Open Source Computer Vision Library https://opencv.org/
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

659 lines
14 KiB

///////////////////////////////////////////////////////////////////////////
//
// Copyright (c) 2004, Industrial Light & Magic, a division of Lucas
// Digital Ltd. LLC
//
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Industrial Light & Magic nor the names of
// its contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
///////////////////////////////////////////////////////////////////////////
#ifndef INCLUDED_IMATHSHEAR_H
#define INCLUDED_IMATHSHEAR_H
//----------------------------------------------------
//
// Shear6 class template.
//
//----------------------------------------------------
#include "ImathExc.h"
#include "ImathLimits.h"
#include "ImathMath.h"
#include "ImathVec.h"
#include <iostream>
namespace Imath {
template <class T> class Shear6
{
public:
//-------------------
// Access to elements
//-------------------
T xy, xz, yz, yx, zx, zy;
T & operator [] (int i);
const T & operator [] (int i) const;
//-------------
// Constructors
//-------------
Shear6 (); // (0 0 0 0 0 0)
Shear6 (T XY, T XZ, T YZ); // (XY XZ YZ 0 0 0)
Shear6 (const Vec3<T> &v); // (v.x v.y v.z 0 0 0)
template <class S> // (v.x v.y v.z 0 0 0)
Shear6 (const Vec3<S> &v);
Shear6 (T XY, T XZ, T YZ, // (XY XZ YZ YX ZX ZY)
T YX, T ZX, T ZY);
//---------------------------------
// Copy constructors and assignment
//---------------------------------
Shear6 (const Shear6 &h);
template <class S> Shear6 (const Shear6<S> &h);
const Shear6 & operator = (const Shear6 &h);
template <class S>
const Shear6 & operator = (const Vec3<S> &v);
//----------------------
// Compatibility with Sb
//----------------------
template <class S>
void setValue (S XY, S XZ, S YZ, S YX, S ZX, S ZY);
template <class S>
void setValue (const Shear6<S> &h);
template <class S>
void getValue (S &XY, S &XZ, S &YZ,
S &YX, S &ZX, S &ZY) const;
template <class S>
void getValue (Shear6<S> &h) const;
T * getValue();
const T * getValue() const;
//---------
// Equality
//---------
template <class S>
bool operator == (const Shear6<S> &h) const;
template <class S>
bool operator != (const Shear6<S> &h) const;
//-----------------------------------------------------------------------
// Compare two shears and test if they are "approximately equal":
//
// equalWithAbsError (h, e)
//
// Returns true if the coefficients of this and h are the same with
// an absolute error of no more than e, i.e., for all i
//
// abs (this[i] - h[i]) <= e
//
// equalWithRelError (h, e)
//
// Returns true if the coefficients of this and h are the same with
// a relative error of no more than e, i.e., for all i
//
// abs (this[i] - h[i]) <= e * abs (this[i])
//-----------------------------------------------------------------------
bool equalWithAbsError (const Shear6<T> &h, T e) const;
bool equalWithRelError (const Shear6<T> &h, T e) const;
//------------------------
// Component-wise addition
//------------------------
const Shear6 & operator += (const Shear6 &h);
Shear6 operator + (const Shear6 &h) const;
//---------------------------
// Component-wise subtraction
//---------------------------
const Shear6 & operator -= (const Shear6 &h);
Shear6 operator - (const Shear6 &h) const;
//------------------------------------
// Component-wise multiplication by -1
//------------------------------------
Shear6 operator - () const;
const Shear6 & negate ();
//------------------------------
// Component-wise multiplication
//------------------------------
const Shear6 & operator *= (const Shear6 &h);
const Shear6 & operator *= (T a);
Shear6 operator * (const Shear6 &h) const;
Shear6 operator * (T a) const;
//------------------------
// Component-wise division
//------------------------
const Shear6 & operator /= (const Shear6 &h);
