-0.5)*2*max_noise); |
|
double y = box0.size.width*0.5*(sin(angle) + (cvtest::randReal(rng)-0.5)*2*max_noise); |
|
p.x = (float)(box0.center.x + a*x + b*y); |
|
p.y = (float)(box0.center.y - b*x + a*y); |
|
|
|
if( reader.ptr ) |
|
{ |
|
pp = (CvPoint*)reader.ptr; |
|
CV_NEXT_SEQ_ELEM( sizeof(*pp), reader ); |
|
} |
|
else |
|
pp = ((CvPoint*)data) + i; |
|
if( point_type == CV_32SC2 ) |
|
{ |
|
pp->x = cvRound(p.x); |
|
pp->y = cvRound(p.y); |
|
} |
|
else |
|
*(CvPoint2D32f*)pp = p; |
|
} |
|
} |
|
|
|
|
|
int CV_FitEllipseTest::prepare_test_case( int test_case_idx ) |
|
{ |
|
min_log_size = MAX(min_log_size,4); |
|
max_log_size = MAX(min_log_size,max_log_size); |
|
return CV_BaseShapeDescrTest::prepare_test_case( test_case_idx ); |
|
} |
|
|
|
|
|
void CV_FitEllipseTest::run_func() |
|
{ |
|
box = cv::fitEllipse(cv::cvarrToMat(points)); |
|
} |
|
|
|
int CV_FitEllipseTest::validate_test_results( int test_case_idx ) |
|
{ |
|
int code = CV_BaseShapeDescrTest::validate_test_results( test_case_idx ); |
|
double diff_angle; |
|
|
|
if( cvIsNaN(box.center.x) || cvIsInf(box.center.x) || |
|
cvIsNaN(box.center.y) || cvIsInf(box.center.y) || |
|
cvIsNaN(box.size.width) || cvIsInf(box.size.width) || |
|
cvIsNaN(box.size.height) || cvIsInf(box.size.height) || |
|
cvIsNaN(box.angle) || cvIsInf(box.angle) ) |
|
{ |
|
ts->printf( cvtest::TS::LOG, "Some of the computed ellipse parameters are invalid (x=%g,y=%g,w=%g,h=%g,angle=%g)\n", |
|
box.center.x, box.center.y, box.size.width, box.size.height, box.angle ); |
|
code = cvtest::TS::FAIL_INVALID_OUTPUT; |
|
goto _exit_; |
|
} |
|
|
|
box.angle = (float)(90-box.angle); |
|
if( box.angle < 0 ) |
|
box.angle += 360; |
|
if( box.angle > 360 ) |
|
box.angle -= 360; |
|
|
|
if( fabs(box.center.x - box0.center.x) > 3 || |
|
fabs(box.center.y - box0.center.y) > 3 || |
|
fabs(box.size.width - box0.size.width) > 0.1*fabs(box0.size.width) || |
|
fabs(box.size.height - box0.size.height) > 0.1*fabs(box0.size.height) ) |
|
{ |
|
ts->printf( cvtest::TS::LOG, "The computed ellipse center and/or size are incorrect:\n\t" |
|
"(x=%.1f,y=%.1f,w=%.1f,h=%.1f), while it should be (x=%.1f,y=%.1f,w=%.1f,h=%.1f)\n", |
|
box.center.x, box.center.y, box.size.width, box.size.height, |
|
box0.center.x, box0.center.y, box0.size.width, box0.size.height ); |
|
code = cvtest::TS::FAIL_BAD_ACCURACY; |
|
goto _exit_; |
|
} |
|
|
|
diff_angle = fabs(box0.angle - box.angle); |
|
diff_angle = MIN( diff_angle, fabs(diff_angle - 360)); |
|
diff_angle = MIN( diff_angle, fabs(diff_angle - 180)); |
|
|
|
if( box0.size.height >= 1.3*box0.size.width && diff_angle > 30 ) |
|
{ |
|
ts->printf( cvtest::TS::LOG, "Incorrect ellipse angle (=%1.f, should be %1.f)\n", |
|
box.angle, box0.angle ); |
|
code = cvtest::TS::FAIL_BAD_ACCURACY; |
|
goto _exit_; |
|
} |
|
|
|
_exit_: |
|
|
|
if( code < 0 ) |
|
{ |
|
ts->set_failed_test_info( code ); |
|
} |
|
return code; |
|
} |
|
|
|
|
|
class CV_FitEllipseSmallTest : public cvtest::BaseTest |
|
{ |
|
public: |
|
CV_FitEllipseSmallTest() {} |
|
~CV_FitEllipseSmallTest() {} |
|
protected: |
|
void run(int) |
|
{ |
|
Size sz(50, 50); |
|
vector<vector<Point> > c; |
|
c.push_back(vector<Point>()); |
|
int scale = 1; |
|
Point ofs = Point(0,0);//sz.width/2, sz.height/2) - Point(4,4)*scale; |
|
c[0].push_back(Point(2, 0)*scale+ofs); |
|
c[0].push_back(Point(0, 2)*scale+ofs); |
|
c[0].push_back(Point(0, 6)*scale+ofs); |
|
c[0].push_back(Point(2, 8)*scale+ofs); |
|
