mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
461 lines
16 KiB
461 lines
16 KiB
/*M/////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// |
|
// License Agreement |
|
// For Open Source Computer Vision Library |
|
// |
|
// Copyright (C) 2000-2018, Intel Corporation, all rights reserved. |
|
// Copyright (C) 2009, Willow Garage Inc., all rights reserved. |
|
// Copyright (C) 2013, OpenCV Foundation, all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
// |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistribution's of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistribution's in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other materials provided with the distribution. |
|
// |
|
// * The name of the copyright holders may not be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors "as is" and |
|
// any express or implied warranties, including, but not limited to, the implied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall the Intel Corporation or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
// |
|
//M*/ |
|
|
|
#include "precomp.hpp" |
|
#include <opencv2/core/utils/configuration.private.hpp> |
|
#include <opencv2/core/hal/hal.hpp> |
|
|
|
////////////////////////////////////////// kmeans //////////////////////////////////////////// |
|
|
|
namespace cv |
|
{ |
|
|
|
static int CV_KMEANS_PARALLEL_GRANULARITY = (int)utils::getConfigurationParameterSizeT("OPENCV_KMEANS_PARALLEL_GRANULARITY", 1000); |
|
|
|
static void generateRandomCenter(int dims, const Vec2f* box, float* center, RNG& rng) |
|
{ |
|
float margin = 1.f/dims; |
|
for (int j = 0; j < dims; j++) |
|
center[j] = ((float)rng*(1.f+margin*2.f)-margin)*(box[j][1] - box[j][0]) + box[j][0]; |
|
} |
|
|
|
class KMeansPPDistanceComputer : public ParallelLoopBody |
|
{ |
|
public: |
|
KMeansPPDistanceComputer(float *tdist2_, const Mat& data_, const float *dist_, int ci_) : |
|
tdist2(tdist2_), data(data_), dist(dist_), ci(ci_) |
|
{ } |
|
|
|
void operator()( const cv::Range& range ) const CV_OVERRIDE |
|
{ |
|
CV_TRACE_FUNCTION(); |
|
const int begin = range.start; |
|
const int end = range.end; |
|
const int dims = data.cols; |
|
|
|
for (int i = begin; i<end; i++) |
|
{ |
|
tdist2[i] = std::min(hal::normL2Sqr_(data.ptr<float>(i), data.ptr<float>(ci), dims), dist[i]); |
|
} |
|
} |
|
|
|
private: |
|
KMeansPPDistanceComputer& operator=(const KMeansPPDistanceComputer&); // = delete |
|
|
|
float *tdist2; |
|
const Mat& data; |
|
const float *dist; |
|
const int ci; |
|
}; |
|
|
|
/* |
|
k-means center initialization using the following algorithm: |
|
Arthur & Vassilvitskii (2007) k-means++: The Advantages of Careful Seeding |
|
*/ |
|
static void generateCentersPP(const Mat& data, Mat& _out_centers, |
|
int K, RNG& rng, int trials) |
|
{ |
|
CV_TRACE_FUNCTION(); |
|
const int dims = data.cols, N = data.rows; |
|
cv::AutoBuffer<int, 64> _centers(K); |
|
int* centers = &_centers[0]; |
|
cv::AutoBuffer<float, 0> _dist(N*3); |
|
float* dist = &_dist[0], *tdist = dist + N, *tdist2 = tdist + N; |
