mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
335 lines
7.3 KiB
335 lines
7.3 KiB
#include <stdexcept> |
|
#include <opencv2/imgproc/imgproc.hpp> |
|
#include <opencv2/highgui/highgui.hpp> |
|
#include <opencv2/gpu/gpu.hpp> |
|
#include "performance.h" |
|
|
|
using namespace std; |
|
using namespace cv; |
|
|
|
INIT(matchTemplate) |
|
{ |
|
Mat src; gen(src, 500, 500, CV_32F, 0, 1); |
|
Mat templ; gen(templ, 500, 500, CV_32F, 0, 1); |
|
|
|
gpu::GpuMat d_src(src), d_templ(templ), d_dst; |
|
|
|
gpu::matchTemplate(d_src, d_templ, d_dst, CV_TM_CCORR); |
|
} |
|
|
|
|
|
TEST(matchTemplate) |
|
{ |
|
Mat src, templ, dst; |
|
gen(src, 3000, 3000, CV_32F, 0, 1); |
|
|
|
gpu::GpuMat d_src(src), d_templ, d_dst; |
|
|
|
for (int templ_size = 5; templ_size < 200; templ_size *= 5) |
|
{ |
|
SUBTEST << "src " << src.rows << ", templ " << templ_size << ", 32F, CCORR"; |
|
|
|
gen(templ, templ_size, templ_size, CV_32F, 0, 1); |
|
dst.create(src.rows - templ.rows + 1, src.cols - templ.cols + 1, CV_32F); |
|
|
|
CPU_ON; |
|
matchTemplate(src, templ, dst, CV_TM_CCORR); |
|
CPU_OFF; |
|
|
|
d_templ = templ; |
|
d_dst.create(d_src.rows - d_templ.rows + 1, d_src.cols - d_templ.cols + 1, CV_32F); |
|
|
|
GPU_ON; |
|
gpu::matchTemplate(d_src, d_templ, d_dst, CV_TM_CCORR); |
|
GPU_OFF; |
|
} |
|
} |
|
|
|
|
|
TEST(minMaxLoc) |
|
{ |
|
Mat src; |
|
gpu::GpuMat d_src; |
|
|
|
double min_val, max_val; |
|
Point min_loc, max_loc; |
|
|
|
for (int size = 2000; size <= 8000; size *= 2) |
|
{ |
|
SUBTEST << "src " << size << ", 32F, no mask"; |
|
|
|
gen(src, size, size, CV_32F, 0, 1); |
|
|
|
CPU_ON; |
|
minMaxLoc(src, &min_val, &max_val, &min_loc, &max_loc); |
|
CPU_OFF; |
|
|
|
d_src = src; |
|
|
|
GPU_ON; |
|
gpu::minMaxLoc(d_src, &min_val, &max_val, &min_loc, &max_loc); |
|
GPU_OFF; |
|
} |
|
} |
|
|
|
|
|
TEST(remap) |
|
{ |
|
Mat src, dst, xmap, ymap; |
|
gpu::GpuMat d_src, d_dst, d_xmap, d_ymap; |
|
|
|
for (int size = 1000; size <= 8000; size *= 2) |
|
{ |
|
SUBTEST << "src " << size << " and 8U, 32F maps"; |
|
|
|
gen(src, size, size, CV_8UC1, 0, 256); |
|
|
|
xmap.create(size, size, CV_32F); |
|
ymap.create(size, size, CV_32F); |
|
for (int i = 0; i < size; ++i) |
|
{ |
|
float* xmap_row = xmap.ptr<float>(i); |
|
float* ymap_row = ymap.ptr<float>(i); |
|
for (int j = 0; j < size; ++j) |
|
{ |
|
xmap_row[j] = (j - size * 0.5f) * 0.75f + size * 0.5f; |
|
ymap_row[j] = (i - size * 0.5f) * 0.75f + size * 0.5f; |
