mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
270 lines
7.7 KiB
270 lines
7.7 KiB
// This file is part of OpenCV project. |
|
// It is subject to the license terms in the LICENSE file found in the top-level directory |
|
// of this distribution and at http://opencv.org/license.html |
|
|
|
|
|
#include "precomp.hpp" |
|
#include "opencl_kernels_core.hpp" |
|
|
|
#include "merge.simd.hpp" |
|
#include "merge.simd_declarations.hpp" // defines CV_CPU_DISPATCH_MODES_ALL=AVX2,...,BASELINE based on CMakeLists.txt content |
|
|
|
namespace cv { namespace hal { |
|
|
|
void merge8u(const uchar** src, uchar* dst, int len, int cn ) |
|
{ |
|
CV_INSTRUMENT_REGION(); |
|
CALL_HAL(merge8u, cv_hal_merge8u, src, dst, len, cn) |
|
CV_CPU_DISPATCH(merge8u, (src, dst, len, cn), |
|
CV_CPU_DISPATCH_MODES_ALL); |
|
} |
|
|
|
void merge16u(const ushort** src, ushort* dst, int len, int cn ) |
|
{ |
|
CV_INSTRUMENT_REGION(); |
|
CALL_HAL(merge16u, cv_hal_merge16u, src, dst, len, cn) |
|
CV_CPU_DISPATCH(merge16u, (src, dst, len, cn), |
|
CV_CPU_DISPATCH_MODES_ALL); |
|
} |
|
|
|
void merge32s(const int** src, int* dst, int len, int cn ) |
|
{ |
|
CV_INSTRUMENT_REGION(); |
|
CALL_HAL(merge32s, cv_hal_merge32s, src, dst, len, cn) |
|
CV_CPU_DISPATCH(merge32s, (src, dst, len, cn), |
|
CV_CPU_DISPATCH_MODES_ALL); |
|
} |
|
|
|
void merge64s(const int64** src, int64* dst, int len, int cn ) |
|
{ |
|
CV_INSTRUMENT_REGION(); |
|
CALL_HAL(merge64s, cv_hal_merge64s, src, dst, len, cn) |
|
CV_CPU_DISPATCH(merge64s, (src, dst, len, cn), |
|
CV_CPU_DISPATCH_MODES_ALL); |
|
} |
|
|
|
} // namespace cv::hal:: |
|
|
|
|
|
typedef void (*MergeFunc)(const uchar** src, uchar* dst, int len, int cn); |
|
|
|
static MergeFunc getMergeFunc(int depth) |
|
{ |
|
static MergeFunc mergeTab[] = |
|
{ |
|
(MergeFunc)GET_OPTIMIZED(cv::hal::merge8u), (MergeFunc)GET_OPTIMIZED(cv::hal::merge8u), (MergeFunc)GET_OPTIMIZED(cv::hal::merge16u), (MergeFunc)GET_OPTIMIZED(cv::hal::merge16u), |
|
(MergeFunc)GET_OPTIMIZED(cv::hal::merge32s), (MergeFunc)GET_OPTIMIZED(cv::hal::merge32s), (MergeFunc)GET_OPTIMIZED(cv::hal::merge64s), 0 |
|
}; |
|
|
|
return mergeTab[depth]; |
|
} |
|
|
|
#ifdef HAVE_IPP |
|
|
|
static bool ipp_merge(const Mat* mv, Mat& dst, int channels) |
|
{ |
|
#ifdef HAVE_IPP_IW_LL |
|
CV_INSTRUMENT_REGION_IPP(); |
|
|
|
if(channels != 3 && channels != 4) |
|
return false; |
|
|
|
if(mv[0].dims <= 2) |
|
{ |
|
IppiSize size = ippiSize(mv[0].size()); |
|
const void *srcPtrs[4] = {NULL}; |
|
size_t srcStep = mv[0].step; |
|
for(int i = 0; i < channels; i++) |
|
{ |
|