c[0].push_back(Point(6, 8)*scale+ofs); |
|
c[0].push_back(Point(8, 6)*scale+ofs); |
|
c[0].push_back(Point(8, 2)*scale+ofs); |
|
c[0].push_back(Point(6, 0)*scale+ofs); |
|
|
|
RotatedRect e = fitEllipse(c[0]); |
|
CV_Assert( fabs(e.center.x - 4) <= 1. && |
|
fabs(e.center.y - 4) <= 1. && |
|
fabs(e.size.width - 9) <= 1. && |
|
fabs(e.size.height - 9) <= 1. ); |
|
} |
|
}; |
|
|
|
|
|
// Regression test for incorrect fitEllipse result reported in Bug #3989 |
|
// Check edge cases for rotation angles of ellipse ([-180, 90, 0, 90, 180] degrees) |
|
class CV_FitEllipseParallelTest : public CV_FitEllipseTest |
|
{ |
|
public: |
|
CV_FitEllipseParallelTest(); |
|
~CV_FitEllipseParallelTest(); |
|
protected: |
|
void generate_point_set( void* points ); |
|
void run_func(void); |
|
Mat pointsMat; |
|
}; |
|
|
|
CV_FitEllipseParallelTest::CV_FitEllipseParallelTest() |
|
{ |
|
min_ellipse_size = 5; |
|
} |
|
|
|
void CV_FitEllipseParallelTest::generate_point_set( void* ) |
|
{ |
|
RNG& rng = ts->get_rng(); |
|
int height = (int)(MAX(high.val[0] - low.val[0], min_ellipse_size)); |
|
int width = (int)(MAX(high.val[1] - low.val[1], min_ellipse_size)); |
|
const int angle = ( (cvtest::randInt(rng) % 5) - 2 ) * 90; |
|
const int dim = max(height, width); |
|
const Point center = Point(dim*2, dim*2); |
|
|
|
if( width > height ) |
|
{ |
|
int t; |
|
CV_SWAP( width, height, t ); |
|
} |
|
|
|
Mat image = Mat::zeros(dim*4, dim*4, CV_8UC1); |
|
ellipse(image, center, Size(height, width), angle, |
|
0, 360, Scalar(255, 0, 0), 1, 8); |
|
|
|
box0.center.x = (float)center.x; |
|
box0.center.y = (float)center.y; |
|
box0.size.width = (float)width*2; |
|
box0.size.height = (float)height*2; |
|
box0.angle = (float)angle; |
|
|
|
vector<vector<Point> > contours; |
|
findContours(image, contours, RETR_EXTERNAL, CHAIN_APPROX_NONE); |
|
Mat(contours[0]).convertTo(pointsMat, CV_32F); |
|
} |
|
|
|
void CV_FitEllipseParallelTest::run_func() |
|
{ |
|
box = cv::fitEllipse(pointsMat); |
|
} |
|
|
|
CV_FitEllipseParallelTest::~CV_FitEllipseParallelTest(){ |
|
pointsMat.release(); |
|
} |
|
|
|
/****************************************************************************************\ |
|
* FitLine Test * |
|
\****************************************************************************************/ |
|
|
|
class CV_FitLineTest : public CV_BaseShapeDescrTest |
|
{ |
|
public: |
|
CV_FitLineTest(); |
|
|
|
protected: |
|
int prepare_test_case( int test_case_idx ); |
|
void generate_point_set( void* points ); |
|
void run_func(void); |
|
int validate_test_results( int test_case_idx ); |
|
double max_noise; |
|
AutoBuffer<float> line, line0; |
|
int dist_type; |
|
double reps, aeps; |
|
}; |
|
|
|
|
|
CV_FitLineTest::CV_FitLineTest() |
|
{ |
|
min_log_size = 5; // for robust line fitting a dozen of points is needed at least |
|
max_log_size = 10; |
|
max_noise = 0.05; |
|
} |
|
|
|
void CV_FitLineTest::generate_point_set( void* pointsSet ) |
|
{ |
|
RNG& rng = ts->get_rng(); |
|
int i, k, n, total, point_type; |
|
CvSeqReader reader; |
|
uchar* data = 0; |
|
double s = 0; |
|
|
|
n = dims; |
|
for( k = 0; k < n; k++ ) |
|
{ |
|
line0[k+n] = (float)((low.val[k] + high.val[k])*0.5); |
|
line0[k] = (float)(high.val[k] - low.val[k]); |
|
if( cvtest::randInt(rng) % 2 ) |
|
line0[k] = -line0[k]; |
|
s += (double)line0[k]*line0[k]; |
|
} |
|
|
|
s = 1./sqrt(s); |
|
for( k = 0; k < n; k++ ) |
|
line0[k] = (float)(line0[k]*s); |
|
|
|
memset( &reader, 0, sizeof(reader) ); |