|
} |
|
} |
|
|
|
dst.create(xmap.size(), src.type()); |
|
|
|
CPU_ON; |
|
remap(src, dst, xmap, ymap, INTER_LINEAR); |
|
CPU_OFF; |
|
|
|
d_src = src; |
|
d_xmap = xmap; |
|
d_ymap = ymap; |
|
d_dst.create(d_xmap.size(), d_src.type()); |
|
|
|
GPU_ON; |
|
gpu::remap(d_src, d_dst, d_xmap, d_ymap); |
|
GPU_OFF; |
|
} |
|
} |
|
|
|
|
|
TEST(dft) |
|
{ |
|
Mat src, dst; |
|
gpu::GpuMat d_src, d_dst; |
|
|
|
for (int size = 1000; size <= 4000; size *= 2) |
|
{ |
|
SUBTEST << "size " << size << ", 32FC2, complex-to-complex"; |
|
|
|
gen(src, size, size, CV_32FC2, Scalar::all(0), Scalar::all(1)); |
|
dst.create(src.size(), src.type()); |
|
|
|
CPU_ON; |
|
dft(src, dst); |
|
CPU_OFF; |
|
|
|
d_src = src; |
|
d_dst.create(d_src.size(), d_src.type()); |
|
|
|
GPU_ON; |
|
gpu::dft(d_src, d_dst, Size(size, size)); |
|
GPU_OFF; |
|
} |
|
} |
|
|
|
|
|
TEST(cornerHarris) |
|
{ |
|
Mat src, dst; |
|
gpu::GpuMat d_src, d_dst; |
|
|
|
for (int size = 2000; size <= 4000; size *= 2) |
|
{ |
|
SUBTEST << "size " << size << ", 32F"; |
|
|
|
gen(src, size, size, CV_32F, 0, 1); |
|
dst.create(src.size(), src.type()); |
|
|
|
CPU_ON; |
|
cornerHarris(src, dst, 5, 7, 0.1, BORDER_REFLECT101); |
|
CPU_OFF; |
|
|
|
d_src = src; |
|
d_dst.create(src.size(), src.type()); |
|
|
|
GPU_ON; |
|
gpu::cornerHarris(d_src, d_dst, 5, 7, 0.1, BORDER_REFLECT101); |
|
GPU_OFF; |
|
} |
|
} |
|
|
|
|
|
TEST(integral) |
|
{ |
|
Mat src, sum; |
|
gpu::GpuMat d_src, d_sum; |
|
|
|
for (int size = 1000; size <= 8000; size *= 2) |
|
{ |
|
SUBTEST << "size " << size << ", 8U"; |
|
|
|
gen(src, size, size, CV_8U, 0, 256); |
|
sum.create(size + 1, size + 1, CV_32S); |
|
|
|
CPU_ON; |
|
integral(src, sum); |
|
CPU_OFF; |
|
|
|
d_src = src; |
|
d_sum.create(size + 1, size + 1, CV_32S); |
|
|
|
GPU_ON; |
|
gpu::integral(d_src, d_sum); |
|
GPU_OFF; |
|
} |
|
} |
|
|
|
|
|
TEST(norm) |
|
{ |
|
Mat src; |
|
gpu::GpuMat d_src; |
|
|
|
for (int size = 1000; size <= 8000; size *= 2) |
|
{ |
|
SUBTEST << "size " << size << ", 8U"; |
|
|
|
gen(src, size, size, CV_8U, 0, 256); |
|
|
|
CPU_ON; |
|
norm(src); |
|
CPU_OFF; |
|
|
|
d_src = src; |
|
|
|
GPU_ON; |
|
gpu::norm(d_src); |
|
GPU_OFF; |
|
} |
|
} |
|
|
|
|
|
TEST(meanShift) |
|
{ |
|
int sp = 10, sr = 10; |
|
|
|
Mat src, dst; |
|
gpu::GpuMat d_src, d_dst; |
|
|
|
for (int size = 400; size <= 800; size *= 2) |
|
{ |
|
SUBTEST << "size " << size << ", 8UC3 vs 8UC4"; |