|
double sum0 = 0; |
|
|
|
centers[0] = (unsigned)rng % N; |
|
|
|
for (int i = 0; i < N; i++) |
|
{ |
|
dist[i] = hal::normL2Sqr_(data.ptr<float>(i), data.ptr<float>(centers[0]), dims); |
|
sum0 += dist[i]; |
|
} |
|
|
|
for (int k = 1; k < K; k++) |
|
{ |
|
double bestSum = DBL_MAX; |
|
int bestCenter = -1; |
|
|
|
for (int j = 0; j < trials; j++) |
|
{ |
|
double p = (double)rng*sum0; |
|
int ci = 0; |
|
for (; ci < N - 1; ci++) |
|
{ |
|
p -= dist[ci]; |
|
if (p <= 0) |
|
break; |
|
} |
|
|
|
parallel_for_(Range(0, N), |
|
KMeansPPDistanceComputer(tdist2, data, dist, ci), |
|
(double)divUp((size_t)(dims * N), CV_KMEANS_PARALLEL_GRANULARITY)); |
|
double s = 0; |
|
for (int i = 0; i < N; i++) |
|
{ |
|
s += tdist2[i]; |
|
} |
|
|
|
if (s < bestSum) |
|
{ |
|
bestSum = s; |
|
bestCenter = ci; |
|
std::swap(tdist, tdist2); |
|
} |
|
} |
|
if (bestCenter < 0) |
|
CV_Error(Error::StsNoConv, "kmeans: can't update cluster center (check input for huge or NaN values)"); |
|
centers[k] = bestCenter; |
|
sum0 = bestSum; |
|
std::swap(dist, tdist); |
|
} |
|
|
|
for (int k = 0; k < K; k++) |
|
{ |
|
const float* src = data.ptr<float>(centers[k]); |
|
float* dst = _out_centers.ptr<float>(k); |
|
for (int j = 0; j < dims; j++) |
|
dst[j] = src[j]; |
|
} |
|
} |
|
|
|
template<bool onlyDistance> |
|
class KMeansDistanceComputer : public ParallelLoopBody |
|
{ |
|
public: |
|
KMeansDistanceComputer( double *distances_, |
|
int *labels_, |
|
const Mat& data_, |
|
const Mat& centers_) |
|
: distances(distances_), |
|
labels(labels_), |
|
data(data_), |
|
centers(centers_) |
|
{ |
|
} |
|
|
|
void operator()(const Range& range) const CV_OVERRIDE |
|
{ |
|
CV_TRACE_FUNCTION(); |
|
const int begin = range.start; |
|
const int end = range.end; |
|
const int K = centers.rows; |
|
const int dims = centers.cols; |
|
|
|
for (int i = begin; i < end; ++i) |
|
{ |
|
const float *sample = data.ptr<float>(i); |
|
if (onlyDistance) |
|
{ |
|
const float* center = centers.ptr<float>(labels[i]); |
|
distances[i] = hal::normL2Sqr_(sample, center, dims); |
|
continue; |
|
} |
|
else |
|
{ |
|
int k_best = 0; |
|
double min_dist = DBL_MAX; |
|
|
|
for (int k = 0; k < K; k++) |
|
{ |
|
const float* center = centers.ptr<float>(k); |
|
const double dist = hal::normL2Sqr_(sample, center, dims); |
|
|
|
if (min_dist > dist) |
|
{ |
|
min_dist = dist; |
|
k_best = k; |
|
} |
|
} |
|
|
|
distances[i] = min_dist; |
|
labels[i] = k_best; |
|
} |
|
} |
|
} |
|
|
|
private: |
|
KMeansDistanceComputer& operator=(const KMeansDistanceComputer&); // = delete |
|
|
|
double *distances; |
|
int *labels; |
|
const Mat& data; |
|
const Mat& centers; |
|
}; |
|
|
|
} |
|
|
|
double cv::kmeans( InputArray _data, int K, |
|
InputOutputArray _bestLabels, |
|
TermCriteria criteria, int attempts, |
|
int flags, OutputArray _centers ) |
|
{ |
|
CV_INSTRUMENT_REGION(); |
|
const int SPP_TRIALS = 3; |
|
Mat data0 = _data.getMat(); |
|
const bool isrow = data0.rows == 1; |
|
const int N = isrow ? data0.cols : data0.rows; |
|