|
|
|
if( CV_IS_SEQ(pointsSet) ) |
|
{ |
|
CvSeq* ptseq = (CvSeq*)pointsSet; |
|
total = ptseq->total; |
|
point_type = CV_MAT_DEPTH(CV_SEQ_ELTYPE(ptseq)); |
|
cvStartReadSeq( ptseq, &reader ); |
|
} |
|
else |
|
{ |
|
CvMat* ptm = (CvMat*)pointsSet; |
|
CV_Assert( CV_IS_MAT(ptm) && CV_IS_MAT_CONT(ptm->type) ); |
|
total = ptm->rows + ptm->cols - 1; |
|
point_type = CV_MAT_DEPTH(CV_MAT_TYPE(ptm->type)); |
|
data = ptm->data.ptr; |
|
} |
|
|
|
for( i = 0; i < total; i++ ) |
|
{ |
|
int* pi; |
|
float* pf; |
|
float p[4], t; |
|
if( reader.ptr ) |
|
{ |
|
pi = (int*)reader.ptr; |
|
pf = (float*)reader.ptr; |
|
CV_NEXT_SEQ_ELEM( reader.seq->elem_size, reader ); |
|
} |
|
else |
|
{ |
|
pi = (int*)data + i*n; |
|
pf = (float*)data + i*n; |
|
} |
|
|
|
t = (float)((cvtest::randReal(rng)-0.5)*low_high_range*2); |
|
|
|
for( k = 0; k < n; k++ ) |
|
{ |
|
p[k] = (float)((cvtest::randReal(rng)-0.5)*max_noise*2 + t*line0[k] + line0[k+n]); |
|
|
|
if( point_type == CV_32S ) |
|
pi[k] = cvRound(p[k]); |
|
else |
|
pf[k] = p[k]; |
|
} |
|
} |
|
} |
|
|
|
int CV_FitLineTest::prepare_test_case( int test_case_idx ) |
|
{ |
|
RNG& rng = ts->get_rng(); |
|
dims = cvtest::randInt(rng) % 2 + 2; |
|
line.allocate(dims * 2); |
|
line0.allocate(dims * 2); |
|
min_log_size = MAX(min_log_size,5); |
|
max_log_size = MAX(min_log_size,max_log_size); |
|
int code = CV_BaseShapeDescrTest::prepare_test_case( test_case_idx ); |
|
dist_type = cvtest::randInt(rng) % 6 + 1; |
|
dist_type += dist_type == cv::DIST_C; |
|
reps = 0.1; aeps = 0.01; |
|
return code; |
|
} |
|
|
|
|
|
void CV_FitLineTest::run_func() |
|
{ |
|
if(dims == 2) |
|
cv::fitLine(cv::cvarrToMat(points), (cv::Vec4f&)line[0], dist_type, 0, reps, aeps); |
|
else |
|
cv::fitLine(cv::cvarrToMat(points), (cv::Vec6f&)line[0], dist_type, 0, reps, aeps); |
|
} |
|
|
|
int CV_FitLineTest::validate_test_results( int test_case_idx ) |
|
{ |
|
int code = CV_BaseShapeDescrTest::validate_test_results( test_case_idx ); |
|
int k, max_k = 0; |
|
double vec_diff = 0, t; |
|
|
|
//std::cout << dims << " " << Mat(1, dims*2, CV_32FC1, line.data()) << " " << Mat(1, dims, CV_32FC1, line0.data()) << std::endl; |
|
|
|
for( k = 0; k < dims*2; k++ ) |
|
{ |
|
if( cvIsNaN(line[k]) || cvIsInf(line[k]) ) |
|
{ |
|
ts->printf( cvtest::TS::LOG, "Some of the computed line parameters are invalid (line[%d]=%g)\n", |
|
k, line[k] ); |
|
code = cvtest::TS::FAIL_INVALID_OUTPUT; |
|
goto _exit_; |
|
} |
|
} |
|
|
|
if( fabs(line0[1]) > fabs(line0[0]) ) |
|
max_k = 1; |
|
if( fabs(line0[dims-1]) > fabs(line0[max_k]) ) |
|
max_k = dims-1; |
|
if( line0[max_k] < 0 ) |
|
for( k = 0; k < dims; k++ ) |
|
line0[k] = -line0[k]; |
|
if( line[max_k] < 0 ) |
|
for( k = 0; k < dims; k++ ) |
|
line[k] = -line[k]; |
|
|
|
for( k = 0; k < dims; k++ ) |
|
{ |
|
double dt = line[k] - line0[k]; |
|
vec_diff += dt*dt; |
|
} |
|
|
|
if( sqrt(vec_diff) > 0.05 ) |
|
{ |
|
if( dims == 2 ) |
|
ts->printf( cvtest::TS::LOG, |
|
"The computed line vector (%.2f,%.2f) is different from the actual (%.2f,%.2f)\n", |
|
line[0], line[1], line0[0], line0[1] ); |
|
else |
|
ts->printf( cvtest::TS::LOG, |
|
"The computed line vector (%.2f,%.2f,%.2f) is different from the actual (%.2f,%.2f,%.2f)\n", |
|
line[0], line[1], line[2], line0[0], line0[1], line0[2] ); |
|
code = cvtest::TS::FAIL_BAD_ACCURACY; |
|
goto _exit_; |
|
} |
|
|
|
t = (line[max_k+dims] - line0[max_k+dims])/line0[max_k]; |
|
for( k = 0; k < dims; k++ ) |
|
{ |
|