|
|
|
gen(src, size, size, CV_8UC3, Scalar::all(0), Scalar::all(256)); |
|
dst.create(src.size(), src.type()); |
|
|
|
CPU_ON; |
|
pyrMeanShiftFiltering(src, dst, sp, sr); |
|
CPU_OFF; |
|
|
|
gen(src, size, size, CV_8UC4, Scalar::all(0), Scalar::all(256)); |
|
|
|
d_src = src; |
|
d_dst.create(d_src.size(), d_src.type()); |
|
|
|
GPU_ON; |
|
gpu::meanShiftFiltering(d_src, d_dst, sp, sr); |
|
GPU_OFF; |
|
} |
|
} |
|
|
|
|
|
TEST(SURF) |
|
{ |
|
Mat src1 = imread(abspath("bowlingL.png"), CV_LOAD_IMAGE_GRAYSCALE); |
|
Mat src2 = imread(abspath("bowlingR.png"), CV_LOAD_IMAGE_GRAYSCALE); |
|
if (src1.empty()) throw runtime_error("can't open bowlingL.png"); |
|
if (src2.empty()) throw runtime_error("can't open bowlingR.png"); |
|
|
|
gpu::GpuMat d_src1(src1); |
|
gpu::GpuMat d_src2(src2); |
|
|
|
SURF surf; |
|
vector<KeyPoint> keypoints1, keypoints2; |
|
|
|
CPU_ON; |
|
surf(src1, Mat(), keypoints1); |
|
surf(src2, Mat(), keypoints2); |
|
CPU_OFF; |
|
|
|
gpu::SURF_GPU d_surf; |
|
gpu::GpuMat d_keypoints1, d_keypoints2; |
|
gpu::GpuMat d_descriptors1, d_descriptors2; |
|
|
|
GPU_ON; |
|
d_surf(d_src1, gpu::GpuMat(), d_keypoints1); |
|
d_surf(d_src2, gpu::GpuMat(), d_keypoints2); |
|
GPU_OFF; |
|
} |
|
|
|
|
|
TEST(BruteForceMatcher) |
|
{ |
|
// Init CPU matcher |
|
|
|
int desc_len = 128; |
|
|
|
BruteForceMatcher< L2<float> > matcher; |
|
|
|
Mat query; |
|
gen(query, 3000, desc_len, CV_32F, 0, 10); |
|
|
|
Mat train; |
|
gen(train, 3000, desc_len, CV_32F, 0, 10); |
|
|
|
// Init GPU matcher |
|
|
|
gpu::BruteForceMatcher_GPU< L2<float> > d_matcher; |
|
|
|
gpu::GpuMat d_query(query); |
|
gpu::GpuMat d_train(train); |
|
|
|
// Output |
|
vector< vector<DMatch> > matches(1); |
|
vector< vector<DMatch> > d_matches(1); |
|
|
|
SUBTEST << "match"; |
|
|
|
CPU_ON; |
|
matcher.match(query, train, matches[0]); |
|
CPU_OFF; |
|
|
|
GPU_ON; |
|
d_matcher.match(d_query, d_train, d_matches[0]); |
|
GPU_OFF; |
|
|
|
SUBTEST << "knnMatch"; |
|
int knn = 10; |
|
|
|
CPU_ON; |
|
matcher.knnMatch(query, train, matches, knn); |
|
CPU_OFF; |
|
|
|
GPU_ON; |
|
d_matcher.knnMatch(d_query, d_train, d_matches, knn); |
|
GPU_OFF; |
|
|
|
SUBTEST << "radiusMatch"; |
|
float max_distance = 45.0f; |
|
|
|
CPU_ON; |
|
matcher.radiusMatch(query, train, matches, max_distance); |
|
CPU_OFF; |
|
|
|
GPU_ON; |
|
d_matcher.radiusMatch(d_query, d_train, d_matches, max_distance); |
|
GPU_OFF; |
|
} |