const int dims = (isrow ? 1 : data0.cols)*data0.channels(); |
|
const int type = data0.depth(); |
|
|
|
attempts = std::max(attempts, 1); |
|
CV_Assert( data0.dims <= 2 && type == CV_32F && K > 0 ); |
|
CV_CheckGE(N, K, "Number of clusters should be more than number of elements"); |
|
|
|
Mat data(N, dims, CV_32F, data0.ptr(), isrow ? dims * sizeof(float) : static_cast<size_t>(data0.step)); |
|
|
|
_bestLabels.create(N, 1, CV_32S, -1, true); |
|
|
|
Mat _labels, best_labels = _bestLabels.getMat(); |
|
if (flags & CV_KMEANS_USE_INITIAL_LABELS) |
|
{ |
|
CV_Assert( (best_labels.cols == 1 || best_labels.rows == 1) && |
|
best_labels.cols*best_labels.rows == N && |
|
best_labels.type() == CV_32S && |
|
best_labels.isContinuous()); |
|
best_labels.reshape(1, N).copyTo(_labels); |
|
for (int i = 0; i < N; i++) |
|
{ |
|
CV_Assert((unsigned)_labels.at<int>(i) < (unsigned)K); |
|
} |
|
} |
|
else |
|
{ |
|
if (!((best_labels.cols == 1 || best_labels.rows == 1) && |
|
best_labels.cols*best_labels.rows == N && |
|
best_labels.type() == CV_32S && |
|
best_labels.isContinuous())) |
|
{ |
|
_bestLabels.create(N, 1, CV_32S); |
|
best_labels = _bestLabels.getMat(); |
|
} |
|
_labels.create(best_labels.size(), best_labels.type()); |
|
} |
|
int* labels = _labels.ptr<int>(); |
|
|
|
Mat centers(K, dims, type), old_centers(K, dims, type), temp(1, dims, type); |
|
cv::AutoBuffer<int, 64> counters(K); |
|
cv::AutoBuffer<double, 64> dists(N); |
|
RNG& rng = theRNG(); |
|
|
|
if (criteria.type & TermCriteria::EPS) |
|
criteria.epsilon = std::max(criteria.epsilon, 0.); |
|
else |
|
criteria.epsilon = FLT_EPSILON; |
|
criteria.epsilon *= criteria.epsilon; |
|
|
|
if (criteria.type & TermCriteria::COUNT) |
|
criteria.maxCount = std::min(std::max(criteria.maxCount, 2), 100); |
|
else |
|
criteria.maxCount = 100; |
|
|
|
if (K == 1) |
|
{ |
|
attempts = 1; |
|
criteria.maxCount = 2; |
|
} |
|
|
|
cv::AutoBuffer<Vec2f, 64> box(dims); |
|
if (!(flags & KMEANS_PP_CENTERS)) |
|
{ |
|
{ |
|
const float* sample = data.ptr<float>(0); |
|
for (int j = 0; j < dims; j++) |
|
box[j] = Vec2f(sample[j], sample[j]); |
|
} |
|
for (int i = 1; i < N; i++) |
|
{ |
|
const float* sample = data.ptr<float>(i); |
|
for (int j = 0; j < dims; j++) |
|
{ |
|
float v = sample[j]; |
|
box[j][0] = std::min(box[j][0], v); |
|
box[j][1] = std::max(box[j][1], v); |
|
} |
|
} |
|
} |
|
|
|
double best_compactness = DBL_MAX; |
|
for (int a = 0; a < attempts; a++) |
|
{ |
|
double compactness = 0; |
|
|
|
for (int iter = 0; ;) |
|
{ |
|
double max_center_shift = iter == 0 ? DBL_MAX : 0.0; |
|
|
|
swap(centers, old_centers); |
|
|
|
if (iter == 0 && (a > 0 || !(flags & KMEANS_USE_INITIAL_LABELS))) |
|
{ |
|
if (flags & KMEANS_PP_CENTERS) |
|
generateCentersPP(data, centers, K, rng, SPP_TRIALS); |
|
else |
|
{ |
|
for (int k = 0; k < K; k++) |
|
generateRandomCenter(dims, box.data(), centers.ptr<float>(k), rng); |
|
} |
|
} |
|
else |
|
{ |
|
// compute centers |
|
centers = Scalar(0); |
|
for (int k = 0; k < K; k++) |
|
counters[k] = 0; |
|
|
|
for (int i = 0; i < N; i++) |
|
{ |