double p = line0[k+dims] + t*line0[k] - line[k+dims]; |
|
vec_diff += p*p; |
|
} |
|
|
|
if( sqrt(vec_diff) > 1*MAX(fabs(t),1) ) |
|
{ |
|
if( dims == 2 ) |
|
ts->printf( cvtest::TS::LOG, |
|
"The computed line point (%.2f,%.2f) is too far from the actual line\n", |
|
line[2]+line0[2], line[3]+line0[3] ); |
|
else |
|
ts->printf( cvtest::TS::LOG, |
|
"The computed line point (%.2f,%.2f,%.2f) is too far from the actual line\n", |
|
line[3]+line0[3], line[4]+line0[4], line[5]+line0[5] ); |
|
code = cvtest::TS::FAIL_BAD_ACCURACY; |
|
goto _exit_; |
|
} |
|
|
|
_exit_: |
|
|
|
if( code < 0 ) |
|
{ |
|
ts->set_failed_test_info( code ); |
|
} |
|
return code; |
|
} |
|
|
|
|
|
TEST(Imgproc_ConvexHull, accuracy) { CV_ConvHullTest test; test.safe_run(); } |
|
TEST(Imgproc_MinAreaRect, accuracy) { CV_MinAreaRectTest test; test.safe_run(); } |
|
TEST(Imgproc_MinTriangle, accuracy) { CV_MinTriangleTest test; test.safe_run(); } |
|
TEST(Imgproc_MinCircle, accuracy) { CV_MinCircleTest test; test.safe_run(); } |
|
TEST(Imgproc_MinCircle2, accuracy) { CV_MinCircleTest2 test; test.safe_run(); } |
|
TEST(Imgproc_FitEllipse, accuracy) { CV_FitEllipseTest test; test.safe_run(); } |
|
TEST(Imgproc_FitEllipse, parallel) { CV_FitEllipseParallelTest test; test.safe_run(); } |
|
TEST(Imgproc_FitLine, accuracy) { CV_FitLineTest test; test.safe_run(); } |
|
TEST(Imgproc_FitEllipse, small) { CV_FitEllipseSmallTest test; test.safe_run(); } |
|
|
|
|
|
|
|
PARAM_TEST_CASE(ConvexityDefects_regression_5908, bool, int) |
|
{ |
|
public: |
|
int start_index; |
|
bool clockwise; |
|
|
|
Mat contour; |
|
|
|
virtual void SetUp() |
|
{ |
|
clockwise = GET_PARAM(0); |
|
start_index = GET_PARAM(1); |
|
|
|
const int N = 11; |
|
const Point2i points[N] = { |
|
Point2i(154, 408), |
|
Point2i(45, 223), |
|
Point2i(115, 275), // inner |
|
Point2i(104, 166), |
|
Point2i(154, 256), // inner |
|
Point2i(169, 144), |
|
Point2i(185, 256), // inner |
|
Point2i(235, 170), |
|
Point2i(240, 320), // inner |
|
Point2i(330, 287), |
|
Point2i(224, 390) |
|
}; |
|
|
|
contour = Mat(N, 1, CV_32SC2); |
|
for (int i = 0; i < N; i++) |
|
{ |
|
contour.at<Point2i>(i) = (!clockwise) // image and convexHull coordinate systems are different |
|
? points[(start_index + i) % N] |
|
: points[N - 1 - ((start_index + i) % N)]; |
|
} |
|
} |
|
}; |
|
|
|
TEST_P(ConvexityDefects_regression_5908, simple) |
|
{ |
|
std::vector<int> hull; |
|
cv::convexHull(contour, hull, clockwise, false); |
|
|
|
std::vector<Vec4i> result; |
|
cv::convexityDefects(contour, hull, result); |
|
|
|
EXPECT_EQ(4, (int)result.size()); |
|
} |
|
|
|
INSTANTIATE_TEST_CASE_P(Imgproc, ConvexityDefects_regression_5908, |
|
testing::Combine( |
|
testing::Bool(), |
|
testing::Values(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10) |
|
)); |
|
|
|
TEST(Imgproc_FitLine, regression_15083) |
|
{ |
|
int points2i_[] = { |
|
432, 654, |
|
370, 656, |
|
390, 656, |
|
410, 656, |
|
348, 658 |
|
}; |
|
Mat points(5, 1, CV_32SC2, points2i_); |
|
|
|
Vec4f lineParam; |
|
fitLine(points, lineParam, DIST_L1, 0, 0.01, 0.01); |
|
EXPECT_GE(fabs(lineParam[0]), fabs(lineParam[1]) * 4) << lineParam; |
|
} |
|
|
|
TEST(Imgproc_FitLine, regression_4903) |
|
{ |
|
float points2f_[] = { |
|
1224.0, 576.0, |
|
1234.0, 683.0, |
|
1215.0, 471.0, |
|
1184.0, 137.0, |
|
1079.0, 377.0, |
|
1239.0, 788.0, |
|
}; |
|
Mat points(6, 1, CV_32FC2, points2f_); |
|
|
|
Vec4f lineParam; |
|
fitLine(points, lineParam, DIST_WELSCH, 0, 0.01, 0.01); |