srcPtrs[i] = mv[i].ptr(); |
|
if(srcStep != mv[i].step) |
|
return false; |
|
} |
|
|
|
return CV_INSTRUMENT_FUN_IPP(llwiCopyMerge, srcPtrs, (int)srcStep, dst.ptr(), (int)dst.step, size, (int)mv[0].elemSize1(), channels, 0) >= 0; |
|
} |
|
else |
|
{ |
|
const Mat *arrays[5] = {NULL}; |
|
uchar *ptrs[5] = {NULL}; |
|
arrays[0] = &dst; |
|
|
|
for(int i = 1; i < channels; i++) |
|
{ |
|
arrays[i] = &mv[i-1]; |
|
} |
|
|
|
NAryMatIterator it(arrays, ptrs); |
|
IppiSize size = { (int)it.size, 1 }; |
|
|
|
for( size_t i = 0; i < it.nplanes; i++, ++it ) |
|
{ |
|
if(CV_INSTRUMENT_FUN_IPP(llwiCopyMerge, (const void**)&ptrs[1], 0, ptrs[0], 0, size, (int)mv[0].elemSize1(), channels, 0) < 0) |
|
return false; |
|
} |
|
return true; |
|
} |
|
#else |
|
CV_UNUSED(dst); CV_UNUSED(mv); CV_UNUSED(channels); |
|
return false; |
|
#endif |
|
} |
|
#endif |
|
|
|
void merge(const Mat* mv, size_t n, OutputArray _dst) |
|
{ |
|
CV_INSTRUMENT_REGION(); |
|
|
|
CV_Assert( mv && n > 0 ); |
|
|
|
int depth = mv[0].depth(); |
|
bool allch1 = true; |
|
int k, cn = 0; |
|
size_t i; |
|
|
|
for( i = 0; i < n; i++ ) |
|
{ |
|
CV_Assert(mv[i].size == mv[0].size && mv[i].depth() == depth); |
|
allch1 = allch1 && mv[i].channels() == 1; |
|
cn += mv[i].channels(); |
|
} |
|
|
|
CV_Assert( 0 < cn && cn <= CV_CN_MAX ); |
|
_dst.create(mv[0].dims, mv[0].size, CV_MAKETYPE(depth, cn)); |
|
Mat dst = _dst.getMat(); |
|
|
|
if( n == 1 ) |
|
{ |
|
mv[0].copyTo(dst); |
|
return; |
|
} |
|
|
|
CV_IPP_RUN(allch1, ipp_merge(mv, dst, (int)n)); |
|
|
|
if( !allch1 ) |
|
{ |
|
AutoBuffer<int> pairs(cn*2); |
|
int j, ni=0; |
|
|
|
for( i = 0, j = 0; i < n; i++, j += ni ) |
|
{ |
|
ni = mv[i].channels(); |
|
for( k = 0; k < ni; k++ ) |
|
{ |
|
pairs[(j+k)*2] = j + k; |
|
pairs[(j+k)*2+1] = j + k; |
|
} |
|
} |
|
mixChannels( mv, n, &dst, 1, &pairs[0], cn ); |
|
return; |
|
} |
|
|
|
MergeFunc func = getMergeFunc(depth); |
|
CV_Assert( func != 0 ); |
|
|
|
size_t esz = dst.elemSize(), esz1 = dst.elemSize1(); |
|
size_t blocksize0 = (int)((BLOCK_SIZE + esz-1)/esz); |
|
AutoBuffer<uchar> _buf((cn+1)*(sizeof(Mat*) + sizeof(uchar*)) + 16); |
|
const Mat** arrays = (const Mat**)_buf.data(); |
|
uchar** ptrs = (uchar**)alignPtr(arrays + cn + 1, 16); |
|
|
|
arrays[0] = &dst; |
|
for( k = 0; k < cn; k++ ) |
|
arrays[k+1] = &mv[k]; |
|
|
|
NAryMatIterator it(arrays, ptrs, cn+1); |
|
size_t total = (int)it.size; |
|
size_t blocksize = std::min((size_t)CV_SPLIT_MERGE_MAX_BLOCK_SIZE(cn), cn <= 4 ? total : std::min(total, blocksize0)); |
|
|
|
for( i = 0; i < it.nplanes; i++, ++it ) |
|
{ |