const Shear6 & operator /= (T a);
Shear6 operator / (const Shear6 &h) const;
Shear6 operator / (T a) const;
//----------------------------------------------------------
// Number of dimensions, i.e. number of elements in a Shear6
//----------------------------------------------------------
static unsigned int dimensions() {return 6;}
//-------------------------------------------------
// Limitations of type T (see also class limits<T>)
//-------------------------------------------------
static T baseTypeMin() {return limits<T>::min();}
static T baseTypeMax() {return limits<T>::max();}
static T baseTypeSmallest() {return limits<T>::smallest();}
static T baseTypeEpsilon() {return limits<T>::epsilon();}
//--------------------------------------------------------------
// Base type -- in templates, which accept a parameter, V, which
// could be either a Vec2<T> or a Shear6<T>, you can refer to T as
// V::BaseType
//--------------------------------------------------------------
typedef T BaseType;
};
//--------------
// Stream output
//--------------
template <class T>
std::ostream & operator << (std::ostream &s, const Shear6<T> &h);
//----------------------------------------------------
// Reverse multiplication: scalar * Shear6<T>
//----------------------------------------------------
template <class S, class T> Shear6<T> operator * (S a, const Shear6<T> &h);
//-------------------------
// Typedefs for convenience
//-------------------------
typedef Vec3 <float> Shear3f;
typedef Vec3 <double> Shear3d;
typedef Shear6 <float> Shear6f;
typedef Shear6 <double> Shear6d;
//-----------------------
// Implementation of Shear6
//-----------------------
template <class T>
inline T &
Shear6<T>::operator [] (int i)
{
return (&xy)[i];
}
template <class T>
inline const T &
Shear6<T>::operator [] (int i) const
{
return (&xy)[i];
}
template <class T>
inline
Shear6<T>::Shear6 ()
{
xy = xz = yz = yx = zx = zy = 0;
}
template <class T>
inline
Shear6<T>::Shear6 (T XY, T XZ, T YZ)
{
xy = XY;
xz = XZ;
yz = YZ;
yx = 0;
zx = 0;
zy = 0;
}
template <class T>
inline
Shear6<T>::Shear6 (const Vec3<T> &v)
{
xy = v.x;
xz = v.y;
yz = v.z;
yx = 0;
zx = 0;
zy = 0;
}
template <class T>
template <class S>
inline
Shear6<T>::Shear6 (const Vec3<S> &v)
{
xy = T (v.x);
xz = T (v.y);
yz = T (v.z);
yx = 0;
zx = 0;
zy = 0;
}
template <class T>
inline
Shear6<T>::Shear6 (T XY, T XZ, T YZ, T YX, T ZX, T ZY)
{
xy = XY;
xz = XZ;
yz = YZ;
yx = YX;
zx = ZX;
zy = ZY;
}
template <class T>
inline
Shear6<T>::Shear6 (const Shear6 &h)
{
xy = h.xy;
xz = h.xz;
yz = h.yz;
yx = h.yx;
zx = h.zx;
zy = h.zy;
}
template <class T>
template <class S>
inline
Shear6<T>::Shear6 (const Shear6<S> &h)
{
xy = T (h.xy);
xz = T (h.xz);
yz = T (h.yz);
yx = T (h.yx);
zx = T (h.zx);
zy = T (h.zy);
}
template <class T>
inline const Shear6<T> &
Shear6<T>::operator = (const Shear6 &h)
{
xy = h.xy;
xz = h.xz;
yz = h.yz;
yx = h.yx;
zx = h.zx;
zy = h.zy;
return *this;
}
template <class T>
template <class S>
inline const Shear6<T> &
Shear6<T>::operator = (const Vec3<S> &v)
{
xy = T (v.x);
xz = T (v.y);
yz = T (v.z);
yx = 0;
zx = 0;
zy = 0;
return *this;
}
template <class T>
template <class S>
inline void
Shear6<T>::setValue (S XY, S XZ, S YZ, S YX, S ZX, S ZY)
{
xy = T (XY);
xz = T (XZ);
yz = T (YZ);
yx = T (YX);
zx = T (ZX);
zy = T (ZY);
}
template <class T>
template <class S>
inline void
Shear6<T>::setValue (const Shear6<S> &h)
{
xy = T (h.xy);
xz = T (h.xz);
yz = T (h.yz);
yx = T (h.yx);
zx = T (h.zx);
zy = T (h.zy);
}
template <class T>
template <class S>
inline void
Shear6<T>::getValue (S &XY, S &XZ, S &YZ, S &YX, S &ZX, S &ZY) const
{
XY = S (xy);
XZ = S (xz);
YZ = S (yz);
YX = S (yx);
ZX = S (zx);
ZY = S (zy);
}
template <class T>
template <class S>
inline void
Shear6<T>::getValue (Shear6<S> &h) const
{
h.xy = S (xy);