|
EXPECT_GE(fabs(lineParam[1]), fabs(lineParam[0]) * 4) << lineParam; |
|
} |
|
|
|
#if 0 |
|
#define DRAW(x) x |
|
#else |
|
#define DRAW(x) |
|
#endif |
|
|
|
// the Python test by @hannarud is converted to C++; see the issue #4539 |
|
TEST(Imgproc_ConvexityDefects, ordering_4539) |
|
{ |
|
int contour[][2] = |
|
{ |
|
{26, 9}, {25, 10}, {24, 10}, {23, 10}, {22, 10}, {21, 10}, {20, 11}, {19, 11}, {18, 11}, {17, 12}, |
|
{17, 13}, {18, 14}, {18, 15}, {18, 16}, {18, 17}, {19, 18}, {19, 19}, {20, 20}, {21, 21}, {21, 22}, |
|
{22, 23}, {22, 24}, {23, 25}, {23, 26}, {24, 27}, {25, 28}, {26, 29}, {27, 30}, {27, 31}, {28, 32}, |
|
{29, 32}, {30, 33}, {31, 34}, {30, 35}, {29, 35}, {30, 35}, {31, 34}, {32, 34}, {33, 34}, {34, 33}, |
|
{35, 32}, {35, 31}, {35, 30}, {36, 29}, {37, 28}, {37, 27}, {38, 26}, {39, 25}, {40, 24}, {40, 23}, |
|
{41, 22}, {42, 21}, {42, 20}, {42, 19}, {43, 18}, {43, 17}, {44, 16}, {45, 15}, {45, 14}, {46, 13}, |
|
{46, 12}, {45, 11}, {44, 11}, {43, 11}, {42, 10}, {41, 10}, {40, 9}, {39, 9}, {38, 9}, {37, 9}, |
|
{36, 9}, {35, 9}, {34, 9}, {33, 9}, {32, 9}, {31, 9}, {30, 9}, {29, 9}, {28, 9}, {27, 9} |
|
}; |
|
int npoints = (int)(sizeof(contour)/sizeof(contour[0][0])/2); |
|
Mat contour_(1, npoints, CV_32SC2, contour); |
|
vector<Point> hull; |
|
vector<int> hull_ind; |
|
vector<Vec4i> defects; |
|
|
|
// first, check the original contour as-is, without intermediate fillPoly/drawContours. |
|
convexHull(contour_, hull_ind, false, false); |
|
EXPECT_THROW( convexityDefects(contour_, hull_ind, defects), cv::Exception ); |
|
|
|
int scale = 20; |
|
contour_ *= (double)scale; |
|
|
|
Mat canvas_gray(Size(60*scale, 45*scale), CV_8U, Scalar::all(0)); |
|
const Point* ptptr = contour_.ptr<Point>(); |
|
fillPoly(canvas_gray, &ptptr, &npoints, 1, Scalar(255, 255, 255)); |
|
|
|
vector<vector<Point> > contours; |
|
findContours(canvas_gray, contours, noArray(), RETR_LIST, CHAIN_APPROX_SIMPLE); |
|
convexHull(contours[0], hull_ind, false, false); |
|
|
|
// the original contour contains self-intersections, |
|
// therefore convexHull does not return a monotonous sequence of points |
|
// and therefore convexityDefects throws an exception |
|
EXPECT_THROW( convexityDefects(contours[0], hull_ind, defects), cv::Exception ); |
|
|
|
#if 1 |
|
// one way to eliminate the contour self-intersection in this particular case is to apply dilate(), |
|
// so that the self-repeating points are not self-repeating anymore |
|
dilate(canvas_gray, canvas_gray, Mat()); |
|
#else |
|
// another popular technique to eliminate such thin "hair" is to use morphological "close" operation, |
|
// which is erode() + dilate() |
|
erode(canvas_gray, canvas_gray, Mat()); |
|
dilate(canvas_gray, canvas_gray, Mat()); |
|
#endif |
|
|
|
// after the "fix", the newly retrieved contour should not have self-intersections, |
|
// and everything should work well |
|
findContours(canvas_gray, contours, noArray(), RETR_LIST, CHAIN_APPROX_SIMPLE); |
|
convexHull(contours[0], hull, false, true); |
|
convexHull(contours[0], hull_ind, false, false); |
|
|
|
DRAW(Mat canvas(Size(60*scale, 45*scale), CV_8UC3, Scalar::all(0)); |
|
drawContours(canvas, contours, -1, Scalar(255, 255, 255), -1)); |
|
|
|
size_t nhull = hull.size(); |
|
ASSERT_EQ( nhull, hull_ind.size() ); |
|
|
|
if( nhull > 2 ) |
|
{ |
|
bool initial_lt = hull_ind[0] < hull_ind[1]; |
|
for( size_t i = 0; i < nhull; i++ ) |
|
{ |
|
int ind = hull_ind[i]; |
|