|
for( size_t j = 0; j < total; j += blocksize ) |
|
{ |
|
size_t bsz = std::min(total - j, blocksize); |
|
func( (const uchar**)&ptrs[1], ptrs[0], (int)bsz, cn ); |
|
|
|
if( j + blocksize < total ) |
|
{ |
|
ptrs[0] += bsz*esz; |
|
for( int t = 0; t < cn; t++ ) |
|
ptrs[t+1] += bsz*esz1; |
|
} |
|
} |
|
} |
|
} |
|
|
|
#ifdef HAVE_OPENCL |
|
|
|
static bool ocl_merge( InputArrayOfArrays _mv, OutputArray _dst ) |
|
{ |
|
std::vector<UMat> src, ksrc; |
|
_mv.getUMatVector(src); |
|
CV_Assert(!src.empty()); |
|
|
|
int type = src[0].type(), depth = CV_MAT_DEPTH(type), |
|
rowsPerWI = ocl::Device::getDefault().isIntel() ? 4 : 1; |
|
Size size = src[0].size(); |
|
|
|
for (size_t i = 0, srcsize = src.size(); i < srcsize; ++i) |
|
{ |
|
int itype = src[i].type(), icn = CV_MAT_CN(itype), idepth = CV_MAT_DEPTH(itype), |
|
esz1 = CV_ELEM_SIZE1(idepth); |
|
if (src[i].dims > 2) |
|
return false; |
|
|
|
CV_Assert(size == src[i].size() && depth == idepth); |
|
|
|
for (int cn = 0; cn < icn; ++cn) |
|
{ |
|
UMat tsrc = src[i]; |
|
tsrc.offset += cn * esz1; |
|
ksrc.push_back(tsrc); |
|
} |
|
} |
|
int dcn = (int)ksrc.size(); |
|
|
|
String srcargs, processelem, cndecl, indexdecl; |
|
for (int i = 0; i < dcn; ++i) |
|
{ |
|
srcargs += format("DECLARE_SRC_PARAM(%d)", i); |
|
processelem += format("PROCESS_ELEM(%d)", i); |
|
indexdecl += format("DECLARE_INDEX(%d)", i); |
|
cndecl += format(" -D scn%d=%d", i, ksrc[i].channels()); |
|
} |
|
|
|
ocl::Kernel k("merge", ocl::core::split_merge_oclsrc, |
|
format("-D OP_MERGE -D cn=%d -D T=%s -D DECLARE_SRC_PARAMS_N=%s" |
|
" -D DECLARE_INDEX_N=%s -D PROCESS_ELEMS_N=%s%s", |
|
dcn, ocl::memopTypeToStr(depth), srcargs.c_str(), |
|
indexdecl.c_str(), processelem.c_str(), cndecl.c_str())); |
|
if (k.empty()) |
|
return false; |
|
|
|
_dst.create(size, CV_MAKE_TYPE(depth, dcn)); |
|
UMat dst = _dst.getUMat(); |
|
|
|
int argidx = 0; |
|
for (int i = 0; i < dcn; ++i) |
|
argidx = k.set(argidx, ocl::KernelArg::ReadOnlyNoSize(ksrc[i])); |
|
argidx = k.set(argidx, ocl::KernelArg::WriteOnly(dst)); |
|
k.set(argidx, rowsPerWI); |
|
|
|
size_t globalsize[2] = { (size_t)dst.cols, ((size_t)dst.rows + rowsPerWI - 1) / rowsPerWI }; |
|
return k.run(2, globalsize, NULL, false); |
|
} |
|
|
|
#endif |
|
|
|
void merge(InputArrayOfArrays _mv, OutputArray _dst) |
|
{ |
|
CV_INSTRUMENT_REGION(); |
|
|
|
CV_OCL_RUN(_mv.isUMatVector() && _dst.isUMat(), |
|
ocl_merge(_mv, _dst)) |
|
|
|
std::vector<Mat> mv; |
|
_mv.getMatVector(mv); |
|
merge(!mv.empty() ? &mv[0] : 0, mv.size(), _dst); |
|
} |
|
|
|
} // namespace
|
|
|