h.xz = S (xz);
h.yz = S (yz);
h.yx = S (yx);
h.zx = S (zx);
h.zy = S (zy);
}
template <class T>
inline T *
Shear6<T>::getValue()
{
return (T *) &xy;
}
template <class T>
inline const T *
Shear6<T>::getValue() const
{
return (const T *) &xy;
}
template <class T>
template <class S>
inline bool
Shear6<T>::operator == (const Shear6<S> &h) const
{
return xy == h.xy && xz == h.xz && yz == h.yz &&
yx == h.yx && zx == h.zx && zy == h.zy;
}
template <class T>
template <class S>
inline bool
Shear6<T>::operator != (const Shear6<S> &h) const
{
return xy != h.xy || xz != h.xz || yz != h.yz ||
yx != h.yx || zx != h.zx || zy != h.zy;
}
template <class T>
bool
Shear6<T>::equalWithAbsError (const Shear6<T> &h, T e) const
{
for (int i = 0; i < 6; i++)
if (!Imath::equalWithAbsError ((*this)[i], h[i], e))
return false;
return true;
}
template <class T>
bool
Shear6<T>::equalWithRelError (const Shear6<T> &h, T e) const
{
for (int i = 0; i < 6; i++)
if (!Imath::equalWithRelError ((*this)[i], h[i], e))
return false;
return true;
}
template <class T>
inline const Shear6<T> &
Shear6<T>::operator += (const Shear6 &h)
{
xy += h.xy;
xz += h.xz;
yz += h.yz;
yx += h.yx;
zx += h.zx;
zy += h.zy;
return *this;
}
template <class T>
inline Shear6<T>
Shear6<T>::operator + (const Shear6 &h) const
{
return Shear6 (xy + h.xy, xz + h.xz, yz + h.yz,
yx + h.yx, zx + h.zx, zy + h.zy);
}
template <class T>
inline const Shear6<T> &
Shear6<T>::operator -= (const Shear6 &h)
{
xy -= h.xy;
xz -= h.xz;
yz -= h.yz;
yx -= h.yx;
zx -= h.zx;
zy -= h.zy;
return *this;
}
template <class T>
inline Shear6<T>
Shear6<T>::operator - (const Shear6 &h) const
{
return Shear6 (xy - h.xy, xz - h.xz, yz - h.yz,
yx - h.yx, zx - h.zx, zy - h.zy);
}
template <class T>
inline Shear6<T>
Shear6<T>::operator - () const
{
return Shear6 (-xy, -xz, -yz, -yx, -zx, -zy);
}
template <class T>
inline const Shear6<T> &
Shear6<T>::negate ()
{
xy = -xy;
xz = -xz;
yz = -yz;
yx = -yx;
zx = -zx;
zy = -zy;
return *this;
}
template <class T>
inline const Shear6<T> &
Shear6<T>::operator *= (const Shear6 &h)
{
xy *= h.xy;
xz *= h.xz;
yz *= h.yz;
yx *= h.yx;
zx *= h.zx;
zy *= h.zy;
return *this;
}
template <class T>
inline const Shear6<T> &
Shear6<T>::operator *= (T a)
{
xy *= a;
xz *= a;
yz *= a;
yx *= a;
zx *= a;
zy *= a;
return *this;
}
template <class T>
inline Shear6<T>
Shear6<T>::operator * (const Shear6 &h) const
{
return Shear6 (xy * h.xy, xz * h.xz, yz * h.yz,
yx * h.yx, zx * h.zx, zy * h.zy);
}
template <class T>
inline Shear6<T>
Shear6<T>::operator * (T a) const
{
return Shear6 (xy * a, xz * a, yz * a,
yx * a, zx * a, zy * a);
}
template <class T>
inline const Shear6<T> &
Shear6<T>::operator /= (const Shear6 &h)
{
xy /= h.xy;
xz /= h.xz;
yz /= h.yz;
yx /= h.yx;
zx /= h.zx;
zy /= h.zy;
return *this;
}
template <class T>
inline const Shear6<T> &
Shear6<T>::operator /= (T a)
{
xy /= a;
xz /= a;
yz /= a;
yx /= a;
zx /= a;
zy /= a;
return *this;
}
template <class T>
inline Shear6<T>
Shear6<T>::operator / (const Shear6 &h) const
{
return Shear6 (xy / h.xy, xz / h.xz, yz / h.yz,
yx / h.yx, zx / h.zx, zy / h.zy);
}
template <class T>
inline Shear6<T>
Shear6<T>::operator / (T a) const
{
return Shear6 (xy / a, xz / a, yz / a,
yx / a, zx / a, zy / a);
}
//-----------------------------
// Stream output implementation
//-----------------------------
template <class T>
std::ostream &
operator << (std::ostream &s, const Shear6<T> &h)
{
return s << '('
<< h.xy << ' ' << h.xz << ' ' << h.yz
<< h.yx << ' ' << h.zx << ' ' << h.zy
<< ')';
}
//-----------------------------------------
// Implementation of reverse multiplication
//-----------------------------------------
template <class S, class T>
inline Shear6<T>
operator * (S a, const Shear6<T> &h)
{
return Shear6<T> (a * h.xy, a * h.xz, a * h.yz,
a * h.yx, a * h.zx, a * h.zy);
}
} // namespace Imath
#endif