Point pt = contours[0][ind]; |
|
|
|
ASSERT_EQ(pt, hull[i]); |
|
if( i > 0 ) |
|
{ |
|
// check that the convex hull indices are monotone |
|
if( initial_lt ) |
|
{ |
|
ASSERT_LT(hull_ind[i-1], hull_ind[i]); |
|
} |
|
else |
|
{ |
|
ASSERT_GT(hull_ind[i-1], hull_ind[i]); |
|
} |
|
} |
|
DRAW(circle(canvas, pt, 7, Scalar(180, 0, 180), -1, LINE_AA); |
|
putText(canvas, format("%d (%d)", (int)i, ind), pt+Point(15, 0), FONT_HERSHEY_SIMPLEX, 0.4, Scalar(200, 0, 200), 1, LINE_AA)); |
|
//printf("%d. ind=%d, pt=(%d, %d)\n", (int)i, ind, pt.x, pt.y); |
|
} |
|
} |
|
|
|
convexityDefects(contours[0], hull_ind, defects); |
|
|
|
for(size_t i = 0; i < defects.size(); i++ ) |
|
{ |
|
Vec4i d = defects[i]; |
|
//printf("defect %d. start=%d, end=%d, farthest=%d, depth=%d\n", (int)i, d[0], d[1], d[2], d[3]); |
|
EXPECT_LT(d[0], d[1]); |
|
EXPECT_LE(d[0], d[2]); |
|
EXPECT_LE(d[2], d[1]); |
|
|
|
DRAW(Point start = contours[0][d[0]]; |
|
Point end = contours[0][d[1]]; |
|
Point far = contours[0][d[2]]; |
|
line(canvas, start, end, Scalar(255, 255, 128), 3, LINE_AA); |
|
line(canvas, start, far, Scalar(255, 150, 255), 3, LINE_AA); |
|
line(canvas, end, far, Scalar(255, 150, 255), 3, LINE_AA); |
|
circle(canvas, start, 7, Scalar(0, 0, 255), -1, LINE_AA); |
|
circle(canvas, end, 7, Scalar(0, 0, 255), -1, LINE_AA); |
|
circle(canvas, far, 7, Scalar(255, 0, 0), -1, LINE_AA)); |
|
} |
|
|
|
DRAW(imshow("defects", canvas); |
|
waitKey()); |
|
} |
|
|
|
#undef DRAW |
|
|
|
TEST(Imgproc_ConvexHull, overflow) |
|
{ |
|
std::vector<Point> points; |
|
std::vector<Point2f> pointsf; |
|
|
|
points.push_back(Point(14763, 2890)); |
|
points.push_back(Point(14388, 72088)); |
|
points.push_back(Point(62810, 72274)); |
|
points.push_back(Point(63166, 3945)); |
|
points.push_back(Point(56782, 3945)); |
|
points.push_back(Point(56763, 3077)); |
|
points.push_back(Point(34666, 2965)); |
|
points.push_back(Point(34547, 2953)); |
|
points.push_back(Point(34508, 2866)); |
|
points.push_back(Point(34429, 2965)); |
|
|
|
size_t i, n = points.size(); |
|
for( i = 0; i < n; i++ ) |
|
pointsf.push_back(Point2f(points[i])); |
|
|
|
std::vector<int> hull; |
|
std::vector<int> hullf; |
|
|
|
convexHull(points, hull, false, false); |
|
convexHull(pointsf, hullf, false, false); |
|
|
|
ASSERT_EQ(hull, hullf); |
|
} |
|
|
|
static |
|
bool checkMinAreaRect(const RotatedRect& rr, const Mat& c, double eps = 0.5f) |
|
{ |
|
int N = c.rows; |
|
|
|
Mat rr_pts; |
|
boxPoints(rr, rr_pts); |
|
|
|
double maxError = 0.0; |
|
int nfailed = 0; |
|
for (int i = 0; i < N; i++) |
|
{ |
|
double d = pointPolygonTest(rr_pts, c.at<Point2f>(i), true); |
|
maxError = std::max(-d, maxError); |
|
if (d < -eps) |
|
nfailed++; |
|
} |
|
|
|
if (nfailed) |
|
std::cout << "nfailed=" << nfailed << " (total=" << N << ") maxError=" << maxError << std::endl; |
|
return nfailed == 0; |
|
} |
|
|
|
TEST(Imgproc_minAreaRect, reproducer_18157) |
|
{ |
|
const int N = 168; |
|
float pts_[N][2] = { |
|
{ 1903, 266 }, { 1897, 267 }, { 1893, 268 }, { 1890, 269 }, |
|
{ 1878, 275 }, { 1875, 277 }, { 1872, 279 }, { 1868, 282 }, |
|
{ 1862, 287 }, { 1750, 400 }, { 1748, 402 }, { 1742, 407 }, |
|
{ 1742, 408 }, { 1740, 410 }, { 1738, 412 }, { 1593, 558 }, |
|
{ 1590, 560 }, { 1588, 562 }, { 1586, 564 }, { 1580, 570 }, |
|
{ 1443, 709 }, { 1437, 714 }, { 1435, 716 }, { 1304, 848 }, |
|
{ 1302, 850 }, { 1292, 860 }, { 1175, 979 }, { 1172, 981 }, |
|
{ 1049, 1105 }, { 936, 1220 }, { 933, 1222 }, { 931, 1224 }, |