|
const float* sample = data.ptr<float>(i); |
|
int k = labels[i]; |
|
float* center = centers.ptr<float>(k); |
|
for (int j = 0; j < dims; j++) |
|
center[j] += sample[j]; |
|
counters[k]++; |
|
} |
|
|
|
for (int k = 0; k < K; k++) |
|
{ |
|
if (counters[k] != 0) |
|
continue; |
|
|
|
// if some cluster appeared to be empty then: |
|
// 1. find the biggest cluster |
|
// 2. find the farthest from the center point in the biggest cluster |
|
// 3. exclude the farthest point from the biggest cluster and form a new 1-point cluster. |
|
int max_k = 0; |
|
for (int k1 = 1; k1 < K; k1++) |
|
{ |
|
if (counters[max_k] < counters[k1]) |
|
max_k = k1; |
|
} |
|
|
|
double max_dist = 0; |
|
int farthest_i = -1; |
|
float* base_center = centers.ptr<float>(max_k); |
|
float* _base_center = temp.ptr<float>(); // normalized |
|
float scale = 1.f/counters[max_k]; |
|
for (int j = 0; j < dims; j++) |
|
_base_center[j] = base_center[j]*scale; |
|
|
|
for (int i = 0; i < N; i++) |
|
{ |
|
if (labels[i] != max_k) |
|
continue; |
|
const float* sample = data.ptr<float>(i); |
|
double dist = hal::normL2Sqr_(sample, _base_center, dims); |
|
|
|
if (max_dist <= dist) |
|
{ |
|
max_dist = dist; |
|
farthest_i = i; |
|
} |
|
} |
|
|
|
counters[max_k]--; |
|
counters[k]++; |
|
labels[farthest_i] = k; |
|
|
|
const float* sample = data.ptr<float>(farthest_i); |
|
float* cur_center = centers.ptr<float>(k); |
|
for (int j = 0; j < dims; j++) |
|
{ |
|
base_center[j] -= sample[j]; |
|
cur_center[j] += sample[j]; |
|
} |
|
} |
|
|
|
for (int k = 0; k < K; k++) |
|
{ |
|
float* center = centers.ptr<float>(k); |
|
CV_Assert( counters[k] != 0 ); |
|
|
|
float scale = 1.f/counters[k]; |
|
for (int j = 0; j < dims; j++) |
|
center[j] *= scale; |
|
|
|
if (iter > 0) |
|
{ |
|
double dist = 0; |
|
const float* old_center = old_centers.ptr<float>(k); |
|
for (int j = 0; j < dims; j++) |
|
{ |
|
double t = center[j] - old_center[j]; |
|
dist += t*t; |
|
} |
|
max_center_shift = std::max(max_center_shift, dist); |
|
} |
|
} |
|
} |
|
|
|
bool isLastIter = (++iter == MAX(criteria.maxCount, 2) || max_center_shift <= criteria.epsilon); |
|
|
|
if (isLastIter) |
|
{ |
|
// don't re-assign labels to avoid creation of empty clusters |
|
parallel_for_(Range(0, N), KMeansDistanceComputer<true>(dists.data(), labels, data, centers), (double)divUp((size_t)(dims * N), CV_KMEANS_PARALLEL_GRANULARITY)); |
|
compactness = sum(Mat(Size(N, 1), CV_64F, &dists[0]))[0]; |
|
break; |
|
} |
|
else |
|
{ |
|
// assign labels |
|
parallel_for_(Range(0, N), KMeansDistanceComputer<false>(dists.data(), labels, data, centers), (double)divUp((size_t)(dims * N * K), CV_KMEANS_PARALLEL_GRANULARITY)); |
|
} |
|
} |
|
|
|
if (compactness < best_compactness) |
|
{ |
|
best_compactness = compactness; |
|
if (_centers.needed()) |
|
{ |
|
if (_centers.fixedType() && _centers.channels() == dims) |
|
centers.reshape(dims).copyTo(_centers); |
|
else |
|
centers.copyTo(_centers); |
|
} |
|
_labels.copyTo(best_labels); |
|
} |
|
} |
|
|
|
return best_compactness; |
|
}
|
|
|