|
{ 830, 1326 }, { 774, 1383 }, { 769, 1389 }, { 766, 1393 }, |
|
{ 764, 1396 }, { 762, 1399 }, { 760, 1402 }, { 757, 1408 }, |
|
{ 757, 1410 }, { 755, 1413 }, { 754, 1416 }, { 753, 1420 }, |
|
{ 752, 1424 }, { 752, 1442 }, { 753, 1447 }, { 754, 1451 }, |
|
{ 755, 1454 }, { 757, 1457 }, { 757, 1459 }, { 761, 1467 }, |
|
{ 763, 1470 }, { 765, 1473 }, { 767, 1476 }, { 771, 1481 }, |
|
{ 779, 1490 }, { 798, 1510 }, { 843, 1556 }, { 847, 1560 }, |
|
{ 851, 1564 }, { 863, 1575 }, { 907, 1620 }, { 909, 1622 }, |
|
{ 913, 1626 }, { 1154, 1866 }, { 1156, 1868 }, { 1158, 1870 }, |
|
{ 1207, 1918 }, { 1238, 1948 }, { 1252, 1961 }, { 1260, 1968 }, |
|
{ 1264, 1971 }, { 1268, 1974 }, { 1271, 1975 }, { 1273, 1977 }, |
|
{ 1283, 1982 }, { 1286, 1983 }, { 1289, 1984 }, { 1294, 1985 }, |
|
{ 1300, 1986 }, { 1310, 1986 }, { 1316, 1985 }, { 1320, 1984 }, |
|
{ 1323, 1983 }, { 1326, 1982 }, { 1338, 1976 }, { 1341, 1974 }, |
|
{ 1344, 1972 }, { 1349, 1968 }, { 1358, 1960 }, { 1406, 1911 }, |
|
{ 1421, 1897 }, { 1624, 1693 }, { 1788, 1528 }, { 1790, 1526 }, |
|
{ 1792, 1524 }, { 1794, 1522 }, { 1796, 1520 }, { 1798, 1518 }, |
|
{ 1800, 1516 }, { 1919, 1396 }, { 1921, 1394 }, { 2038, 1275 }, |
|
{ 2047, 1267 }, { 2048, 1265 }, { 2145, 1168 }, { 2148, 1165 }, |
|
{ 2260, 1052 }, { 2359, 952 }, { 2434, 876 }, { 2446, 863 }, |
|
{ 2450, 858 }, { 2453, 854 }, { 2455, 851 }, { 2457, 846 }, |
|
{ 2459, 844 }, { 2460, 842 }, { 2460, 840 }, { 2462, 837 }, |
|
{ 2463, 834 }, { 2464, 830 }, { 2465, 825 }, { 2465, 809 }, |
|
{ 2464, 804 }, { 2463, 800 }, { 2462, 797 }, { 2461, 794 }, |
|
{ 2456, 784 }, { 2454, 781 }, { 2452, 778 }, { 2450, 775 }, |
|
{ 2446, 770 }, { 2437, 760 }, { 2412, 734 }, { 2410, 732 }, |
|
{ 2408, 730 }, { 2382, 704 }, { 2380, 702 }, { 2378, 700 }, |
|
{ 2376, 698 }, { 2372, 694 }, { 2370, 692 }, { 2368, 690 }, |
|
{ 2366, 688 }, { 2362, 684 }, { 2360, 682 }, { 2252, 576 }, |
|
{ 2250, 573 }, { 2168, 492 }, { 2166, 490 }, { 2085, 410 }, |
|
{ 2026, 352 }, { 1988, 315 }, { 1968, 296 }, { 1958, 287 }, |
|
{ 1953, 283 }, { 1949, 280 }, { 1946, 278 }, { 1943, 276 }, |
|
{ 1940, 274 }, { 1936, 272 }, { 1934, 272 }, { 1931, 270 }, |
|
{ 1928, 269 }, { 1925, 268 }, { 1921, 267 }, { 1915, 266 } |
|
}; |
|
|
|
Mat contour(N, 1, CV_32FC2, (void*)pts_); |
|
|
|
RotatedRect rr = cv::minAreaRect(contour); |
|
|
|
EXPECT_TRUE(checkMinAreaRect(rr, contour)) << rr.center << " " << rr.size << " " << rr.angle; |
|
} |
|
|
|
TEST(Imgproc_minAreaRect, reproducer_19769_lightweight) |
|
{ |
|
const int N = 23; |
|
float pts_[N][2] = { |
|
{1325, 732}, {1248, 808}, {582, 1510}, {586, 1524}, |
|
{595, 1541}, {599, 1547}, {789, 1745}, {829, 1786}, |
|
{997, 1958}, {1116, 2074}, {1207, 2066}, {1216, 2058}, |
|
{1231, 2044}, {1265, 2011}, {2036, 1254}, {2100, 1191}, |
|
{2169, 1123}, {2315, 979}, {2395, 900}, {2438, 787}, |
|
{2434, 782}, {2416, 762}, {2266, 610} |
|
}; |
|
Mat contour(N, 1, CV_32FC2, (void*)pts_); |
|
|
|
RotatedRect rr = cv::minAreaRect(contour); |
|
|
|
EXPECT_TRUE(checkMinAreaRect(rr, contour)) << rr.center << " " << rr.size << " " << rr.angle; |
|
} |
|
|
|
TEST(Imgproc_minAreaRect, reproducer_19769) |
|
{ |
|
const int N = 169; |
|
float pts_[N][2] = { |
|
{1854, 227}, {1850, 228}, {1847, 229}, {1835, 235}, |
|
{1832, 237}, {1829, 239}, {1825, 242}, {1818, 248}, |
|
{1807, 258}, {1759, 306}, {1712, 351}, {1708, 356}, |
|
{1658, 404}, {1655, 408}, {1602, 459}, {1599, 463}, |
|
{1542, 518}, {1477, 582}, {1402, 656}, {1325, 732}, |
|
{1248, 808}, {1161, 894}, {1157, 898}, {1155, 900}, |
|
{1068, 986}, {1060, 995}, {1058, 997}, {957, 1097}, |
|
{956, 1097}, {814, 1238}, {810, 1242}, {805, 1248}, |
|
{610, 1442}, {603, 1450}, {599, 1455}, {596, 1459}, |
|
{594, 1462}, {592, 1465}, {590, 1470}, {588, 1472}, |
|
{586, 1476}, {586, 1478}, {584, 1481}, {583, 1485}, |
|
{582, 1490}, {582, 1510}, {583, 1515}, {584, 1518}, |
|
{585, 1521}, {586, 1524}, {593, 1538}, {595, 1541}, |
|
{597, 1544}, {599, 1547}, {603, 1552}, {609, 1559}, |
|
{623, 1574}, {645, 1597}, {677, 1630}, {713, 1667}, |
|
{753, 1707}, {789, 1744}, {789, 1745}, {829, 1786}, |
|
{871, 1828}, {909, 1867}, {909, 1868}, {950, 1910}, |
|
{953, 1912}, {997, 1958}, {1047, 2009}, {1094, 2056}, |
|
{1105, 2066}, {1110, 2070}, {1113, 2072}, {1116, 2074}, |
|
{1119, 2076}, {1122, 2077}, {1124, 2079}, {1130, 2082}, |
|
{1133, 2083}, {1136, 2084}, {1139, 2085}, {1142, 2086}, |
|
{1148, 2087}, {1166, 2087}, {1170, 2086}, {1174, 2085}, |
|
{1177, 2084}, {1180, 2083}, {1188, 2079}, {1190, 2077}, |
|
{1193, 2076}, {1196, 2074}, {1199, 2072}, {1202, 2070}, |
|
{1207, 2066}, {1216, 2058}, {1231, 2044}, {1265, 2011}, |
|
{1314, 1962}, {1360, 1917}, {1361, 1917}, {1408, 1871}, |
|
{1457, 1822}, {1508, 1773}, {1512, 1768}, {1560, 1722}, |
|
{1617, 1665}, {1671, 1613}, {1730, 1554}, {1784, 1502}, |
|
{1786, 1500}, {1787, 1498}, {1846, 1440}, {1850, 1437}, |
|
{1908, 1380}, {1974, 1314}, {2034, 1256}, {2036, 1254}, |
|
{2100, 1191}, {2169, 1123}, {2242, 1051}, {2315, 979}, |
|
{2395, 900}, {2426, 869}, {2435, 859}, {2438, 855}, |
|
{2440, 852}, {2442, 849}, {2443, 846}, {2445, 844}, |
|
{2446, 842}, {2446, 840}, {2448, 837}, {2449, 834}, |
|
{2450, 829}, {2450, 814}, {2449, 809}, {2448, 806}, |
|
{2447, 803}, {2442, 793}, {2440, 790}, {2438, 787}, |
|
{2434, 782}, {2428, 775}, {2416, 762}, {2411, 758}, |
|
{2342, 688}, {2340, 686}, {2338, 684}, {2266, 610}, |
|
{2260, 605}, {2170, 513}, {2075, 417}, {2073, 415}, |
|
{2069, 412}, {1955, 297}, {1955, 296}, {1913, 254}, |
|
{1904, 246}, {1897, 240}, {1894, 238}, {1891, 236}, |
|
{1888, 234}, {1880, 230}, {1877, 229}, {1874, 228}, |
|
{1870, 227} |
|
}; |
|
Mat contour(N, 1, CV_32FC2, (void*)pts_); |
|
|
|
RotatedRect rr = cv::minAreaRect(contour); |
|
|
|
EXPECT_TRUE(checkMinAreaRect(rr, contour)) << rr.center << " " << rr.size << " " << rr.angle; |
|
} |
|
|
|
TEST(Imgproc_minEnclosingTriangle, regression_17585) |
|
{ |
|
const int N = 3; |
|
float pts_[N][2] = { {0, 0}, {0, 1}, {1, 1} }; |
|
cv::Mat points(N, 2, CV_32FC1, static_cast<void*>(pts_)); |
|
vector<Point2f> triangle; |
|
|
|
EXPECT_NO_THROW(minEnclosingTriangle(points, triangle)); |
|
} |
|
|
|
TEST(Imgproc_minEnclosingTriangle, regression_20890) |
|
{ |
|
vector<Point> points; |
|
points.push_back(Point(0, 0)); |
|
points.push_back(Point(0, 1)); |
|
points.push_back(Point(1, 1)); |
|
vector<Point2f> triangle; |
|
|
|
EXPECT_NO_THROW(minEnclosingTriangle(points, triangle)); |
|
} |
|
|
|
TEST(Imgproc_minEnclosingTriangle, regression_mat_with_diff_channels) |
|
{ |
|
const int N = 3; |
|
float pts_[N][2] = { {0, 0}, {0, 1}, {1, 1} }; |
|
cv::Mat points1xN(1, N, CV_32FC2, static_cast<void*>(pts_)); |
|
cv::Mat pointsNx1(N, 1, CV_32FC2, static_cast<void*>(pts_)); |
|
vector<Point2f> triangle; |
|
|
|
EXPECT_NO_THROW(minEnclosingTriangle(points1xN, triangle)); |
|
EXPECT_NO_THROW(minEnclosingTriangle(pointsNx1, triangle)); |
|
} |
|
|
|
}} // namespace |
|
/* End of file. */
|
|
|